Heart Muscle Renewed Over Lifetime, Study Finds

By NICHOLAS WADE

In a finding that may open new approaches to treating heart disease, Swedish scientists have succeeded in measuring a highly controversial property of the human heart: the rate at which its muscle cells are renewed during a person’s lifetime.

The finding upturns what has long been conventional wisdom: that the heart cannot produce new muscle cells and so people die with the same heart they were born with.

About 1 percent of the heart muscle cells are replaced every year at age 25, and that rate gradually falls to less than half a percent per year by age 75, concluded a team of researchers led by Dr. Jonas Frisen of the Karolinska Institute in Stockholm. The upshot is that about half of the heart’s muscle cells are exchanged in the course of a normal lifetime, the Swedish group calculates. Its results are to be published Friday in the journal Science.

“I think this will be one of the most important papers in cardiovascular medicine in years,” said Dr. Charles Murry, a heart researcher at the University of Washington in Seattle. “It helps settle a longstanding controversy about whether the human heart has any ability to regenerate itself.”

If the heart can generate new muscle cells, researchers can hope to develop drugs that might accelerate the process, since the heart fails to replace cells that are killed in a heart attack.

The dogma that the heart cannot generate new muscle cells has been challenged since 1987 by a somewhat lonely skeptic, Dr. Piero Anversa, now of the Harvard
Medical School. Dr. Anversa maintains that heart muscle cells are renewed so fast that a person dying at age 80 has replaced the heart four times over. Many other researchers have doubted this assertion.

Cell turnover rates can easily be measured in animals by making their cells radioactive and seeing how fast they are replaced. Such an experiment, called pulse-labeling, could not ethically be done in people. But Dr. Frisen realized several years ago that nuclear weapons tested in the atmosphere until 1963 had in fact labeled the cells of the entire world’s population.

The nuclear blasts generated a radioactive form of carbon known as carbon-14. The amount of carbon-14 in the atmosphere has gradually diminished since 1963, when above-ground tests were banned, as it has been incorporated into plants and animals or diffused into the oceans.

In the body, carbon-14 in the diet gets into the DNA of new cells and stays unchanged for the life of the cell. Because the level of carbon-14 in the atmosphere falls each year, the amount of carbon-14 in the DNA can serve to indicate the cell’s birth date, Dr. Frisen found.

Four years ago he used his new method to assess the turnover rate of various tissues in the body, concluding that the average age of the cells in an adult’s body might be as young as 7 to 10 years. But there is a wide range of ages — from the rapidly turning over cells of the blood and gut to the mostly permanent cells of the brain.

Dr. Frisen has successfully applied his method to the heart muscle cells, but had to navigate a series of technical obstacles created by the special behavior of the cells. Many have two nuclei, instead of the usual one, and within these double nuclei the DNA may be duplicated again. “I was really impressed at the level of rigor they put into this analysis,” Dr. Murry said, calling it a “scientific tour de force.”

The finding that heart muscle cells do regenerate, though at a considerably slower rate than Dr. Anversa predicted, is a “reasonable conclusion to a hotly contested issue,” Dr. Murry said. “Anversa went out on a limb, and I think he was partly right.”
Dr. Loren Field, a heart expert at the Indiana University School of Medicine, said he had found that heart muscle cells regenerated in mice at the same rate that Dr. Frisen had found in people. Despite the controversy created by Dr. Anversa’s claims, there has long been agreement that there is a low but detectable rate of cell renewal in the heart, Dr. Field said. The goal now, in his view, is “to try to tickle the system to enhance it.”

Dr. Anversa, for his part, said he was “ecstatic” at Dr. Frisen’s confirmation of his view that the heart could generate new muscle cells, but suggested that the new measurements might have underestimated the rate at which new cells are formed. Since heart muscle cells contract 70 times a minute, they seem likely to need renewing more often than Dr. Frisen’s measurements suggest, he said. “Now let’s discuss the magnitude of the process, and that will let us think about how we can apply this concept to heart failure,” Dr. Anversa said.

Dr. Frisen said he did not agree that the rate of regeneration had been underestimated. He said it would now be worth trying to understand how the regeneration of heart muscle cells was regulated.

A zebrafish, for instance, can regenerate large regions of its heart after injury, and possibly a similar response could be induced in people. It could also be that the heart does generate many new muscle cells after a heart attack but that the cells fail to establish themselves. Drugs that kept any such new cells alive could be helpful, Dr. Frisen said.
$\text{CO}_2 + \text{H}_2\text{O} + \text{photons} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + \text{O}_2 + \text{H}_2\text{O}$
It has been difficult to establish whether we are limited to the heart muscle cells we are born with or if cardiomyocytes are generated also later in life. We have taken advantage of the integration of carbon-14, generated by nuclear bomb tests during the Cold War, into DNA to establish the age of cardiomyocytes in humans. We report that cardiomyocytes renew, with a gradual decrease from 1% turning over annually at the age of 25 to 0.45% at the age of 75. Fewer than 50% of cardiomyocytes are exchanged during a normal life span. The capacity to generate cardiomyocytes in the adult human heart suggests that it may be rational to work toward the development of therapeutic strategies aimed at stimulating this process in cardiac pathologies.

Myocardial damage often occurs in chronic heart failure due to loss and insufficient regeneration of cardiomyocytes. This has prompted efforts to devise cardiomyocyte replacement therapies by cell transplantation or by the promotion of endogenous regenerative processes. The development of cell transplantation strategies is advancing rapidly, and some are currently being evaluated in clinical trials (1,2). Stimulation of endogenous regenerative processes is attractive as it potentially could provide a non-invasive therapy and circumvent the immunosuppression required for allografts. However, it is unclear whether such regenerative strategies are realistic because it has been difficult to establish whether cardiomyocytes can be generated after the perinatal period in humans.

Stem/progenitor cells with the potential to generate cardiomyocytes in vitro remain in the adult rodent and human myocardium (3,4). Moreover, mature cardiomyocytes have been suggested to be able to reenter the cell cycle and duplicate (5). However, studies over several decades in rodents with labeled nucleotide analogs have led to conflicting results, ranging from no to substantial generation of cardiomyocytes postnatally (6). A recent genetic labeling study, which enabled detection of cardiomyocyte generation by stem/progenitor cells (but not by cardiomyocyte duplication), demonstrated cardiomyocyte renewal after myocardial injury, but not during 1 year in the healthy mouse (7).

It is possible that humans, who live much longer than rodents, may have a different requirement for cardiomyocyte replacement. Cell turnover has been difficult to study in humans because the use of labeled nucleotide analogs and other strategies commonly used in experimental animals cannot readily be adapted for studies in humans owing to safety concerns. The limited functional recovery after loss of myocardium and the fact that primary cardiac tumors are very rare indicate limited proliferation within the adult human heart (8). Several studies have described the presence of molecular markers associated with mitosis in the human myocardium (5), but this provides limited information because it is difficult to deduce the future fate of a potentially dividing cell in terms of differentiation and long-term survival.

We have measured carbon-14 (14C) from nuclear bomb tests in genomic DNA of human myocardial cells, which allows retrospective birth dating (9-11). 14C concentrations in the atmosphere remained relatively stable until the Cold War, when aboveground nuclear bomb tests caused a sharp increase (12,13). Even though the detonations were conducted at a limited number of locations, the elevated amounts of 14C in the atmosphere rapidly equalized around the world as 14CO$_2$. After the Limited Nuclear Test Ban Treaty in 1963, the 14C concentrations dropped exponentially, not primarily because of radioactive decay (half-life of 5730 years), but by diffusion from the atmosphere (14). Newly created atmospheric 14C reacts with oxygen to form 14CO$_2$, which is incorporated by plants through photosynthesis. Humans eat plants, and animals that live off plants, so the 14C concentration in the human body mirrors that in the atmosphere at any given time (15-18). Because DNA is stable after a cell has gone through its last cell division, the concentration of 14C in DNA serves as a date mark for when a cell was born and can be used to retrospectively date cell cells in humans (9-11).

We first carbon-dated left ventricle myocardial cells, including cardiomyocytes and other cell types, to determine the extent of postnatal DNA synthesis in the human heart. DNA was extracted, and 14C concentrations were measured by accelerator mass spectrometry (see tables S1 and S2 for 14C values and associated data). The cellular birth dates can be inferred by determining the time at which the sample’s 14C concentration corresponded to the atmospheric concentration (Fig. 1A). 14C concentrations from all individuals born around or after the nuclear bomb tests corresponded to atmospheric concentrations several years after the subjects’ birth (Fig. 1B), indicating substantial postnatal DNA synthesis. Analysis of individuals born before the period of nuclear bomb tests allows for sensitive detection of any turnover after 1955 due to the marked increase in 14C concentrations. By analyzing individuals born at different times before 1955 it is possible to establish the age up to which DNA synthesis occurs, or whether it continues beyond that age.

References

13. Materials and methods are available as supporting material on Science Online.
24. Our thanks go to G. Hayes, G. Ruvkun, V. Ambros, and A. Rougvie for strains; N. Timchenko for gel shift support; and D. Magner, S. Greene, and F. Schroeder for manuscript comments. This work was supported by NIH grant GM077201 and the Ellison Medical Foundation (A.A.), and the Howard Hughes Medical Institute and the Robert A. Welch Foundation (D.J.M.).
In all studied cases, born up to 22 years before the onset of the nuclear bomb tests, 14C concentrations were elevated compared to the levels before the nuclear bomb tests (Fig. 1C). Thus, DNA of myocardial cells is synthesized many years after birth, indicating that cells in the human heart do renew into adulthood.

Because cardiomyocytes constitute only about 20% of all cells within the human myocardium, it is not possible to infer from these data whether there is postnatal renewal of cardiomyocytes, or whether cell turnover in the myocardium is limited to other cell populations. We therefore set out to specifically birth date cardiomyocytes. Many cardiomyocytes are binucleated, and it is difficult to distinguish a binucleated cell from two aggregating mononucleated cells (of which one could be a noncardiomyocyte) in the flow cytometer. Hence, rather than separating myocardial cells on the basis of cell surface or cytoplasmic markers, we developed a strategy to isolate cardiomyocyte nuclei by flow cytometry.

We found that the well-characterized cardiomyocyte-specific proteins cardiac troponin I (cTroponin I, also known as TNNI3) and cardiac troponin T (cTroponin T, also known as TNNT2) [for review, see (20)] have evolutionarily conserved expression patterns in human and mouse hearts, suggesting that they are evolutionarily conserved markers for cardiomyocytes.

Fig. 1. Cell turnover in the heart. (A) Schematic figure demonstrating the strategy to establish cell age by 14C dating. The black curve in all graphs shows the atmospheric concentrations of 14C over the decades since 1930 [data from (14)]. The vertical bar indicates the date of birth of the individual. The measured 14C concentration (1) is related to the atmospheric 14C concentration by use of the established atmospheric 14C bomb curve (2). The average birth date of the population can be inferred by determining where the data point intersects the x-axis (3). 14C concentrations in DNA of cells from the left ventricle myocardium in individuals born after (B) or before (C) the nuclear bomb tests correspond to time points substantially after the time of birth, indicating postnatal cell turnover. The vertical bar indicates the date of birth of each individual, and the similarly colored dots represent the 14C data for the same individual. For individuals born before the increase in 14C concentrations, it is not possible to directly infer an age because the measured concentration can be a result of 14C incorporation during the rising and/or falling part of the atmospheric curve, and thus the concentration is indicated by a dotted horizontal line.

Fig. 2. Isolation of cardiomyocyte nuclei. (A to C) Flow cytometric analysis of cardiomyocyte nuclei from the left ventricle of the human heart with an isotype control antibody or antibodies to the cardiomyocyte-specific antigens cTroponin I or T. Boxes denote the boundaries for the positive and negative sorted populations. (D) cTroponin I and T are present in the same subpopulation of heart cell nuclei. (E) Western blot analysis of flow cytometry–isolated nuclei demonstrates nearly all detectable cTroponin T (analyzed with two different antibodies) and I protein in the cTroponin T–positive fraction. Brain and heart tissue were used as negative and positive controls, respectively. (F) The cardiac troponin T–positive population is enriched for the cardiomyocyte-specific transcription factors Nkx2.5 and GATA4. Both fractions contain similar amounts of the nuclear protein histone 3 (loading control). (G) Gene expression analysis of flow cytometry–isolated nuclei shows high expression of cardiomyocyte-specific genes in the cTroponin T–positive fraction (cTroponin I and T, Nkx2.5), whereas marker genes for endothelial cells (vWF), fibroblasts (vimentin), smooth muscle (ACTA2), and leukocytes (CD45) are highly expressed in the cTroponin T–negative fraction (H). Bars in (G) and (H) show the average from three independent experiments (±SD).
ily conserved nuclear localization signals and are partly localized in the nuclei of cardiomyocytes (figs. S1 and S2). Antibodies to cTroponin I and T identify the same subpopulation of nuclei in the myocardium (Fig. 2, A to D), and retrospective birth dating of nuclei isolated with antibodies against either epitope gave similar results (table S1). Western blot and quantitative reverse transcription polymerase chain reaction analysis of sorted nuclei demonstrated a high enrichment of cTroponin I and T in the positive fraction and a depletion in the negative, validating the efficiency of the strategy (Fig. 2, E to H). We assessed the potential transfer of cTroponin I and T during tissue processing by mixing cardiac tissue with another tissue devoid of these proteins, and found that there was negligible transfer of cTroponin I or T to noncardiomyocyte nuclei during tissue dissociation, nuclear preparation, or flow cytometric sorting (fig. S2).

We assessed the specificity of the isolation procedure with known cardiomyocyte-specific markers and markers of noncardiomyocytes present in the myocardium. There was a high enrichment of nuclei containing the known cardiomyocyte-specific nuclear markers Nkx2.5 and GATA4 in the cTroponin-positive fraction, with little contamination of nuclei expressing markers for fibroblasts, smooth muscle cells, endothelial cells, or hematopoietic cells (Fig. 2, F to H). Conversely, cardiomyocyte markers were depleted in the cTroponin-negative fraction (Fig. 2, F to H), indicating that nearly all cardiomyocytes were isolated in the positive fraction. Sorting whole cells with antibodies to a nonnuclear cardiomyocyte-specific epitope confirmed that nuclear cTroponin I and T are specific to cardiomyocytes, but resulted in lower purity compared to sorting nuclei (fig. S3). Flow cytometric reanalysis of all sorted samples demonstrated a DNA content–corrected cardiomyocyte purity of 96 ± 1.8% (mean ± SD; table S1 and fig. S4). Thus, flow cytometry with antibodies against cTroponin I or T allows specific isolation of cardiomyocyte and noncardiomyocyte nuclei. We extracted DNA from cardiomyocyte nuclei [(5 ± 2) × 10^17, mean ± SD] and measured the 14C concentration in genomic DNA. By analyzing the 14C concentration also in unsorted myocardial nuclei (>10^8), we mathematically compensated for any contamination in the cardiomyocyte fraction in the individual cases, reducing the risk that contamination with a cell population with a different turnover rate would skew the result for cardiomyocytes. In all individuals born before the onset of the nuclear bomb tests, the 14C concentrations in cardiomyocyte genomic DNA were higher than the pre-bomb atmospheric concentrations, demonstrating DNA synthesis after 1955 (Fig. 3A). Similarly, in all individuals born near or after the time of the nuclear bomb tests, the 14C concentrations in cardiomyocyte DNA corresponded to the concentrations several years after their birth, establishing postnatal cardiomyocyte DNA synthesis (Fig. 3B).

