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Abstract

Although the terms mortality, hazard rate, incidence (rate), and incidence
density involve the same concepts, those that involve continuous functions
and mathematical limits, make many epidemiologists uncomfortable. Few
textbooks present, and fewer still fully explain, the “exponential” formula
linking incidence and risk. Increased understanding of this link, and its
underpinnings, is all the more critical today, as the familiar Kaplan-Meier
estimate of a cumulative incidence proportion or risk is gradually being being
replaced by the Nelson-Aalen one, and as investigators use parametric sta-
tistical models to calculate profile-specific x-year risks, risk differences, and
numbers needed to treat, and to test proportional hazards via log[survival]
plots. In part I, we illustrated the concepts common to the force of mortality,
the hazard function, and incidence density functions We revisited the 1832
definition of the force of mortality and how a person-year was conceptual-
ized, and used a striking 2010 graph to re-emphasize the centrality of time.
With part I as orientation, we now extend the 1832 conceptualization, and
use the probability of a specific realization of a Poisson random variate, to
de-mystify the formula linking an incidence function and risk. We suggest
ways to reduce confusion caused by variations in terminology.
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0 Introduction and outline

The terms mortality, hazard rate, incidence (rate), and incidence density

all involve the same concepts, but those that involve a mathematical limit

(derivative) or integral make many epidemiologists uncomfortable. Indeed,

although epidemiologists are comfortable with the concept of full-time equiv-

alents in measuring staff sizes, this comfort level does not always extend to

the concept of an intern-month or intern-year, or to converting an incidence

function to a cumulative incidence proportion or risk. As a result, epidemiol-

ogists may be unsure as to how to turn an injury rate of say 0.095 needle-stick

injuries per intern-month into a 12-month cumulative incidence or risk, and

of what assumptions are involved. Indeed, few textbooks present, and fewer

still explain, the formula linking incidence and risk.

Increased understanding of this link is all the more critical nowadays, as

the familiar Kaplan-Meier estimate of risk is gradually being being replaced

by the Nelson-Aalen one, and as investigators use non-parametric and para-

metric statistical models to calculate profile-specific x-year risks (Schröder

2009), risk differences, and numbers needed to treat (Ridker, 2008).

In part I, the first of this pair of articles, we illustrated the concepts

common to the force of mortality, the hazard function, and incidence density

functions We revisited the 1832 definition of the force of mortality and how

a person-year was conceptualized, and used a striking 2010 graph to re-

emphasize the centrality of time.
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With part I as orientation, this second of the pair addresses our main

objective – demysifying the formula used to convert an incidence function to

a cumulative incidence rate. To do so, we first review how the ‘exponential’

formula linking incidence and risk has been presented in various epidemiol-

ogy textbooks, and why it needs to be further de-mystified. We then take

advantage of Edmonds’ conceptualization In the next section, we will exploit

Edmond’s idea of “one person ‘constantly living’ for one year” (what today

would be termed a dynamic population of constant size 1) and a little-used

property of the Poisson distribution, to de-mystify this 200 year old formula

seems to have been neglected or made unnecessarily complicated in modern

textbooks. We illustrate how easy and unforgettable it is once its single in-

put is fully understood, and how it is also the basis for the Nelson-Aalen

estimator of survival or risk. We end with some recommendations about

terminology.

1 Definition; formula; previous heuristics

Incidence density refers to the rate of transition from a specific initial state

(usually, but not necessarily, a health state) to a different specific state of

interest. This is typically a function of age or time. As was done using the

USA data from 2000-2006, it can be estimated from a dynamic population

experience1 , in which “a population of a given size but with turnover of

1Some of the wording in this section is adapted from that in Miettinen 1976 and Miet-
tinen 1985.
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membership moves over calendar time, with all members being candidates

throughout (so that the transition at issue is among the mechanisms of re-

moval of individuals from the candidate population).” Alternatively, it can

be estimated from a cohort experience, “in which an enumerable set of indi-

viduals, all candidates initially, moves over the risk period.”

The cumulative incidence rate is a proportion-type rate. It refers to a

cohort (fictional or real) – all members of which are candidates initially – for

a specified period or span of time [or age]. It is the proportion which, in the

absence of attrition, makes the transition in that period. When the proportion

is used as the probability of transition for an individual, it is usually referred

to as a risk. Typical applications are the 30-day mortality rate, the 1-, 5-

and x-year risks of various illnesses, etc.

When a cohort experience is