There is no increase in the number of cardiomyocytes after the postnatal period but rather a slow, continuous decrease with age (21). About 25% of cardiomyocytes are binucleated in humans at birth, and this proportion stays constant throughout life (22). Thus, the postnatal cardiomyocyte DNA synthesis detected by 14C analysis cannot be explained by an increase in cardiomyocyte number or binucleation. However, the heart grows during childhood, as the increasing demand of contractile capacity is met by hypertrophy of cardiomyocytes. Almost all cardiomyocyte nuclei are diploid at the time of birth, but the DNA of most nuclei is duplicated to become tetraploid in childhood when the cells undergo hypertrophy (Fig. 3C and fig. S5) (23–25). After the age of 10, there is no further increase in the DNA content of cardiomyocyte nuclei (R = 0.135, P = 0.384, Fig. 3C). The DNA synthesis associated with polyploidization of cardiomyocyte DNA results in incorporation of 14C concentrations corresponding to the atmospheric levels during childhood.

Three of the individuals born before the nuclear bomb tests were more than 10 years old at the onset of the increase in atmospheric 14C. That their 14C concentration in cardiomyocyte DNA was above the prenuclear bomb test levels (Fig. 3A) cannot be explained by DNA synthesis associated with polyploidization, but indicates cardiomyocyte renewal after 1955. Moreover, in the individuals born after the nuclear bomb tests, the difference between the birth date of the person and the date corresponding to the 14C concentration in cardiomyocyte DNA increased with the age of the individual (fig. S6 and table S1), demonstrating that cardiomyocyte DNA synthesis is not restricted to a limited period in childhood but continues in adulthood.

Polyploidization of cardiomyocyte DNA occurs in a stereotypical manner during a rather short period in childhood (Fig. 3C) (23–25), making it possible to calculate its impact on 14C values in each individual (see supporting online text and (26)). By subtracting the childhood polyploidization-associated 14C incorporation from the measured value in each case, we could estimate polyploidization-independent 14C values. In all cases, the polyploidization-independent 14C values corresponded to time points after birth for each individual (Fig. 3D), indicating cardiomyocyte renewal. In the five oldest individuals, who all were born before or at the onset of the nuclear bomb tests, the 14C values were lower than contemporary values (Fig. 3D), establishing that not all cardiomyocytes had been exchanged after 1955 but that a substantial fraction remains from early in life, even in the elderly.

Fig. 3. Cardiomyocyte turnover in adulthood. (A) The 14C concentrations in cardiomyocyte DNA from individuals born before the time of the atmospheric radiocarbon increase correspond to time points after the birth of all individuals. The vertical bar indicates year of birth, with the correspondingly colored data point indicating the Δ14C value. (B) 14C concentrations in cardiomyocyte DNA from individuals born after the time of the nuclear bomb test. (C) Average DNA content (2n = 100%) per cardiomyocyte nucleus from individuals (without severe heart enlargement; see fig. S5) of different ages. Ploidy was measured by flow cytometry. Colored data points identify individuals analyzed for 14C (n = 13). Black data points are from individuals analyzed only with regard to ploidy level (n = 23), and white data points are taken from Adler et al. (n = 26) (24, 26). The dashed lines indicate the 95% confidence interval for the regression curve. (D) 14C values corrected for the physiologically occurring polyploidization of cardiomyocytes during childhood for individuals born before and after the bomb-induced spike in 14C concentrations, calculated on the basis of the individual average DNA content per cardiomyocyte nucleus. The 14C content is not affected in individuals where the polyploidization occurred before the increase in atmospheric 14C concentrations.
Increased cardiac workload in pathological situations often results in cardiomyocyte hypertrophy and heart enlargement, and at late stages can result in polyploidization in adulthood (fig. S5) (24). Although a few subjects had cardiac pathology (table S2), none had severe heart enlargement nor a pathological cardiomyocyte ploidy profile, and there was no significant difference in 14C integration in cardiomyocyte DNA in the subjects with cardiac pathology (table S1, Fig. 3C, and fig. S5). Moreover, mathematical modeling of the kinetics of DNA synthesis and 14C integration showed that the measured 14C concentrations in cardiomyocyte DNA could not be a result of polyploidization during adulthood (see supporting online text). Furthermore, analysis of 14C concentrations in DNA from only diploid or only polyploid cardiomyocyte nuclei demonstrated similar degrees of 14C integration after childhood in both compartments, providing further evidence for cardiomyocyte renewal independently of polyploidization (see supporting online text, fig. S7, and table S3).

Several studies of sex-mismatched transplant recipients have indicated fusion of human cardiomyocytes with other cells (27). However, fusion appears to mainly occur transiently after transplantation, and even in the acute phase the fusion rate is too low to explain the 14C data (fig. S8). DNA damage and repair are very limited in differentiated cells (28) and, at least in neurons, are well below the detection limit of the method used (10,11). Although cell fusion and DNA repair may affect 14C concentrations in cardiomyocyte DNA, available data suggest that the magnitude of these processes makes them negligible in the current context and that the 14C data we report here (after compensation for polyploidization) likely accurately reflects cell renewal.

Mathematical modeling of 14C data from individuals born both before and after the nuclear bomb tests, which provides slightly different and complementary information, as well as of subjects of different age within these groups, can provide an integrated view on cell turnover (9). We used an analytical model that includes polyploidization in childhood to assess which one of many scenarios for cell birth and death best describes the data. Times at which cells are born, ploidize, and die are tracked. The atmospheric 14C values corresponding to DNA synthesis events are integrated to yield a calculated 14C level, on the basis of each subject's birth date, age at death, and DNA content. The calculated 14C levels were fitted to the purity-corrected values to find the best renewal rate for each scenario (see supporting online text for a comprehensive description of the modeling). We first calculated what the annual turnover rate would be in each individual if the rate was constant throughout life. This indicated annual turnover rates of 0.2 to 2% (Fig. 4A). However, there was a clear negative correlation to age ($R = -0.84; P = 0.001$), establishing that the turnover rate declines with age. The strong negative correlation to age also indicates that there is limited interindividual variation in the cardiomyocyte turnover rate and its decrease with age.

We next tested a series of different models allowing turnover rates to change with age. The best fit was found with an inverse-linear declining turnover rate (Fig. 4B), in which younger cardiomyocytes were more likely than older ones to be replaced (see supporting online text). This model predicts that cardiomyocytes are renewed at a rate of $\sim 1\%$ per year at the age of 25 and 0.45% at the age of 75 (Fig. 4B). With this turnover rate, most cardiomyocytes will never be exchanged during a normal life span (Fig. 4C). At the age of 50, 55% of the cardiomyocytes remain from the time around birth and 45% have been generated later (Fig. 4C). The age of cardiomyocytes is on average 6 years younger than the individual (Fig. 4D). The 14C data indicate a substantially higher renewal rate for noncardiomyocytes, with a median annual turnover of 18% and a mean age of 4.0 years (see supporting online text). Our data do not allow us to identify whether new cardiomyocytes derive from cardiomyocyte duplication or from a stem/progenitor pool, because both would result in similar 14C integration in DNA.

Analysis of cell proliferation in the human myocardium has previously indicated a cardiomyocyte proliferation rate that could result in the exchange of all cardiomyocytes within 5 years (29), but the 14C concentrations in DNA exclude such a high mitotic renewal rate. We asked whether cardiomyocytes may be heterogeneous, with an identifiable subpopulation turning over relatively fast and the rest not turning over at all. This scenario is incompatible with the data, and it is most likely that the vast majority of cardiomyocytes have a similar probability of being exchanged at a given age (see supporting online text).

The limited functional recovery in humans after myocardial injury clearly demonstrates insufficient regeneration of cardiomyocytes. The renewal of cardiomyocytes, indicated by the continuous integration of 14C, suggests that the development of pharmacological strategies to stimulate this process may be a rational alternative or complement to cell transplantation strategies for cardiomyocyte replacement.

References and Notes
S-Nitrosylation of Drp1 Mediates β-Amyloid–Related Mitochondrial Fission and Neuronal Injury

Dong-Hyung Cho,†‡ Tomohiro Nakamura,†‡ Jianguo Fang,¹ Piotr Cieplak,² Adam Godzik,² Zezong Gu,³‡ Stuart A. Lipton⁴§

Mitochondria continuously undergo two opposing processes, fission and fusion. The disruption of this dynamic equilibrium may herald cell injury or death and may contribute to developmental and neurodegenerative disorders. Nitric oxide functions as a signaling molecule, but in excess it mediates neuronal injury, in part via mitochondrial fission or fragmentation. However, the underlying mechanism for nitric oxide–induced pathological fission remains unclear. We found that nitric oxide produced in response to β-amyloid protein, thought to be a key mediator of Alzheimer’s disease, triggered mitochondrial fission, synaptic loss, and neuronal damage, in part via S-nitrosylation of dynamin-related protein 1 (forming SNO-Drp1). Preventing nitrosylation of Drp1 by cysteine mutation abrogated these neurotoxic events. SNO-Drp1 is increased in brains of AD disease patients and may thus contribute to the pathogenesis of neurodegeneration.

Disrupting the balance between mitochondrial fission and fusion can lead to excessive mitochondrial fragmentation. Fragmentation triggered by dysfunction of the fission-inducing protein Drp1 (dynamin-related protein 1), for example, contributes to synaptic damage and subsequent neuronal loss because of nitrosative/oxidative stress and impaired bioenergetics (1–6). Excessive fission results in abnormally small mitochondria with fragmented crista

¹Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA. ²Bioinformatics and Systems Biology Program, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA. ³Present address: University of Missouri–Columbia School of Medicine, Columbia, MO 65212, USA. ⁴To whom correspondence should be addressed. E-mail: slipton@burnham.org

To investigate whether endogenously generated NO can induce SNO-Drp1, we used human embryonic kidney (HEK) 293 cells stably expressing neuronal NO synthase (nNOS). These cells were subjected to bimtin-switch assay after incubation with the calcium ionophore A23187 to activate nNOS. Endogenous Drp1 was S-nitrosylated by endogenous NO; this reaction was blocked by the NOS inhibitor N-nitro-l-arginine (NNA; Fig. 2, A and B). The same conditions under which Aβ causes mitochondrial fragmentation and consequent neuronal damage (2), we found that Aβ could induce SNO-Drp1 formation. Cerebrocortical neurons were exposed to oligomers of the pathologically active fragment Aβ25-35 or, as a control, reverse-sequence Aβ35-25. Formation of SNO-Drp1 was observed only in Aβ25-35–treated neurons, not in the control (Fig. 2C). Additionally, we tested the effect of endogenously produced Aβ generated from amyloid precursor protein (APP) in conditioned medium of N2a/APP695 stable neuronal cell lines or CHO cells stably expressing human APP with the Val717→Asn mutation (designated 7PA2 cells). Exposing N2a cells to SNOC or conditioned medium resulted in SNO-Drp1 formation (Fig. 2C). We also found elevated levels of SNO-Drp1 in vivo in brains of the AD transgenic mouse model Tg2576, which expresses high levels of the Swedish APP mutation (Lys670→Asn, Met671→Leu) (fig. S1).

To extend these findings to humans, we examined brains obtained shortly after death from patients manifesting AD (table S1). We found increased SNO-Drp1 levels in 17 of 17 AD brains studied, but not in brains of deceased Parkinson’s disease patients or controls who died of non-CNS causes (Fig. 2, D and E, and fig. S2). To determine whether the level of SNO-Drp1 in AD human
Supporting Online Material for

Evidence for Cardiomyocyte Renewal in Humans

Olaf Bergmann, Ratan D. Bhardwaj, Samuel Bernard, Sofia Zdunek, Fanie Barnabé-Heider, Stuart Walsh, Joel Zupicich, Kanar Alkass, Bruce A. Buchholz, Henrik Druid, Stefan Jovinge, Jonas Frisén*

*To whom correspondence should be addressed. E-mail jonas.frisen@ki.se

Published 3 April 2009, Science 324, 98 (2009)
DOI: 10.1126/science.1164680

This PDF file includes:

Materials and Methods
SOM Text
Figs. S1 to S8
Tables S1 to S3
References
Supporting online material

Materials and Methods

Tissue Collection

Tissues were procured from cases admitted during the period 2005-2007 to the Department of Forensic Medicine, Karolinska Institute, after receiving consent from relatives. Some heart samples were obtained from the UK Human Tissue Bank, Great Britain. Ethical permission for this study was granted by the Karolinska Institutet Ethical Committee. Human left ventricular tissue without the septum was dissected. Hearts were dissected and clotted blood was removed from the chambers before the heart weights were determined in accordance with the European Recommendation on the harmonization of medico-legal autopsy rules (1, 2). Then, epicardial fat and visible blood vessels were removed and the tissues were stored at –80 °C until analysis.

Nuclear Isolation

Left ventricular tissue (apex and wall) was thawed and whole-thickness samples were trimmed using a scalpel. Approximately 10g of tissue was added to 200mL of ice cold lysis buffer (0.32 M sucrose, 5 mM CaCl₂, 3mM magnesium acetate, 2.0 mM EDTA, 0.5 mM EGTA, 10 mM Tris-HCl (pH 8.0), 1 mM DDT) with a proteinase inhibitor cocktail (Sigma). All subsequent steps were performed on ice. The mixture was blended (Braun 600W blender) at speed turbo 9 for 10 minutes. The crude suspension was further homogenized by an Ultra-Turrax® homogenizer (IKA) at 20,000 rpm for 8 seconds. Triton X-100 was added to a final concentration of 0.2%, before the suspension was
dounced with a type A pestle exactly eight strokes in a glass douncer. The solution was put through a large filter sieve twice. Then, two layers of cotton gauze were placed on top of the sieve, and the solution was filtered two more times. This solution was consecutively filtered in 100 and 70 micron filters (Falcon) and equally divided into six 50 ml tubes. These tubes were centrifuged for 8 minutes at 1000g at 4 °C. The supernatant was carefully removed with a pipette from each tube and then discarded. The crude nuclear pellets were resuspended with 30 ml of 2.1 M sucrose solution (2.1 M sucrose, 3 mM magnesium acetate, 1 mM DTT, 10 mM Tris-HCl, pH 8.0). This was then layered onto a cushion of 10 ml 2.2 M sucrose solution (2.2 M sucrose, 3 mM magnesium acetate, 1 mM DTT, 10 mM Tris-HCl, pH 8.0), and centrifuged at 30,000g for one hour at 4°C. The supernatant was carefully pipetted off and discarded. The side of the tube was also carefully wiped to avoid supernatant contamination to the pellet. The pellet from each tube was then resuspended with 1,5 ml of nuclei buffer (0.43 M sucrose, 70 mM KCl, 2 mM MgCl₂, 10 mM Tris-HCl (pH 7.2), 5 mM EGTA).

For the mixed heart/brain experiment, both tissue from the occipital cortex and left ventricle where processed together. Apart from an adjusted sucrose concentration of 2.0M, all procedures were performed as described above.

Flow Cytometry

Cardiomyocyte nuclei were isolated and collected using flow cytometry. A mouse monoclonal antibody to cTroponin I (Chemicon™, Millipore, MAB 3152), a polyclonal rabbit antibody to cTroponin T (Abcam, ab10224), or isotype control antibodies were directly conjugated to Alexa Fluor® 488 or 647 (Alexa Fluor® 488 or 647 Monoclonal
Antibody Labeling Kits, Molecular Probes™, Invitrogen). Antibodies to cTroponin T and cTroponin I were used at 1:800 to label cardiomyocyte nuclei, and left to incubate on ice for at least 30 minutes. Single nuclei (independent of their DNA content) were separated from doublets or higher-order aggregates by using a gating strategy using only physical parameters (3). Briefly, singlets were defined as a function of forward scatter width (FSC-W) and forward scatter height (FSC-H) which was defined based on the fluorescent intensity of the DNA stain DRAQ5®. All single nuclei, independent of their DNA content were detected within the defined gate (4), making it easy to discriminate singlets from doublets and other nuclei aggregates. All flowcytometric nuclei sorts were performed using the described sorting strategy.

For flow cytometry sorts of diploid and polyploidy cardiomyocyte nuclei and analysis of cardiomyocyte nuclei ploidy levels, nuclei were labeled with cTroponinT/I antibodies as described and DNA content was visualized with Hoechst33342 dye (5ug/ml) (Invitrogen, Molecular Probes®). Hoechst 33342 (5ug/ml) did not influence ¹⁴C levels in cardiomyocyte DNA (n=5; p=0.69, Mann-Whitney test).

Purity of flowcytometrically sorted nuclei was confirmed by reanalyzing the sorted populations. ¹⁴C levels were corrected if sorting purity was less than 100% (see Flow cytometry purity). For the mixed brain/heart experiment, we used the labeling protocol as described before (3). Brain tissue (occipital cortex) was homogenized together with left ventricular heart tissue. Nuclei were isolated as described before, incubated for 1-5h hours at 4°C and subsequently labeled with NeuN (Millipore, mab 377), cTroponinT and cTroponinI antibodies directly conjugated to Alexa® 488/647 dyes. All flowcytometric
experiments were performed by using a FACSVantage DiVa instrument (BD Bioscience).

Immunocytochemistry

Nuclear isolates were incubated for 30 min with an antibody to cTroponin T (1:800, Abcam, ab10224) or cTroponin I (1:800, Chemicon™, Millipore, MAB 3152) directly conjugated to Alexa Fluor® 488. Nuclei were counterstained with DAPI and transferred to slides. Pictures were taken with a Zeiss Meta® confocal microscope (Zeiss) and edited with Photoshop (Adobe®) software.

Gene expression of sorted nuclei.

Nuclei isolates were labeled with a cTroponin T antibody (Abcam, ab10224) and flow cytometric sorted according to their immunoreactivity. Total RNA was extracted from cTroponin T positive and negative populations (5-10 million nuclei), respectively, using the RNeasy mini plus kit (Qiagen). Equal amounts of total RNA from each sample was reverse transcribed to cDNA using the QuantiTect RT kit (Qiagen). In a final volume of 50 µL, 7.5 ng of cDNA was amplified with POWER SYBR PCR® master mix (Applied Biosystems) and primers (Eurofins MWG Operon). The primer pairs for cTroponin T (TNNT2), cTroponin I (TNNI3), Nkx2.5, vWF, vimentin, smooth muscle actin (ACTA2), CD45 and 28S ribosomal RNA (28S rRNA) were designed by using Primer3-BLAST ((5),NCBI, USA) and selected to yield a single amplicon based on dissociation curves. Quantitative real-time PCR was performed with a PRISM 7300 (Applied Biosystems). The relative mRNA levels were calculated using the Cₜ method, using 28S rRNA as a
normalizer. cTroponin T-positive nuclei served as a reference for TNNT2, TNNI3 and Nkx2.5. cTroponin T negative sorted nuclei served as a reference for vWF, vimentin, ACTA2 and CD45.

Western blot

Flow cytometry isolated nuclei (1x10^6) were spun down at 1.2x10^3 g at 4°C for 15 minutes and lysed in RIPA lysis buffer (50 mM Tris, pH 7.2, 150 mM NaCl, 2 mM EDTA, 1% NP-40, 1% sodium deoxycholate, and 0.1% v/v SDS) supplemented with protease inhibitor cocktail (Roche) and separated by 10% or 12% SDS-PAGE. Equivalent amounts of whole human heart and brain tissues, or the heart cytoplasmic and nuclear fractions, were lysed in RIPA buffer. The proteins were transferred onto nitrocellulose membranes (Schleicher & Schuell) which were blocked in 5% milk and incubated at 4°C overnight with the following antibodies: cTroponin I (1:1000, mouse, Chemicon™, Millipore, MAB3152), cTroponin T (1:1000, rabbit, Abcam ab10224), cTroponin T 1:1000 (mouse, Abcam ab10214), Nkx 2.5 (1:500, mouse, R&D, MA2444), GATA4 (1:500, goat, R&D, AF2606), ERK1/2 (p44/p42 MAP kinase, 1:500, rabbit, Cell Signaling, 9102), αPAK (1:1000, rabbit, Santa Cruz (C-19)), TOM20 (1:5000, rabbit, Santa Cruz (FL-145)) or Histone3 (1:10 000, rabbit, Abcam, ab1791). Membranes were then incubated with the appropriate HRP-conjugated secondary antibody (1:2000; Amersham Biosciences,and Abcam) in 5% milk and detection was performed using ECL reagent and Hyperfilm (both from Amersham Biosciences).
Extraction of DNA

DNA extraction was performed as previously described (6). Briefly, isolated nuclei were suspended in 1 ml of 1% SDS, 5 mM EDTA-Na$_2$, 10 mM Tris-HCl, pH 8.0) and 8 µl of protease K solution (20 mg/ml, Invitrogen). The sample tube was then gently inverted numerous times and then incubated at 65°C overnight, with intermittent tube inversions. RNase cocktail (8 µl, Ambion) was then added to each sample. Further 60 min incubation with inversions was then done. Three ml of a solution of sodium iodide (7.6 M NaI, 20 mM EDTA-Na$_2$, 40 mM Tris-HCl, pH 8.0) was then mixed to each sample followed by repeated inversion. Afterwards, 6 ml of filtered 99% ethanol was added and tubes gently inverted numerous times until the DNA precipitated. The DNA pellet was then washed in baths of 70% ethanol for 15 minutes for three times. Lastly, the DNA was rinsed in a water bath for 5 seconds, and then carefully transferred to a glass storage tube. The DNA pellet was resuspended in water after being thoroughly dried and then left to incubate up to seven days at 65°C, with many inversions, in order to completely dissolve the DNA into the water. The amount of DNA was quantified using spectrophotometry and only samples within a defined range (260/280: 1.8-2.0; 260/230: 2.0-2.4) were included into data analysis. In order to determine precisely remaining protein impurities all samples were additionally analyzed by means of HPLC. The mean protein contamination was 0.84%±0.17 SEM. Moreover, contamination by unidentified carbon sources can be detected by comparing the expected carbon content from the analyzed amount of DNA and the actual carbon content in the sample, which is measured in the accelerator mass spectrometry analysis. If a sample would contain more carbon than can
be accounted for by the DNA, this would mean that it was contaminated, but this was never the case.

Accelerator mass spectrometry

Accelerator mass spectrometry (AMS) analysis was performed blind to the identity of the sample. The DNA in water was moved to quartz AMS combustion tubes. They were then evaporated in a lyophilizer. Once completely dry, excess copper oxide (CuO) was introduced to each sample, the air was evacuated completely, and then sealed off with a H₂/O₂ torch. In order to completely combust all carbon to CO₂, these samples were then put into a 900°C furnace for 3.5 hours. The CO₂ that evolved during this process was then purified, trapped, and subsequently reduced to graphite in the presence of an iron catalyst in individual reactors (7, 8). CO₂ samples greater than 500 µg were split and the δ¹³C measurement was attained by stable isotope ratio mass spectrometry. The graphite targets were then measured blindly at the Center for Accelerator Mass Spectrometry at Lawrence-Livermore National Laboratory, California, USA. A δ¹³C correction of –23 +/- 2 was used for all samples (9). Background contamination corrections during the process of each AMS sample preparation were done according to the procedures of Brown and Southon (10). Each sample’s measurement of error had values that ranged between ±2-10‰ (1 SD) Δ¹⁴C. Following the usual convention (9), all of the ¹⁴C data are reported as decay corrected Δ¹⁴C values since it is the most widespread for reporting post-bomb radiocarbon data (9, 11).
Bioinformatics

The following RefSeq sequences of human cTroponin T (TNNT2) and human cTroponin I (TNNI3) from NCBI were analyzed computationally for subcellular location. TNNT2: H. sapiens (NP_000355), M. musculus (AAH63753.1), G. gallus (NP_990780.1), closest D. melanogaster homologue by BLAST is upheld (NP_001014738.1; isoform F displayed highest number of NLS), C. elegans (NP_001024704.1). TNNI3: H. sapiens (NP_000354), M. musculus (NP_033432.1), G. gallus (NP_998735.1), D. melanogaster closest homologues wings up (NP_728141.1) and C. elegans (NP_507250.1).

Flow cytometry purity

In the case where sample purity of the cTroponin I-positive or cTroponin T-positive population was less than 100%, we corrected the measured 14C levels applying the following equations. (a: purity of the cTroponin-positive population in %; b: measured 14C value for the cTroponin-positive population; c: measured 14C value for the unsorted population; d: ratio of cTroponin-positive nuclei in % (DNA weighted); x: purity corrected 14C value for the cTroponin-positive population; y: purity corrected 14C value for the cTroponin-negative population)

$I \quad b*100 = x*a + y*(100-a) $

$II \quad c*100 = x*d + y*(100-d)$

The equations were then solved for x.

$III \quad x = (-100*c + c*a + 100*b – b*d)/(a-d)$
14C value correction for polyploidisation

Nuclei isolates were incubated in Hoechst 33342 (5ug/ml) and DNA content was determined by flow cytometry (fig. S5A). The average DNA content per cardiomyocyte nuclei was calculated by establishing the arithmetic mean of the different ploidy levels (100% corresponds to a diploid population) in at least 10,000 cardiomyocyte nuclei of each analyzed heart sample. We also used published data of Adler on the ploidy distribution of children hearts to obtain the most comprehensive data collection (12, 13) (Fig. 3C).

An increase in the DNA content per nucleus during childhood leads to postnatal 14C incorporation which is independent of cellular division. We used a computational approach to calculate polyploidisation independent delta 14C values based on the atmospheric bomb curve and the polyploidisation time course in healthy individuals (Fig. 3D). In a first step, we calculated a regression curve that describes DNA content per nucleus with age f(a). We found that the sharp increase of DNA content around the age of six, can be best described by the following sigmoid curve with the parameters \(d_0=110.5, n=5.4, \theta =7.0 \) and \(k=76.0 \) (R=0.955; SEE=10.149).

\[
f(a) = d_0H(a) + \frac{k}{1 + \left(\frac{a}{\theta}\right)^{-n}}
\]

No significant correlation after the age of ten between age and DNA content per nucleus is present during adulthood in healthy individuals (R=0.135, p=0.384) (Fig. 3C). In contrast to the stereotype time course of polyploidisation the individual adult DNA content per nucleus varies to a certain degree. Therefore we used the individual measured
DNA content per nucleus (DNA_i) to adjust 14C values (C_{adj}) for polyploidisation (table S1). Value k dependent on adult DNA content is calculated as following and individual values of k are shown in the modeling supplement (supporting online text).

$$k = DNA_i - d_0$$

The change of DNA content can be described by the derivate of f: $D(a)$ (see supporting online text for equation). For each subject of age a, at date t_{death} (born at calendar year t_{death}-a), the 14C value was adjusted for polyploidisation ($C_{adj}(a)$).

$$C_{adj}(a) = \frac{\int_0^a K(t_{death} - a + s)D(s)ds}{\int_0^a D(s)ds}$$

The function K is the bomb curve (atmospheric 14C levels). The denominator, the total DNA content at age a, is a normalization term.

The C_{adj} derived birthdate was determined for individuals born after the bomb spike (table S1). The age difference between the date of birth of the individual (DOB) and the C_{adj} derived birthdate was established. The obtained age difference was then subtracted from the average birth date of the cardiomyocytes population (Δ^{14}C derived birthdate), resulting in a ploidy independent average birth date of the cardiomyocyte population (Fig. 3D and table S1). For individuals born before the bomb-spike, ploidy independent 14C values ($C_{independent}$) were calculated by subtracting the distance between the 14C value at birth (C_{birth}) and the ploidy adjusted Δ^{14}C value (C_{adj}) from the measured Δ^{14}C value ($C_{measured}$) (Fig. 3D and table S1).

$$C_{independent} = C_{measured} - |C_{birth} - C_{adj}|$$
Human Ventricular Whole Cardiomyocyte Sorting

Human ventricular biopsy tissue was attained after consent to treatment and dissociated to single cell solution with Liberase Blendzyme 3 (0.1 mg/ml) (Roche Diagnostics), washed and spun down and resuspended in ice cold cardiomyocyte isolation buffer (130 mM NaCl; 5 mM KCl; 1.2 mM KH2PO4; 6 mM HEPES; 5 mM NaHCO3; 1 mM MgCl2; 5 mM Glucose). Cells were fixed with BD Cytofix/Cytoperm™ solution, permeabilised and incubated o/n at 4°C with predetermined optimal concentrations of monoclonal antibodies to cardiac myosin heavy chain IgG1 κ (α- and β-MHC) (Abcam, ab15), α-smooth muscle actin IgG κ (α-SMA) (Abcam, ab32575) and CD31 IgG2a κ (Pecam-1) (eBioscience, 25-0311) in BD Perm / Wash™ Buffer in the dark on a shaker. Cells were washed and spun down twice and resuspended in secondary antibody cocktail containing predetermined optimal concentrations of donkey anti mouse Alexa Fluor® 488 (Molecular Probes™, Invitrogen A-21202) and donkey anti Rabbit Alexa Fluor® 647 (Molecular Probes™, Invitrogen A-31573), and appropriate isotype antibodies, in BD Perm / Wash™ buffer in the dark on a shaker at 4°C for 3 hours. Cells were washed twice and resuspended in PBS and 5% FCS and then sorted on a BD FACSAria on low pressure with a 100μm nozzle.

Human Ventricular Cardiomyocyte Nuclei Isolation

Sorted cardiomyocytes were suspended in hypotonic buffer (0.01M Hepes and 1.5mM MgCl2 pH 7.2) for 10 minutes on ice and then lysis buffer (3% glacial acetic acid and 5% ethylhexadecyldimethylammonium bromide in H2O; Sigma) per 5ml of hypotonic buffer was added to washed cells, and tubes were shaken every minute for 10 minutes. The release of nuclei was examined by light microscopy. Nuclei were washed in nuclei wash
buffer (320 mM sucrose, 5 mM MgCl₂, 10 mM HEPES at pH 7.4) and spun down twice. Nuclei were then resupended in BD Perm / Wash™ buffer containing predetermined optimal concentrations of monoclonal mouse anti cTroponin I (Chemicon™, Millipore, MAB3152) and monoclonal cTroponin T (Neomarkers, Ab-1) Conjugated to Alexa Fluor® 647 with monoclonal antibody labeling kit (Molecular Probes™, Invitrogen A20186) for 3 hours in the dark on a shaker at 4°C. Nuclei were washed in nuclei wash buffer and resupended in BD Perm / Wash™ buffer containing predetermined optimal concentration of donkey anti mouse Alexa Fluor® 488 (Molecular Probes™, Invitrogen A-21202) for 1.5 hours in the dark on a shaker at 4°C. Appropriate isotype antibodies were also used. Nuclei were washed twice in nuclei wash buffer, resuspended in PBS passed through a 70μm filter and acquired on a BD FACSaria flowcytometer.

References and notes

Supporting online text

The details of the mathematical models used to estimate the birth and death rates in cardiomyocytes and non-cardiomyocyte cells are presented in this text. It is organized as follows: 1. Mathematical Model for Birth and Death. 2. Description of Eight Scenarios for Birth and Death. 3. Results. 4. Method for calculating 14C content. 5. Alternative Model Formalism and Ploidy-Sorted 14C data: Compartment Model. 6. Alternative Scenarios: Mature Cardiomyocyte Division and Heterogeneous Turnover. Turnover models are discussed in section 2 and 3. Polyploidization is discussed in sections 3 and 5 and ploidy sorted data in section 5.

1. Mathematical Model for Birth and Death

The age-structured model for cell birth and death is specified by two functions: the cell death rate $\gamma(t,a)$ (units: per yr), and the birth rate of new cardiomyocytes from a stem cell pool $\beta(t)$ (units: cells per yr). It is useful to re-express the birth rate as a birth rate relative to the initial cardiomyocyte number N_0, $b = \beta/N_0$. Whenever we refer to the birth rate, it is always the relative birth rate. We assume that the number of cardiomyocytes is set to N_0 at birth. After that the cardiomyocyte number stays constant or is allowed to decrease according to published data.

The model may be formulated as a linear partial differential equation with an age-structure:

$$\frac{\partial n(t,a)}{\partial t} + \frac{\partial n(t,a)}{\partial a} = -\gamma(t,a)n(t,a) \tag{1}$$

The function $n(t,a)$ is the density of cardiomyocyte of age a for a subject of age t relative to N_0 (unit of n: cell per year, units of a and t: year). The initial condition at $t = 0$ is $n(0,a) = N_0 \delta_0(a)$, where δ is the Dirac delta function (i.e. all cells at $t = 0$ have age $a = 0$) and N_0 is the initial cardiomyocyte number. A boundary condition describes the birth of new cardiomyocytes from progenitor cells,
\(n(t,0) = N_0 \) (unit: cells per year). Equation 1, with the initial and boundary conditions, is related to the more general McKendrick-von Foerster equation used in population dynamics (1).

2. Description of Eight Scenarios for Birth and Death

The scenarios are ordered by increasing complexity, measured by the number of free parameters needed to specify the model.

In Scenario A, cell number is kept constant and cells turn over at a constant rate. There is only one parameter to estimate, allowing individual data points to be fitted. In Scenario B, the death rate and the birth rate can be different, and the cell number can change. In Scenario C, cell number is constant but the turnover rate is decreasing with the age of the individual (\(C_1 \) is linear-decreasing, \(C_2 \) is inversely proportional to age and \(C_3 \) is constant before a certain age and null after). In Scenario D, we made a cumulative damage hypothesis, for which cells have a higher replacement rate as they get older. In Scenario E, we made a cumulative survival hypothesis, for which cells have a lower replacement rate as they get older (\(E_1 \) is linear-decreasing and \(E_2 \) is inversely proportional to cell age). In Scenarios D and E, every dying cell is replaced so the cell number is constant. The birth rate \(b(t) \) is determined by solving a Volterra equation of type II, or renewal equation (2):

\[
b(t) = \gamma(t) \exp\left(- \int_0^t \gamma(s) ds \right) + \int_0^t b(t-a) \gamma(a) \exp\left(- \int_a^t \gamma(s) ds \right) da
\]

In Scenario F, there is cumulative damage and a constant birth rate. In Scenario G, there is constant death rate and a decreasing birth rate. In Scenario H, there is cumulative damage (or survival, depending on the parameter values) and decreasing birth rate. In scenarios F, G and H, cell number changes.
The goodness-of-fit is taken as the sum of squares of the errors (SSE) between the model prediction and the data \(\sum_{i=1}^{n} (x_i - c_i)^2 \), where \(x_i \) is the prediction and \(c_i \) is the \(\Delta^{14}C \) level for subject \(i \). All simulations were done with Matlab 7.
Table 1. Data and turnover for 12 subjects. The average turnover A was calculated in individual subjects using Scenario A. *Non-purity corrected. Parameter k is the individual gain in ploidy above the baseline $d_0=110.5$. Average continuous polyploidization values were computed using DNA content function f_2.

<table>
<thead>
<tr>
<th></th>
<th>date of birth</th>
<th>age at death</th>
<th>Δ^{14}C purity corrected</th>
<th>k (ΔDNA content)</th>
<th>average turnover A (% per year)</th>
<th>average age of cardiomyocytes A (years)</th>
<th>avg turnover continuous polyploidization (% per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND60</td>
<td>1933.7</td>
<td>73.25</td>
<td>21.30*</td>
<td>79.5</td>
<td>0.28</td>
<td>66.3</td>
<td>0.10</td>
</tr>
<tr>
<td>ND67</td>
<td>1939.6</td>
<td>67.58</td>
<td>18.84</td>
<td>58.7</td>
<td>0.27</td>
<td>61.8</td>
<td>0.09</td>
</tr>
<tr>
<td>ND73</td>
<td>1944.6</td>
<td>62.67</td>
<td>3.65</td>
<td>72.2</td>
<td>0.15</td>
<td>59.8</td>
<td>0</td>
</tr>
<tr>
<td>ND61</td>
<td>1948.6</td>
<td>58.42</td>
<td>69.45</td>
<td>101.5</td>
<td>0.54</td>
<td>50.1</td>
<td>0.42</td>
</tr>
<tr>
<td>ND51</td>
<td>1955.9</td>
<td>50.83</td>
<td>194.60</td>
<td>57.4</td>
<td>0.79</td>
<td>41.8</td>
<td>0.40</td>
</tr>
<tr>
<td>ND56</td>
<td>1964.1</td>
<td>42.75</td>
<td>443.24</td>
<td>74.0</td>
<td>1.58</td>
<td>31.1</td>
<td>1.53</td>
</tr>
<tr>
<td>ND68</td>
<td>1967.4</td>
<td>39.83</td>
<td>403.08</td>
<td>52.7</td>
<td>1.36</td>
<td>30.8</td>
<td>1.14</td>
</tr>
<tr>
<td>ND50</td>
<td>1967.7</td>
<td>39.00</td>
<td>355.70*</td>
<td>83.1</td>
<td>1.65</td>
<td>28.8</td>
<td>1.63</td>
</tr>
<tr>
<td>ND69</td>
<td>1973.5</td>
<td>33.75</td>
<td>279.94</td>
<td>64.5</td>
<td>1.48</td>
<td>26.6</td>
<td>1.36</td>
</tr>
<tr>
<td>ND71</td>
<td>1983.5</td>
<td>23.75</td>
<td>178.40</td>
<td>74.5</td>
<td>0.90</td>
<td>21.4</td>
<td>0.93</td>
</tr>
<tr>
<td>ND54</td>
<td>1983.8</td>
<td>23.00</td>
<td>167.38</td>
<td>68.5</td>
<td>1.51</td>
<td>19.4</td>
<td>1.48</td>
</tr>
<tr>
<td>ND57</td>
<td>1987.2</td>
<td>19.67</td>
<td>141.20*</td>
<td>67.8</td>
<td>1.86</td>
<td>16.3</td>
<td>1.87</td>
</tr>
</tbody>
</table>
Table 2: Scenarios and global fitting results. The bomb curve was linearly interpolated. Parameters have appropriate units: γ is in year$^{-1}$ and b in Initial Cell Number per year (ICN/year). Scenario C3 has two optimal fits (a and b). All simulations used tolerance < 1e-4 for numerical integration.

<table>
<thead>
<tr>
<th>Scen.</th>
<th>Model</th>
<th>Nbr par.</th>
<th>Death rate</th>
<th>Birth rate</th>
<th>Fit</th>
<th>SSE ($\times 10^4$)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>constant turnover</td>
<td>1</td>
<td>$g = \text{const}$</td>
<td>$b = g$</td>
<td>$g = 0.010$</td>
<td>2.77</td>
<td>good fit, but age-dependent turnover</td>
</tr>
<tr>
<td>B</td>
<td>constant death/birth</td>
<td>2</td>
<td>$g = \text{const}$</td>
<td>$b = \text{const}$</td>
<td>$g = 0$</td>
<td>2.70</td>
<td>cell number increasing, lots of variability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>decreasing turnover, linear</td>
<td>2</td>
<td>$g(t) = \max{g_0 - g_1 t, 0}$</td>
<td>$b(t) = g(t)$</td>
<td>$g_0 = 0.017$</td>
<td>2.64</td>
<td>poor fit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>decreasing turnover, inverse</td>
<td>2</td>
<td>$\gamma(t) = \gamma_0 H(\theta - t)$</td>
<td>$b(t) = \gamma(t)$</td>
<td>$\gamma_0 = 0.0098$</td>
<td>2.48</td>
<td>poor fit</td>
</tr>
<tr>
<td>C3a</td>
<td>decreasing turnover, step</td>
<td>2</td>
<td>$\gamma(t) = \gamma_0 H(\theta - t)$</td>
<td>$b(t) = \gamma(t)$</td>
<td>$\gamma_0 = 0.45$</td>
<td>3.29</td>
<td>poor fit</td>
</tr>
<tr>
<td>C3b</td>
<td>decreasing turnover, step</td>
<td>2</td>
<td>$\gamma(t) = \gamma_0 H(\theta - t)$</td>
<td>$b(t) = \gamma(t)$</td>
<td>$\gamma_0 = 0.45$</td>
<td>3.29</td>
<td>poor fit</td>
</tr>
<tr>
<td>D</td>
<td>cumulative damage</td>
<td>2</td>
<td>$\gamma(a) = \gamma_0 + \gamma_1 a$</td>
<td>$b(t)$ solution of Volterra equation</td>
<td>$\gamma_0 = 0.010$</td>
<td>2.77</td>
<td>no cumulative damage</td>
</tr>
<tr>
<td>E1</td>
<td>cumulative survival, linear</td>
<td>2</td>
<td>$\gamma(a) = \max{\gamma_0 - \gamma_1 a, 0}$</td>
<td>$b(t)$ solution of Volterra equation</td>
<td>$\gamma_0 = 0.032$</td>
<td>1.92</td>
<td>good fit</td>
</tr>
<tr>
<td>E2</td>
<td>cumulative survival, inverse</td>
<td>2</td>
<td>$\gamma(a) = \gamma_0 \gamma_1 (\gamma_1 + a)$</td>
<td>$b(t)$ solution of Volterra equation</td>
<td>$\gamma_0 = 0.123$</td>
<td>1.26</td>
<td>excellent fit</td>
</tr>
<tr>
<td>F</td>
<td>cumulative damage or survival, constant birth</td>
<td>3</td>
<td>$\gamma(a) = \max{\gamma_0 - \gamma_1 a, 0}$</td>
<td>$b = \text{const}$</td>
<td>$\gamma_0 = 0.16$</td>
<td>0.43</td>
<td>excellent fit but cell number too low</td>
</tr>
<tr>
<td>G</td>
<td>constant death, decreasing birth</td>
<td>3</td>
<td>$\gamma = \text{const}$</td>
<td>$b(t) = b_0 b_1 (b_1 + t)$</td>
<td>$\gamma = 0.075$</td>
<td>1.27</td>
<td>good fit, cell number too low</td>
</tr>
<tr>
<td>H</td>
<td>cumulative damage or survival, decreasing birth</td>
<td>4</td>
<td>$\gamma(a) = \max{\gamma_0 + \gamma_1 a, 0}$</td>
<td>$b(t) = b_0 b_1 (b_1 + t)$</td>
<td>$\gamma_0 = 0.15$</td>
<td>0.25</td>
<td>Best fit but cell number too low</td>
</tr>
</tbody>
</table>
3. Results

Fitting individual subjects (Scenario A)

Scenario A has only one parameter, so it is possible to get an individual turnover estimate for each subject. We found an almost linear correlation between age and turnover rate for both pre- and post-bomb patients (Main Text, Fig. 4A). The correlation is negative ($R = -0.84$, Pearson’s correlation $p=0.001$), indicating that older subjects have lower turnover rates. The turnover rates range from 0.0015 per year to 0.0186 per year (table 1). Therefore the constant turnover hypothesis (Scenario A) might not represent the turnover accurately, as as the turnover seems to be age-dependent.

Fitting all subjects (global nonlinear least-square parameter fitting, Scenario A to H)

To test the hypothesis that turnover is age-dependent, we compared eight scenarios (Scenario A to H, table 2). If the turnover is age-dependent, this may be because cells have a different turnover rate as they age (a-dependence), because the turnover depends on the age of the subject (t-dependence), or both. We fitted all eight scenarios to the 12 subjects, trying to find a common set of parameters that would be consistent with observed carbon levels. The description of the scenarios and the results of the fitting are in table 2. We first tried to find a constant turnover rate that would best predict the $\Delta^{14}C$ values observed in the subjects (Scenario A). The best value in the least-square sense is 0.0102 per year. The 95% confidence interval of the turnover CI = (0.006, 0.015) per year, does not include 0, it is therefore likely that the turnover is positive (p-value<0.05).

For several scenarios (A, B, C, D), there was a discrepancy between pre-bomb (born before 1955) and post-bomb (born after 1955) subjects. The models either overestimated the turnover rates in pre-bomb subject or under estimated the turnover in post-bomb subjects. This happened even for scenarios that included a turnover that decreased with the age of the individual. The only significant
improvement came from a-dependent scenarios (Scenario E, F and H), where a cell’s probability to die changes as it gets older.

There is a small steady decline in cardiomyocyte number in aging hearts (3), indicating that new cardiomyocyte do not replace all dying cells. Ventricles can lose up to 0.5% of cardiomyocytes per year between ages of 20 and 70, leading to a 50% cell number reduction in aged ventricles. It is not clear whether the decreasing trend starts right after birth or there is a period in infancy and childhood when the cardiomyocyte number increases. A study in human suggests that there is no change in cell number in the first weeks after birth (4). Therefore, it is safe to assume that the cardiomyocyte number does not increase postnatally. In Scenarios B, F, G and H, we assumed that the cell number is not constant by allowing arbitrary death and birth rates. Scenario B (constant death and constant birth rates) predicted either a huge turnover (>5% per year, results not shown) or no cell death at all, leading to a significant increase in cardiomyocyte number. Both results are inconsistent with other scenarios and known cell number studies. Scenario F (a-dependent death rate and constant birth rate) performed better than fixed cell number scenarios, but predicts a sharp decrease in cell number (down to 5–10% of the initial cell number), inconsistent with the data from Olivetti et al. (3). The t-dependent Scenario G (constant death rate and decreasing birth rate) produced a good fit but a cell number too low. In Scenario H, we allowed an a-dependent death rate and a t-decreasing birth rate. This was the most sophisticated model we tested, and gave the best fit overall, but as in Scenario F, it predicts a low cell number that is inconsistent with cell number data (5–10% of initial cell number, similar to Scenario F).

Three main features came out of the simulations: (1) Scenario A captures well the average trend in turnover. (2) An a-dependent turnover is more consistent with the 14C data than a t-dependent turnover. (3) Unless it is dramatic, a change in cell number does not improve the fitting to the data. In the simplest a-dependent models, Scenarios D and E, we assume that the death rate changes
monotonically as cells get older. Scenario D’s best fit suggests that there is no cumulative damage effect, i.e., there is no increase in the death rate with cell aging ($\gamma_1 = 0$). Scenario E2, however, was consistent with the 14C data, and predicted a significant decrease of turnover with age (Main Text, Fig. 4B).

Models with more parameters are expected to perform better, so a criterion that penalizes models with many parameters, such as the Akaike Information Criterion may be used for selecting the most parsimonious model. Akaike Information Criterion is $AIC = \log SSE + n_{\text{par}}$. It states that each additional parameter must reduce the SSE by a log. In log base 2, SSE must be halved for every additional parameter. According to AIC, the best models are Scenarios A, E, F, H (fig. 1, light gray bars). We conclude that a decreasing turnover is the scenario most compatible with both pre-bomb and post-bomb subjects. Because scenarios F and H predict a sharp decrease in cell number, results obtained with these scenarios should be interpreted with caution. Scenarios E are the most consistent with the data, and Scenario E2 has the lowest AIC (fig. 1). Since Scenario E2 reproduces the age-dependent decrease in turnover (Main Text, Fig. 4B), we verified that the parameter estimates for individual subjects were not age-dependent. To get individual estimates from Scenario E2, it is necessary to add one condition on the parameters, in addition to matching the Δ^{14}C levels. Either fixing one of the two parameters and fitting the other one, or constraining the parameters to be close to the globally fitted values gave similar results (not shown). Because fixing parameter γ_1 to a large value mimics Scenario A, we decided to minimize γ_1 in order to get the maximal range of parameter values admissible by Scenario E2. Individual estimates had a mean ± s.d. of $\gamma_0 = 0.13 \pm 0.04$ per year and $\gamma_1 = 1.0 \pm 0.4$ years, with no significant correlation with age (Pearson’s correlation, p-value > 0.05). Parameter γ_1 is the age at which the replacement rate is half what it was at age 0. The globally fitted value for γ_1 is slightly larger than the minimal values for individual (1.4 years vs. 1.0 years).
Effect of polyploidization in adult cardiomyocytes

It has been observed that hypertrophy in aging heart is associated with an increased ploidy, indicating that adult polyploidization can occur (5). To test whether adult ploidization affects the turnover estimates, we considered a DNA content function that is linear increasing after age 10 rather than constant \(f_2(a)\), see below). Because only cross-sectional data were available, it was not possible to determine the extent of ploidy increase in individuals. Instead, we used the range of the 95% interval confidence to find an upper bound on the possible increase in ploidy after age 10 (see Section 4 below). This leads to a 20 percentage points increase in DNA content after age 10 (from approximately 170% to 190%). The constant turnover scenario (Scenario A) predicts a global average turnover of 0.91% per year (SSE=3.1x10^4), slightly lower than the estimate from Scenario A. Individual average turnover rates show almost no changes in post-bomb subjects, while in pre-bomb subjects, turnover was reduced by half (table 1). Best decreasing turnover scenario (Scenario E2) predicts turnover parameters of \(\gamma_0=0.11\) and \(\gamma_1=1.44\) (SSE=1.59x10^4). This translates in a
turnover of 0.85% at age 25 and 0.36% at age 75, a reduction of 20% compared to no adult polyploidization. These results indicate that with systematic polyploidization in adults, turnover rates would be up to 20% lower than estimated.

Adult polyploidization seems to affect post-bomb individuals only marginally, as mentioned above. We calculated the rate of ploidization that would be necessary to explain the 14C if there were no turnover at all. The onset of ploidization was kept around 7 years, but adult ploidy was allowed to increase as much as necessary. In all post-bomb individuals the adult ploidy was unrealistically high (>300%), supporting that 14C incorporation is due to turnover.

Nevertheless, since adult polyploidization mainly affected the oldest subjects, we tested whether it would be possible to explain 14C integration by ploidization in these individuals. To characterize the variability of the ploidy levels, we used a sliding average with a window of width 9 (mean and STD are calculated for each 9 successive data points) on the ploidy data (fig. 2). In the adult range, the STD quickly stabilizes and there is no difference between a width of 9 and a width of 17. For width of 9, most data points lie within 1 STD (49 out of 62 or 79%, compared to 68% expected if data were normally distributed). Although there is a weak linear trend for an increase in ploidy with age, the sliding window shows that there is a decrease in ploidy in oldest subjects.

We calculated for the 5 pre-bomb individuals what the time course of ploidy should be if there were no turnover, on an individual basis. For one subject, there should be a decrease in ploidy, which has no biological meaning (this would be equivalent to adding negative 14C). The other individual time courses are incompatible with the cross-sectional data. The 4 oldest subjects should all have begun adult life with a ploidy level lower than 1 STD from the mean ploidy. If ploidy levels are distributed normally in adults, the probability to observe ploidy levels lower than 1 STD from the mean in any subject is 0.159. This means that for the 4 pre-bomb subjects, the probability that they all had low ploidy at age 15 is $p = (0.159)^4 < 0.001$.
A linear increase might not best describe the time course of ploidy in adults. Adler & Friedburg (5) have shown that increase in ploidy is not associated with aging. DNA content (mg/g) was constant at all ages and heart weights, indicating that a change in heart weight accompanies polyploidization. We therefore considered a scenario where increase in ploidy is linked to pathology, i.e. occurs few years before death. We calculated the normal adult ploidy levels in the 5 pre-bomb patients if pathology-associated poloidization starts 10 years before death. The average DNA content for the 4 oldest subjects is 134% (2n=100%), well below the cross-sectional data average (data not shown). The fifth subject had a decreasing DNA content, which has no biological meaning, as in the previous case. We conclude that although ploidization in adults is possible and may contribute to ^{14}C integration, mitosis is necessary to explain the ^{14}C levels observed in pre-bomb subjects.

Figure 2. Ploidization-only scenario in pre-bomb subjects. DNA content (squares: subjects with ^{14}C data, dots: others, total n=62). The 1 STD (blue shading) interval based on a sliding window of with 9 includes most data points. None were outside 2 STD (pink shading). For the five pre-bomb patients, ^{14}C were fitted assuming ploidization only (solid lines). For the four ploidy time courses that were biologically relevant, all predicted unlikely ploidy levels in early adulthood.
Estimating the turnover rate in the non-cardiomyocyte fraction

The measured 14C levels in unsorted cardiac cells allowed the purity correction in sorted cardiomyocytes. These values can also be used to estimate the turnover in the non-cardiomyocyte fraction. We used the information about cardiomyocyte fraction in unsorted populations, cardiomyocyte DNA content (ploidy levels), unsorted cell 14C levels, and calculated cardiomyocyte turnover parameters to estimate the 14C levels in the non-cardiomyocyte population. We then used the constant turnover scenario (Scenario A) to estimate turnover rates for 11 samples. We found a median turnover rate of the non-cardiomyocytes of 18% per year, corresponding to a mean age of 4.0 years (table 3). This estimate should be interpreted cautiously as it relies on indirect data and some estimated 14C values are too low to correspond to any time point in the past. Nevertheless, these results suggest that, as expected, non-cardiomyocyte fraction turnover significantly faster than cardiomyocytes. There is no indication that the turnover is age-dependent.

Table 3. 14C level and turnover estimates in non-cardiomyocytes. *Data not available. Instead, mean percentage of cardiomyocyte DNA and ploidy levels were used to estimate the 14C content in non-cardiomyocytes.

<table>
<thead>
<tr>
<th>case #</th>
<th>unsorted 14C</th>
<th>myo DNA %</th>
<th>Estimated non cardiomyocyte 14C</th>
<th>turnover (% per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND67</td>
<td>50.03</td>
<td>52.43</td>
<td>84.41</td>
<td>16.87</td>
</tr>
<tr>
<td>ND73</td>
<td>32.26</td>
<td>49.98</td>
<td>60.85</td>
<td>41.83</td>
</tr>
<tr>
<td>ND61</td>
<td>51.62</td>
<td>66.36</td>
<td>16.45</td>
<td>0.29</td>
</tr>
<tr>
<td>ND59</td>
<td>31.70</td>
<td>56.56*</td>
<td>-122.48</td>
<td>0.00</td>
</tr>
<tr>
<td>ND51</td>
<td>115.00</td>
<td>47.57</td>
<td>42.76</td>
<td>0.46</td>
</tr>
<tr>
<td>ND56</td>
<td>275.70</td>
<td>55.77</td>
<td>64.42</td>
<td>37.64</td>
</tr>
<tr>
<td>ND68</td>
<td>227.12</td>
<td>58.51</td>
<td>-20.99</td>
<td>high</td>
</tr>
<tr>
<td>ND69</td>
<td>182.92</td>
<td>41.81</td>
<td>113.22</td>
<td>10.43</td>
</tr>
<tr>
<td>ND71</td>
<td>92.88</td>
<td>64.13</td>
<td>-60.02</td>
<td>high</td>
</tr>
<tr>
<td>ND54</td>
<td>144.30</td>
<td>72.51</td>
<td>83.42</td>
<td>17.54</td>
</tr>
<tr>
<td>ND74</td>
<td>96.53</td>
<td>56.56*</td>
<td>34.41</td>
<td>high</td>
</tr>
</tbody>
</table>
4. Method for calculating 14C content

Polyploidization

To account for cell polyploidization, we introduce a function $D(a)$ that describes how much DNA is added in a cell of age a. The function $D(a)$ is the derivative of the DNA content function

$$f(a) = d_0 H(a) + \frac{k}{\left(1 + \left(\frac{a}{d_0}\right)^n\right)} ,$$

where H is the Heaviside function, which takes the value 1 if $a \geq 0$ and 0 otherwise. The function f is introduced in section 14C value correction for polyploidisation of Supporting Materials and Methods. The parameters d_0, θ, and n are determined as described there, $d_0 = 110.5$, $\theta = 7.0$, and $n = 5.4$. The value k is the difference between adult DNA content and the baseline DNA content d_0 and is specific to each individual (table 1). This function is applied to the whole cardiomyocyte population and includes cells that turn over. To test the potential effect of polyploidization in adults, an alternative ploidy function with continuous ploidization in adults with a linear increase after age 10 was considered:

$$f_2(a) = d_0 H(a) + \frac{0.32a + 58}{1 + \left(\frac{a}{d_0}\right)^n}$$

We used data from Fig. 3C in the main text. The linear part was chosen so that the ploidy spans the 95% percent confidence interval, from the lower limit at age ten to the upper limit at age 87 (the age of the oldest subject available). Other parameters are unchanged.

Carbon integration into cardiomyocyte DNA

The derivative of f is $D(a) = d_0 \delta(a) + \frac{kn\left(\frac{a}{d_0}\right)^{n-1}}{\theta\left(1 + \left(\frac{a}{d_0}\right)^n\right)}$.
The Dirac delta (δ) function is the derivative of the Heaviside function and represents the fact that DNA synthesized at the last cell division is synthesized during a very short interval compared to the time scale of interest (hours vs. years). For a given cell cohort of age a, at date t_{death} (born at calendar year $t_{\text{death}} - a$), the adjusted Δ^{14}C value is

$$C_{adj}(a) = \frac{\int_0^a K(t_{\text{death}} - a + s)D(s)ds}{\int_0^a D(s)ds}$$

The function $K(t)$ is the bomb curve (atmospheric Δ^{14}C levels) at calendar year t. The denominator, the total DNA content at age a, is a normalization term. The Δ^{14}C level from cardiomyocytes of a subject who died at t_{death} (calendar year) in a subject aged t year (born at calendar year $t_{\text{death}} - t$) is

$$C_{tot} = \frac{\int_0^t C_{adj}(a)n(t, a)da}{N(t)}.$$

The turnover estimates are relatively robust with respect to changes in parameter values used in function $D(a)$. Parameter θ, which controls the age of the peak in DNA synthesis, has the most important effect on turnover estimate. Parameter n control the width of the DNA synthesis period and d_0 and k control the minimal and maximal ploidy levels. To make sure that the results obtained with the age-structured models do not depend critically on the form of the ploidization function, we used a compartment model that includes explicitly cardiomyocyte ploidization.
5. Alternative Model Formalism and Ploidy-Sorted ^{14}C data: Compartment Model

The compartment model consists of the following equations

$$\frac{\partial n_2}{\partial t} + \frac{\partial n_2}{\partial a} = -(\gamma_2 + k_4 + k_{28})n_2,$$

$$\frac{\partial n_4}{\partial t} + \frac{\partial n_4}{\partial a} = -(\gamma_4 + k_{28})n_4 + k_4n_2,$$

$$\frac{\partial n_8}{\partial t} + \frac{\partial n_8}{\partial a} = -\gamma_8n_8 + k_{28}n_4 + k_{28}n_2$$

Initial conditions are

$$n_i(0,a) = n_i^0\delta(a), \quad i = 2, 4, 8.$$

The cell densities $n_i(t,a)$ are the populations of ploidy i in. A boundary condition for n_2 is necessary to take into account birth of new cells,

$$n_2(t,0) = \beta.$$

Parameters γ_i are death rates and parameters k_i are ploidization rates. Keeping track of the ^{14}C content in each cell is a difficult task with the PDE system. An approach would be to introduce a new independent variable, c, which represent the DNA $\Delta^{14}\text{C}$ level. The cell density would become $n(t,a,c)$. This approach, however leads to an increase in the dimension of the system and raises numerical problems. To solve the system, we instead used a cellular automaton that has the advantage of tracking each cell individually instead of averaging large numbers of cells.

Model check

We first used the cellular automaton to check that the results obtained with age-structured models did not depend critically on the assumptions made about ploidization. In addition, we confirmed the
The ploidization parameters used are

\[k_4(\alpha) = 0.9 \exp\left\{ -\frac{(\alpha - 7)^2}{2} \right\} \]
\[k_8(\alpha) = 0.05 \exp\left\{ -\frac{(\alpha - 7)^2}{2} \right\} \]

(bell-shaped rates, units: per year). These parameters are age-dependent as it was impossible to get good ploidization curves from constant rate alone (ploidization was either too slow or the adult ploidy too large). The cellular automaton reproduces well the evolution of 2n, 4n and 8n ratios, and the total ploidy across ages (fig. 3A). The cellular automaton age-structured model (Scenarios A and E2) predict similar \(^{14}\text{C}\) levels, indicating that the difference in modeling polyploidization is negligible (fig. 3B).

Figure 3. (A) Cellular automaton simulation, with optimal parameter fitted with Scenario A ($\gamma = 0.01$ per yr). (B) Comparison between the cellular automaton and the age-structured model (in percent difference relative to the cellular automaton simulations, for Scenario A, squares and E2, circles). Part of the difference comes from the variability in adult ploidy, which is taken into account in the age-structured model.
Ploidy-sorted data analysis

For three of the subjects, we had 14C contents for 2n and 4n/8n cardiomyocytes (see table S2). The compartment model in best suited for ploidy-sorted data, because it takes into account the ploidy explicitly. Assuming constant turnover, a globally estimated 1.6% diploid cells are replaced every year in the three subjects (age ranges 23 to 33.7 years). This number is consistent with the values estimated for post-bomb subject, using all-ploidy 14C values and taking into account polyploidization. Individual turnover estimates were also consistent with overall constant turnover values (ND69: 1.6% per year, ND71: 2.1% per year and ND54: 0.85% per year). Given the limited number of samples, it was not possible to detect trends or systematic differences in the turnover rates.

Polyploid cells (4n/8n) have a 14C levels lower than 2n cells, as expected from the cross-sectional data showing that diploid cells undergo polyploidization in individuals between ages 7 and 10. According to these data, polyploid cells would be of the same age as diploid cells, but would appear younger due to ploidization. However, in addition to ploidization, differential turnover rates in cells of different ploidy can affect the measured 14C values. We ran the cell automaton model, without turnover, to see what difference in apparent age between the 2n and the 4n/8n cells would be observed. Without turnover, diploid cells are as old as the individual. Tetraploid cells look slightly less than 3 years younger than the diploid cells (table 1). This is consistent with the phase of ploidization at age 7: 4n cells will have half the DNA aged 0 and half DNA aged 7. These values are also consistent with the bomb years associated to the sorted 14C values, indicating that ploidization events can explain the difference measured. The “no turnover” 14C values are all greater than what was measured, indicating that turnover occurs also in 4n/8n cells.
Table 4. No turnover 14C values and bomb dates. “No turnover” predicts higher 14C than measured.

<table>
<thead>
<tr>
<th>subject</th>
<th>2n 14C / year</th>
<th>4n 14C / year</th>
<th>8n 14C / year</th>
</tr>
</thead>
</table>

Table 5. Turnover estimates of ploidy-sorted data. Birth and death rates are slightly different, so cell number is changing before settling to a new equilibrium (~10% change). *Indicates the maximal rate around age 7. Polyploidization rates are low otherwise. **For simplicity, 8n cells come from newborn cells only.

<table>
<thead>
<tr>
<th>subject</th>
<th>death rate (per year)</th>
<th>birth rate (IC per year)</th>
<th>ploidization rates*</th>
<th>calculated 14C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND71</td>
<td>0.018</td>
<td>0.0059</td>
<td>0.8</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>0.0096</td>
<td>0.0032</td>
<td>0**</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>0.003</td>
<td>0.001</td>
<td>-</td>
<td>118</td>
</tr>
<tr>
<td>ND71 total</td>
<td>-</td>
<td>0.0101</td>
<td>-</td>
<td>178</td>
</tr>
<tr>
<td>ND69</td>
<td>0.023</td>
<td>0.0076</td>
<td>0.45</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>0.015</td>
<td>0.005</td>
<td>0**</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.0017</td>
<td>-</td>
<td>140</td>
</tr>
<tr>
<td>ND69 total</td>
<td>-</td>
<td>0.0142</td>
<td>-</td>
<td>279</td>
</tr>
<tr>
<td>ND54</td>
<td>0.016</td>
<td>0.0053</td>
<td>0.5</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>0.016</td>
<td>0.0053</td>
<td>0**</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.0033</td>
<td>-</td>
<td>111</td>
</tr>
<tr>
<td>ND54 total</td>
<td>-</td>
<td>0.0139</td>
<td>-</td>
<td>169</td>
</tr>
</tbody>
</table>

We then looked at what would be the turnover of 4n/8n cells if polyploidization events were entirely associated to birth of new cell (all DNA synthesized at the same time). A turnover rate of 2.6% percent per year was estimated. This value provides an upper bound for the turnover rate with the 14C values measured, but it is not consistent with the time course of ploidy. A middle ground must be found somewhere that is consistent with ploidy time courses and the 14C levels.

Including newborn cells of high ploidy in the cell automaton involved a few changes. In the original model, cardiomyocyte regeneration rate involved only the diploid compartment. The birth rate was β cells/year. Now β must be split between the three ploidy compartment: $\beta = \beta_2 + \beta_4 + \beta_8$. There are now 8 parameters: β_2, β_4, β_8, γ_2, γ_4, γ_8, k_2, k_8. The last parameters control the polyploidization rates of existing cells. Results of individual fits are shown in table 5. Comparison of the turnover rates using
different methods shows that estimates are quite robust (table 6). Estimates for subject ND69 are consistent for all models tested. In subject ND71 and ND54, estimates for 2n cells only are quite different. This probably can be explained by the inverse relationship between 14C levels in diploid and all cells.

Table 6. Summary turnover rates estimated under various ploidization conditions (in % per year). All ploidy: individual estimates from Scenario A. 2n only: individual estimates from Scenario A using calculated 2n 14C values sorted cardiomyocytes. Ploidy-sorted: individual estimates using the cell automaton model. Continuous ploidization: individual estimates using continuous adult ploidization.

<table>
<thead>
<tr>
<th></th>
<th>all ploidy</th>
<th>2n only</th>
<th>ploidy-sorted</th>
<th>continuous ploidization</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND69</td>
<td>1.52</td>
<td>1.59</td>
<td>1.42</td>
<td>1.40</td>
</tr>
<tr>
<td>ND71</td>
<td>0.98</td>
<td>2.08</td>
<td>1.01</td>
<td>1.01</td>
</tr>
<tr>
<td>ND54</td>
<td>1.59</td>
<td>0.85</td>
<td>1.39</td>
<td>1.55</td>
</tr>
</tbody>
</table>

6. Alternative Scenarios: Mature Cardiomyocyte Division and Heterogeneous Turnover

Mature cardiomyocyte division

The model takes into account polyploidization of mature cardiomyocytes, but not the division, for example of a mononucleated cell that would become binucleated (synthesing DNA) and then divide. What the birth rate measures is the formation of new cardiomyocytes from cardiac stem/progenitor cells. If a mature cardiomyocyte divided symmetrically after duplicating DNA, the daughter cells would look younger than the mother cell but still older than a newborn cell (half the DNA would be old, unless DNA is perfectly segregated). However, their pooled DNA would have the same 14C content distribution as an old cell and a newborn cell, making the mature cardiomyocyte division process undistinguishable from the birth of a new cardiomyocyte from a precursor. Although there would be no difference in the turnover rate (one cell added has the same effect on the 14C measurement), the cell age distribution would differ. This could have some influence on the mathematical formulation of models that are age-dependent, as the age of the cell would not be
necessarily determined by the age of its DNA. The consequences of these small differences on the average age estimates have not yet been fully explored.

Heterogeneous turnover

Apart from having all cardiomyocytes turning over with the same probability, there is the possibility that a subset of cardiomyocytes never turn over while other subsets turn over frequently. A correct description of turnover must lie between these two opposite scenarios. To see whether heterogeneous turnover can explain the observed 14C levels, we used an alternative model where the cardiomyocytes are divided into two populations, 1 and 2, where Population 1 does not turn over and Population 2 turns over rapidly. The total population is kept constant: $N_1(t) + N_2(t) = N_0$. This leads to a modified expression for the total Δ^{14}C levels in samples

$$C_2 = \frac{N_1(t)}{N_0} C_{adj}(t) + \frac{N_2(t)}{N_0} C_{adj}(0).$$

Here, we made the assumption that cells in Population 2 are virtually new born, i.e. the turnover is infinite. Any lower turnover will make this alternative model closer to the default one. If a difference is to be seen, it is with this extreme example. The first term of C_2 gives the Δ^{14}C levels of cells present at birth that do not turnover, while the second term gives the Δ^{14}C levels of newborn cells (at the collection date). The proportion of cell in Population 2 and Population 1 are given by the fractions $p = N_2/N_0$ and $(1 - p)$ respectively. Because the total population is constant, only one parameter—the fraction p of renewing cells—needs to be estimated. A global least-square fit gave $p = 0.33$. Thus 33% percent of the cardiomyocytes would have to be contemporary while the other 67% present from birth to yield the same measured average Δ^{14}C. The best fit, when a slower turnover in the renewing subset is allowed, gives a turnover of 9% per year, with a renewing fraction that increases to 38% only ($SSE=0.47x10^4$). Thus, a change of few percents of the fast turnover
fraction implies large changes in the turnover rate. This makes it rather difficult to estimate the turnover rates but gives us a lower bound of 33% for the fraction turning over.

This subset would have to be a specific region of the myocardium, because the random nature of cell death already implies that a fraction of cells evenly distributed in the myocardium will never turn over (Scenario E2 predicts that half of initial cells are still present in a 75 year old subject). Based on the assumption that the subset is associated to a particular region of the heart, one would expect the percentage of renewing cardiomyocytes to be relatively uniform among individuals, composing in average at least $p = 1/3$ of the cardiomyocytes.

When the samples are fitted individually, either using a fixed fraction p or a fixed turnover rate, there are unrealistic values ($p > 1$ or infinite turnover rates). In addition, pre-bomb sample can be fitted by two different values because of the shape of the bomb curve, leading to difficulties in the interpretation of the results. When both the fraction p and the turnover rate are allowed to change, many solutions are possible. Some of them might be realistic, but without additional information their relevance cannot be evaluated. Although a global fit of all the samples gives good results, individual samples speak against a well-defined subset of cardiomyocytes that would turn over, while the remaining cardiomyocytes are static. These results must be interpreted in the context where the size or the content of the subset does not change in time.

References

Figure S1

Protein	PSORT II NLS (Bipartite)	PSORT II %Nuclear	NucPred Score	Specificity
TNNT2 H. sapiens | 4 (2) | 73.9 | 0.87 | 0.84
TNNT2 M. musculus | 4 (2) | 78.3 | 0.86 | 0.84
TNNT2 G. gallus | 4 (3) | 82.6 | 0.93 | 0.88
sphH D. melanogaster | 6 (1) | 89.6 | 0.81 | 0.84
GATA-4 C. elegans | 1 | 82.6 | 0.64 | 0.71
MYL2 H. sapiens | 1 | 8.7 | 0.11 | 0.45

Protein	PSORT II NLS (Bipartite)	PSORT II %Nuclear	NucPred Score	Specificity
TNNT3 H. sapiens | | | | |
TNNT3 M. musculus | 4 (1) | 73.9 | 0.75 | 0.81
TNNT3 G. gallus | 3 (2) | 87.0 | 0.76 | 0.81
sphH D. melanogaster | 3 (3) | 79.3 | 0.71 | 0.81
Ce TN1-3 C. elegans | 3 (3) | 87.0 | 0.65 | 0.71
GATA-4 C. elegans | 1 | 82.6 | 0.64 | 0.71
MYL2 H. sapiens | 1 | 8.7 | 0.11 | 0.45
Figure S2
Figure S3
Figure S5
<table>
<thead>
<tr>
<th>Case #</th>
<th>Flow cytometry sorted</th>
<th>Population</th>
<th>Sex</th>
<th>DOB</th>
<th>DOD</th>
<th>Age</th>
<th>DOM</th>
<th>Δ^14C</th>
<th>\pm</th>
<th>$\Delta^14C_{derived}$ birthdate</th>
<th>Δ^14C polyolysisation born</th>
<th>Polyolysisation independent born</th>
<th>Number of 14C dated nuclei in millions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND60</td>
<td>TropI</td>
<td>male</td>
<td>Sep-30</td>
<td>Dec-96</td>
<td>73</td>
<td>2007</td>
<td>21.30</td>
<td>12.09</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>2.74</td>
</tr>
<tr>
<td>ND67</td>
<td>TropI</td>
<td>male</td>
<td>Aug-39</td>
<td>Mar-07</td>
<td>67</td>
<td>2007</td>
<td>25.60</td>
<td>9.25</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND73</td>
<td>TropI</td>
<td>male</td>
<td>Aug-44</td>
<td>Apr-07</td>
<td>62</td>
<td>2007</td>
<td>7.70</td>
<td>7.55</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND61</td>
<td>TropI</td>
<td>male</td>
<td>Aug-46</td>
<td>Jan-07</td>
<td>58</td>
<td>2007</td>
<td>68.60</td>
<td>9.42</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND65</td>
<td>TropI</td>
<td>male</td>
<td>Nov-05</td>
<td>Sep-06</td>
<td>30</td>
<td>2007</td>
<td>196.71</td>
<td>9.95</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND56</td>
<td>TropI</td>
<td>male</td>
<td>Feb-64</td>
<td>Nov-06</td>
<td>42</td>
<td>2006</td>
<td>430.10</td>
<td>10.80</td>
<td>1973.40</td>
<td>0.77</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND58</td>
<td>TropI</td>
<td>male</td>
<td>Mar-83</td>
<td>Mar-07</td>
<td>36</td>
<td>2007</td>
<td>377.83</td>
<td>14.81</td>
<td>1975.15</td>
<td>1.60</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND62</td>
<td>TropI</td>
<td>female</td>
<td>Apr-07</td>
<td>Jan-07</td>
<td>42</td>
<td>2007</td>
<td>182.65</td>
<td>6.17</td>
<td>1988.34</td>
<td>1.75</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND51</td>
<td>TropI</td>
<td>male</td>
<td>Apr-36</td>
<td>Mar-07</td>
<td>23</td>
<td>2007</td>
<td>163.60</td>
<td>8.40</td>
<td>1988.08</td>
<td>2.00</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND54</td>
<td>TropI</td>
<td>female</td>
<td>Oct-81</td>
<td>Oct-06</td>
<td>23</td>
<td>2006</td>
<td>181.20</td>
<td>10.30</td>
<td>1991.10</td>
<td>2.74</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND67</td>
<td>TropI</td>
<td>female</td>
<td>Mar-67</td>
<td>Nov-06</td>
<td>19</td>
<td>2006</td>
<td>141.20</td>
<td>10.30</td>
<td>1991.10</td>
<td>2.74</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND67</td>
<td>TropI</td>
<td>male</td>
<td>Aug-30</td>
<td>Mar-07</td>
<td>67</td>
<td>2007</td>
<td>50.03</td>
<td>3.68</td>
<td>1955.23</td>
<td>0.73</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND73</td>
<td>TropI</td>
<td>male</td>
<td>Aug-44</td>
<td>Apr-07</td>
<td>62</td>
<td>2007</td>
<td>32.26</td>
<td>4.57</td>
<td>1955.13</td>
<td>0.63</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND61</td>
<td>TropI</td>
<td>male</td>
<td>Aug-46</td>
<td>Jan-07</td>
<td>58</td>
<td>2007</td>
<td>51.62</td>
<td>3.95</td>
<td>1955.23</td>
<td>0.73</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND59</td>
<td>TropI</td>
<td>male</td>
<td>Sep-05</td>
<td>Dec-06</td>
<td>53</td>
<td>2006</td>
<td>31.70</td>
<td>18.00</td>
<td>1954.21</td>
<td>3.11</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND65</td>
<td>TropI</td>
<td>male</td>
<td>Nov-05</td>
<td>Nov-06</td>
<td>30</td>
<td>2006</td>
<td>115.00</td>
<td>8.86</td>
<td>1957.63</td>
<td>2.34</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND56</td>
<td>TropI</td>
<td>male</td>
<td>Feb-64</td>
<td>Nov-06</td>
<td>42</td>
<td>2006</td>
<td>275.70</td>
<td>13.40</td>
<td>1980.42</td>
<td>1.52</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND58</td>
<td>TropI</td>
<td>male</td>
<td>Mar-83</td>
<td>Mar-07</td>
<td>36</td>
<td>2007</td>
<td>227.13</td>
<td>4.88</td>
<td>1982.70</td>
<td>1.49</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND59</td>
<td>TropI</td>
<td>male</td>
<td>Apr-36</td>
<td>Mar-07</td>
<td>23</td>
<td>2007</td>
<td>163.92</td>
<td>4.85</td>
<td>1986.71</td>
<td>1.38</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND71</td>
<td>TropI</td>
<td>male</td>
<td>Jun-61</td>
<td>Mar-07</td>
<td>23</td>
<td>2007</td>
<td>92.88</td>
<td>7.94</td>
<td>1998.83</td>
<td>2.00</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND54</td>
<td>TropI</td>
<td>female</td>
<td>Oct-41</td>
<td>Oct-06</td>
<td>23</td>
<td>2006</td>
<td>144.30</td>
<td>4.20</td>
<td>1990.02</td>
<td>1.78</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ND74</td>
<td>TropI</td>
<td>female</td>
<td>Apr-67</td>
<td>Apr-07</td>
<td>20</td>
<td>2007</td>
<td>96.53</td>
<td>4.88</td>
<td>1996.01</td>
<td>2.46</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Table S1

DNA content/mass (in %)

- **Flow cytometry fraction in %**
- **DNA content/mass weighted in %**
- **Flow cytometry purity in %**
- **Flow cytometry purity corrected**
- **Flow cytometry purity corrected**
- **Δ^14C**
- **$\Delta^14C_{derived}$ birthdate**
- **Polyolysisation independent birthdate**
- **Polyolysisation independent birthdate**
- **Number of 14C dated nuclei in millions**

Population

- **ND60**: male
- **ND67**: male
- **ND73**: male
- **ND61**: male
- **ND65**: male
- **ND56**: male
- **ND58**: male
- **ND59**: male
- **ND62**: male
- **ND65**: male
- **ND56**: male
- **ND58**: male
- **ND62**: male
- **ND65**: male
- **ND56**: female
- **ND54**: female
- **ND74**: female

<table>
<thead>
<tr>
<th>Case #</th>
<th>ND60</th>
<th>ND67</th>
<th>ND73</th>
<th>ND61</th>
<th>ND65</th>
<th>ND56</th>
<th>ND58</th>
<th>ND59</th>
<th>ND62</th>
<th>ND65</th>
<th>ND56</th>
<th>ND58</th>
<th>ND62</th>
<th>ND65</th>
<th>ND56</th>
<th>ND54</th>
<th>ND74</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOD</td>
<td>Dec-96</td>
<td>Mar-07</td>
<td>Apr-07</td>
<td>Jan-07</td>
<td>Sep-06</td>
<td>Nov-06</td>
<td>Mar-07</td>
<td>Jan-07</td>
<td>Dec-06</td>
<td>Nov-06</td>
<td>Nov-06</td>
<td>Mar-07</td>
<td>Mar-07</td>
<td>Mar-07</td>
<td>Oct-06</td>
<td>Nov-06</td>
<td>Feb-64</td>
</tr>
<tr>
<td>Age</td>
<td>73</td>
<td>67</td>
<td>62</td>
<td>58</td>
<td>30</td>
<td>42</td>
<td>36</td>
<td>53</td>
<td>23</td>
<td>30</td>
<td>42</td>
<td>36</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Δ^14C</td>
<td>21.30</td>
<td>25.60</td>
<td>7.70</td>
<td>68.60</td>
<td>196.71</td>
<td>430.10</td>
<td>377.83</td>
<td>51.62</td>
<td>31.70</td>
<td>115.00</td>
<td>275.70</td>
<td>227.13</td>
<td>163.92</td>
<td>92.88</td>
<td>144.30</td>
<td>96.53</td>
<td></td>
</tr>
<tr>
<td>\pm</td>
<td>12.09</td>
<td>9.25</td>
<td>7.55</td>
<td>9.42</td>
<td>9.95</td>
<td>10.80</td>
<td>14.81</td>
<td>3.95</td>
<td>18.00</td>
<td>8.86</td>
<td>13.40</td>
<td>4.88</td>
<td>4.85</td>
<td>7.94</td>
<td>4.20</td>
<td>4.88</td>
<td></td>
</tr>
</tbody>
</table>

*See supplement for detailed description: 14C value correction for polyploidisation
<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Cause of Death</th>
<th>Absolute Heart Weight</th>
<th>Body Mass Index</th>
<th>Relative Heart Weight (kg)</th>
<th>Body Mass Index (kg/m²)</th>
<th>Heart Enlargement</th>
<th>Hypertrophy</th>
<th>Fibrosis</th>
<th>Corona Venosa</th>
<th>Hypertension</th>
<th>Diabetes Mellitus</th>
<th>Hypercholesteremia</th>
<th>Smoking</th>
<th>Medication</th>
<th>Other Diseases</th>
<th>Other Medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND50</td>
<td>38</td>
<td>Suicide (intoxication)</td>
<td>280</td>
<td>32</td>
<td>240±17</td>
<td>0.9</td>
<td>no</td>
<td>slight</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>antidepressants</td>
<td>tranquilizers</td>
</tr>
<tr>
<td>ND51</td>
<td>50</td>
<td>Multiple trauma</td>
<td>367</td>
<td>23</td>
<td>370±75</td>
<td>1.3</td>
<td>no</td>
<td>slight</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>antidepressants</td>
<td>tranquilizers</td>
</tr>
<tr>
<td>ND54</td>
<td>23</td>
<td>Suicide (hanging)</td>
<td>275</td>
<td>18</td>
<td>287±74</td>
<td>1.5</td>
<td>no</td>
<td>slight</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>antidepressants</td>
<td>tranquilizers</td>
</tr>
<tr>
<td>ND56</td>
<td>42</td>
<td>Suicide (intoxication)</td>
<td>387</td>
<td>23</td>
<td>370±75</td>
<td>1.5</td>
<td>no</td>
<td>slight</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>antidepressants</td>
<td>tranquilizers</td>
</tr>
<tr>
<td>ND57</td>
<td>19</td>
<td>Multiple trauma</td>
<td>220</td>
<td>23</td>
<td>287±74</td>
<td>1.3</td>
<td>no</td>
<td>slight</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>antidepressants</td>
<td>tranquilizers</td>
</tr>
<tr>
<td>ND60</td>
<td>73</td>
<td>Suicide (hanging)</td>
<td>362</td>
<td>22</td>
<td>370±75</td>
<td>1.3</td>
<td>no</td>
<td>slight</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>antidepressants</td>
<td>tranquilizers</td>
</tr>
<tr>
<td>ND61</td>
<td>58</td>
<td>Multiple trauma</td>
<td>367</td>
<td>22</td>
<td>370±75</td>
<td>1.3</td>
<td>no</td>
<td>slight</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>antidepressants</td>
<td>tranquilizers</td>
</tr>
<tr>
<td>ND62</td>
<td>47</td>
<td>Suicide (intoxication)</td>
<td>400</td>
<td>17</td>
<td>400±69</td>
<td>0.9</td>
<td>no</td>
<td>slight</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>antidepressants</td>
<td>tranquilizers</td>
</tr>
<tr>
<td>ND63</td>
<td>39</td>
<td>Suicide (hanging)</td>
<td>362</td>
<td>23</td>
<td>370±75</td>
<td>1.3</td>
<td>no</td>
<td>slight</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>antidepressants</td>
<td>tranquilizers</td>
</tr>
<tr>
<td>ND64</td>
<td>33</td>
<td>Suicide (hanging)</td>
<td>380</td>
<td>21</td>
<td>380±69</td>
<td>1.0</td>
<td>no</td>
<td>slight</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>antidepressants</td>
<td>tranquilizers</td>
</tr>
<tr>
<td>ND67</td>
<td>67</td>
<td>Suicide (hanging)</td>
<td>360</td>
<td>17</td>
<td>380±69</td>
<td>1.0</td>
<td>no</td>
<td>slight</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>antidepressants</td>
<td>tranquilizers</td>
</tr>
<tr>
<td>ND68</td>
<td>39</td>
<td>Suicide (hanging)</td>
<td>362</td>
<td>23</td>
<td>370±75</td>
<td>1.3</td>
<td>no</td>
<td>slight</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>antidepressants</td>
<td>tranquilizers</td>
</tr>
<tr>
<td>ND69</td>
<td>33</td>
<td>Suicide (hanging)</td>
<td>380</td>
<td>17</td>
<td>380±69</td>
<td>1.0</td>
<td>no</td>
<td>slight</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>antidepressants</td>
<td>tranquilizers</td>
</tr>
<tr>
<td>ND70</td>
<td>62</td>
<td>Suicide (hanging)</td>
<td>380</td>
<td>23</td>
<td>370±75</td>
<td>1.3</td>
<td>no</td>
<td>slight</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>antidepressants</td>
<td>tranquilizers</td>
</tr>
</tbody>
</table>

*from de la Grandmaison et al. 2001

Table S2
<table>
<thead>
<tr>
<th>case #</th>
<th>Flow cytometry sorted population</th>
<th>sex</th>
<th>DOB</th>
<th>DOD</th>
<th>age</th>
<th>DOM</th>
<th>∆^14C</th>
<th>t</th>
<th>∆^14C derived birthdate</th>
<th>± years</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND69</td>
<td>TropT</td>
<td>male</td>
<td>Jun-73</td>
<td>Mar 07</td>
<td>33</td>
<td>2007</td>
<td>271.1</td>
<td>20.79</td>
<td>1980.89</td>
<td>2.58</td>
</tr>
<tr>
<td>ND69</td>
<td>TropT diploid nuclei (2n)*</td>
<td>male</td>
<td>Jun-73</td>
<td>Mar 07</td>
<td>33</td>
<td>2007</td>
<td>261.09</td>
<td>6.17</td>
<td>1980.84</td>
<td>1.73</td>
</tr>
<tr>
<td>ND71</td>
<td>TropT</td>
<td>male</td>
<td>Jun-83</td>
<td>Mar 07</td>
<td>23</td>
<td>2007</td>
<td>168.00</td>
<td>17.17</td>
<td>1983.24</td>
<td>1.57</td>
</tr>
<tr>
<td>ND71</td>
<td>TropT diploid nuclei (2n)</td>
<td>male</td>
<td>Jun-83</td>
<td>Mar 07</td>
<td>23</td>
<td>2007</td>
<td>184.10</td>
<td>17.30</td>
<td>1983.26</td>
<td>1.97</td>
</tr>
<tr>
<td>ND71</td>
<td>TropT higher ploidies (4n8n)</td>
<td>male</td>
<td>Jun-83</td>
<td>Mar 07</td>
<td>23</td>
<td>2007</td>
<td>173.02</td>
<td>4.30</td>
<td>1983.72</td>
<td>0.70</td>
</tr>
<tr>
<td>ND71</td>
<td>TropT diploid nuclei (2n)</td>
<td>female</td>
<td>Oct-83</td>
<td>Oct 06</td>
<td>23</td>
<td>2006</td>
<td>165.60</td>
<td>6.40</td>
<td>1986.94</td>
<td>2.90</td>
</tr>
<tr>
<td>ND71</td>
<td>TropT higher ploidies (4n8n)</td>
<td>female</td>
<td>Oct-83</td>
<td>Oct 06</td>
<td>23</td>
<td>2006</td>
<td>173.1</td>
<td>6.50</td>
<td>1986.90</td>
<td>0.72</td>
</tr>
<tr>
<td>ND54</td>
<td>TropI</td>
<td>female</td>
<td>Oct-83</td>
<td>Oct 06</td>
<td>23</td>
<td>2006</td>
<td>164.20</td>
<td>4.30</td>
<td>1988.72</td>
<td>0.70</td>
</tr>
<tr>
<td>ND54</td>
<td>TropI diploid nuclei (2n)</td>
<td>female</td>
<td>Oct-83</td>
<td>Oct 06</td>
<td>23</td>
<td>2006</td>
<td>164.20</td>
<td>4.30</td>
<td>1988.72</td>
<td>0.70</td>
</tr>
<tr>
<td>ND54</td>
<td>TropI higher ploidies (4n8n)</td>
<td>female</td>
<td>Oct-83</td>
<td>Oct 06</td>
<td>23</td>
<td>2006</td>
<td>155.7</td>
<td>6.50</td>
<td>1990.45</td>
<td>2.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow cytometry sorted population</th>
<th>Flow cytometry purity in %</th>
<th>Flow cytometry purity corrected</th>
<th>∆^14C</th>
<th>Flow cytometry purity corrected</th>
<th>Flow cytometry purity corrected</th>
<th>∆^14C derived birthdate</th>
<th>polypliodisation independent birthdate</th>
<th>number of DNA dated nuclei in millions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND69</td>
<td>TropT</td>
<td>96.50</td>
<td>279.94</td>
<td>1980.30</td>
<td>368.05</td>
<td>1975.43</td>
<td>1975.27</td>
<td>57.10</td>
</tr>
<tr>
<td>ND69</td>
<td>TropT diploid nuclei (2n)*</td>
<td>313.22</td>
<td>1978.22</td>
<td>1978.48</td>
<td>358.40</td>
<td>1978.13</td>
<td>1978.03</td>
<td>56.53</td>
</tr>
<tr>
<td>ND71</td>
<td>TropT</td>
<td>94.63</td>
<td>178.40</td>
<td>1986.27</td>
<td>194.07</td>
<td>1985.19</td>
<td>1985.45</td>
<td>56.50</td>
</tr>
<tr>
<td>ND71</td>
<td>TropT diploid nuclei (2n)</td>
<td>82.77</td>
<td>185.02</td>
<td>1986.27</td>
<td>194.07</td>
<td>1985.19</td>
<td>1985.45</td>
<td>56.50</td>
</tr>
<tr>
<td>ND71</td>
<td>TropT higher ploidies (4n8n)</td>
<td>96.60</td>
<td>188.14</td>
<td>1986.17</td>
<td>194.30</td>
<td>1985.28</td>
<td>1986.20</td>
<td>146.00</td>
</tr>
<tr>
<td>ND54</td>
<td>TropI</td>
<td>95.50</td>
<td>167.38</td>
<td>1988.15</td>
<td>194.21</td>
<td>1986.41</td>
<td>1986.58</td>
<td>56.00</td>
</tr>
<tr>
<td>ND54</td>
<td>TropI diploid nuclei (2n)*</td>
<td>96.47</td>
<td>155.45</td>
<td>1989.15</td>
<td>194.10</td>
<td>1988.12</td>
<td>1988.88</td>
<td>38.50</td>
</tr>
<tr>
<td>ND54</td>
<td>TropI higher ploidies (4n8n)</td>
<td>96.47</td>
<td>155.45</td>
<td>1989.15</td>
<td>194.07</td>
<td>1988.19</td>
<td>1988.45</td>
<td>38.50</td>
</tr>
</tbody>
</table>

* ∆^14C values calculated

Table S3
Legends to Supporting Figures and Tables

Figure S1. Nuclear localization signals (NLS) within cTroponin T (TNNT2) and cTroponin I (TNNI3).

Since non-cardiomyocytes are very adherent to and are often in very close proximity to cardiomyocytes within the myocardium, a strategy based on cell sorting may not allow for the desired purity as it may be difficult to exclude cell doublets. Since a substantial proportion of cardiomyocytes are binucleate, it is not possible to avoid doublets by excluding cells with more than two nuclei. By choosing to sort for cardiomyocyte nuclei as opposed to whole cells, we could better control purification and still obtain the desired DNA.

(A) We took a bioinformatic approach to search for predicted nuclear localization signals within cytoplasmic cardiomyocyte markers. We found that cTroponin T (TNNT2) (left panel) and cTroponin I (TNNI3) (right panel) both contain four putative nuclear localization signals. (B) NucPred ClustalW alignment between species shows the relative basic residue content and distribution (positive=more likely nuclear). Species display a similar NLS organisation near the N-termini of the protein. (C) Table showing specificity for nuclear localization of cTroponin T and I for different species. Nuclear GATA4 (NP_002043.2) and cytosolic cardiac myosin light chain were used as positive and negative controls, respectively. Specificity represents the binned fraction of proteins predicted to be nuclear that have been experimentally confirmed (greater is more reliable).
Figure S2. cTroponin T and cTroponin I are both present in cardiomyocyte nuclei.

(A, B) To verify the nuclear localization, a nuclear isolate from left ventricular tissue was incubated with DAPI (which labels DNA and reveals all nuclei) and antibodies against cTroponin I (A) or cTroponin T (B). cTroponin I and T-immunoreactivity was present in a subset of nuclei that were larger in size than the unlabeled nuclei. Arrows point to cTroponin I and cTroponin T-immunoreactive nuclei and arrowheads to negative nuclei. Scale bars are 20µm. (C) We next performed Western blot analyses to further characterize the cTroponin I and cTroponin T-immunoreactive epitopes in the nuclei. Analysis of heart tissue separated into a cytoplasmic and a nuclear fraction by centrifugation revealed the presence of cTroponin I (approx. 28 kDa and 25kDa) and cTroponin T (approx. 40 kDa) in the cytoplasm as well as in the nuclei (left panel). The two different cTroponin I bands have been suggested to represent different phosphorylation states (1, 2). Interestingly, one kinase known to phosphorylate cTroponin I is the nuclear protein TNNI3K, in line with the presence of the putatively phosphorylated form in the nucleus (3). (D, E) ERK1/2 and PAK detection only in the cytoplasm, and GATA4 as well as Histone 3 detection only in the nuclei, confirmed the purity of both cellular fractions. (E) TOM20, a import receptor protein localized in the outer mitochondrial membrane, was highly enriched only in the cytoplasmic fraction, demonstrating little mitochondrial contamination both in the flow cytometry sorted nuclear fraction (third lane) and in the nuclear fraction purified by sucrose cushion (first lane). (F, G) To address whether transfer of free cTroponin I or T to nuclei may occur,
resulting in false positive labeling, we mixed brain and heart tissue and analyzed whether neuronal nuclei were labeled with antibodies against cTroponin I (F) and cTroponin T (G). Since this protein is not expressed in the brain, labeling of neuronal nuclei would indicate the transfer of this protein to the nuclei. We did not find labeling of neuronal nuclei (NeuN-positive) above background levels (0.3-0.5%), arguing against transfer of cTroponin I or cTroponin T to noncardiomyocyte nuclei during the isolation strategy.

Figure S3. cTroponin T and cTroponin I are both present in adult cardiomyocyte nuclei in human heart tissue biopsies.

Human left ventricular cardiomyocytes were isolated from human bioptic heart tissue by means of flow cytometry. Cardiomyocytes were defined as CD31\(^{\text{negative}}\) (A), \(\alpha\)-SMA\(^{\text{negative}}\) (B) and MHC\(^{\text{positive}}\) (C) and sorted accordingly. Nuclei from the CD31\(^{\text{negative}}\), \(\alpha\)-SMA\(^{\text{negative}}\), MHC\(^{\text{positive}}\) population (cardiomyocytes) and CD31\(^{\text{negative}}\), \(\alpha\)-SMA\(^{\text{negative}}\), MHC\(^{\text{negative}}\) population (negative control) were extracted subsequentially and reanalyzed by flow cytometry. cTroponin I and cTroponin T were not detected above background level (0.12%) in non-cardiomyocyte nuclei (D) whereas 89% of all cardiomyocyte nuclei were positive for both cTroponins (E). Abbreviations: SMA=smooth muscle actin; MHC=cardiac myosin heavy chain.

Figure S4. Reanalysis of flow cytometric sorted myocardial nuclei.

(A) Representative flowcytometric plot depicting cTroponin T-negative fraction with a contamination of 1.2% cTroponin T-positive nuclei. (B) Re-analysis of flow cytometric sorted cTroponin T-positive fraction with a contamination of 4.8% of cTroponin T-
negative nuclei.

Figure S5. Flow cytometric analysis of DNA content in human cardiomyocyte nuclei.

(A) Representative flowcytometric plot showing different DNA levels of sorted human cardiomyocyte nuclei. Nuclei were incubated with Hoechst33342 (5µg/ml) before analysis. Average DNA content per cardiomyocyte nucleus [%] in left ventricles (wall and apex) is presented against absolute heart weight (B) and relative heart weight (C). No correlation exists between relative heart weights up to 130% (4) and average DNA content per nucleus (R=0.08; p=0.621). All 14C dated heart samples, depicted as colored dots, have relative heart weights <130% (see table S2). A positive correlation between heart weight and average DNA content per nucleus does exist only from absolute heart weights >500g and relative heart weights >130%.

(D) Percentage distribution of ploidy levels (DNA content) of human hearts having relative weights <130% according to BMI (4) or (E) relative heart weights >130% depicted sequentially with the age of the subjects. Different grayscales indicate different ploidy levels. 2n=diploid DNA. Absolute heart weights [g] were determined as described in the Materials and Methods and in (4).

Figure S6. Continuous DNA synthesis in cardiomyocytes.

The age of the individual is plotted against the average age of cardiomyocyte DNA from individuals born after the bomb spike. The dotted line represents the no cell turnover scenario, where the average age of cardiomyocytes equals the age of the individual. The black line shows the best fitting for all data points (R=0.991; p<0.001). The difference
between the birth date of the person and the date corresponding to the ^{14}C level in cardiomyocyte DNA increased with the age of the individual.

Figure S7. Cardiomyocyte DNA of all ploidy levels is younger than the individual.

(A, B, C) The ^{14}C levels in cardiomyocyte DNA of all measured ploidy levels correspond to time points after the birth of the individuals. Diploid cardiomyocyte DNA is older than tetra- and octaploid DNA in all depicted subjects. (D, E, F) ^{14}C levels in cardiomyocyte DNA corrected for polyploidization (see supporting online text) indicate similar ^{14}C integration in diploid and polyploid cardiomyocyte DNA. The vertical bar indicates year of birth, with the correspondingly colored data point indicating the ^{14}C values for diploid (squares), tetra- and octaploid nuclei (triangles and polygons for ploidy independent values) and for all cardiomyocyte ploidy levels (dots and diamonds for ploidy independent values).

Figure S8. Y-chromosome chimerism in human heart after gender-mismatch heart or bone marrow transplantation.

Cell fusion is a potential source of non-cardiomyocyte DNA which could bias our interpretation of cell turnover. After gender-mismatched heart or bone marrow transplantation, several studies could show chimeric y-chromosome positive cardiomyocytes in the female heart. This phenomenon has been explained by cell fusion events or transdifferentiation of host/donor cells into differentiated cardiomyocytes (5-7). Most studies analyzing cardiomyocytes found a low level of chimerism (0% to 1.3%, median: 0.037%) with no correlation with time after transplantation (R=0.046, p=0.74)
(5, 8-11) nor with the age of the patient (R=0.232; p=0.086). Bayes-Genis et al. showed that the degree of chimerism in the human heart decreased by in average 38% when investigating the same individuals at 4 and 12 months after transplantation, arguing for chimerism being a temporally limited acute rather than a continuous occurring physiological phenomenon (12). Other studies even failed to find any evidence for cardiomyocyte chimerism (13-15). Two reports, however, found a much higher number of chimeric cardiomyocytes (6.4-18%) (16, 17) which is most likely an overestimation due to the infiltration of host-derived leukocytes into the heart and different detection techniques (5, 11, 18). The described low frequency of cardiomyocyte positive y-chromosomes and the transient nature of chimerism in the human heart could not explain the DNA turnover that we report here (supporting online text). Therefore neither transdifferentiation of non-cardiac stem cells into cardiomyocytes nor potential cell fusion events seems to be responsible for the observed cardiomyocyte turnover.

Table S1. Data set for all 14C-dated subjects.

Table showing all data from 14 individuals whose myocardial DNA was carbon dated. DOB = date of birth, DOD = date of death, DOM = date of measurement. For a complete explanation of the terms ‘Δ^{14}C’ and ‘Flow cytometry purity corrected Δ^{14}C’, ‘C_{adj}’ and ‘polyploidisation independent Δ^{14}C values’, refer to Material&Methods. All Δ^{14}C derived birthdates were determined by applying pMC values to the software provided on the freely accessible CALIbomb web site (http://calib.qub.ac.uk/CALIBomb/frameset.html). We used the Levin dataset and a smoothing and resolution value of one year.
Table S2. Pathological assessment and medical history of all 14C-dated cases.

Comprehensive pathological assessment and medical history of all cases are presented. Heart enlargement was assessed by using tables for normal heart weights according to BMI (4). Hearts were considered to be enlarged if the absolute heart weight was higher than mean+ 1SD heart weight according to BMI.

Table S3. 14C levels in DNA in cardiomyocyte nuclei separated based on DNA content

Table showing data from 3 subjects whose myocardial ploidy levels (DNA content) were separately carbon dated. DOB = date of birth, DOD = date of death, DOM = date of measurement. The 14C values for the diploid ND54 and ND69 data points (C_{diploid}) were calculated based on the 14C levels for higher ploidies ($C_{\text{tetra+octaploid}}$) and for all ploidy levels ($C_{\text{allploidies}}$), respectively. To validate our calculation for the 14C concentration of diploid nuclei, we compared the measured and calculated diploid 14C concentration of case number ND71. The calculated 14C value differed $\leq 0.7\%$ from the actual 14C concentration.

$$C_{\text{allploidies}} \times (\text{ratio}[%]_{\text{diploid}} + \text{DNAfactor} \times \text{ratio}[%]_{\text{tetra+octaploid}}) =$$
$$C_{\text{diploid}} \times \text{ratio}[%]_{\text{diploid}} + C_{\text{tetra+octaploid}} \times \text{DNAfactor} \times \text{ratio}[%]_{\text{tetra+octaploid}}$$

DNAfactor refers to the average DNA content per nucleus, $\text{ratio}[%]_x$ refers to the ratio in percentage of the respective ploidy compartment (e.g. diploid). For a complete explanation of the terms ‘Δ^{14}C’ and ’Flow cytometry purity corrected Δ^{14}C’, ‘C_{adj}’ and ‘polyploidisation independent Δ^{14}C values’, see Materials and Methods. All Δ^{14}C derived
birthdates were determined by applying pMC values to the software provided on the freely accessible CALIbomb web site (http://calib.qub.ac.uk/CALIBomb/frameset.html). We used the Levin dataset and a smoothing and resolution value of one year.

References and notes

8. A. Deb et al., Circulation 107, 1247 (Mar 11, 2003).
10. P. Muller et al., Circulation 106, 31 (Jul 2, 2002).
11. R. A. de Weger et al., Bone Marrow Transplant 41, 563 (Mar, 2008).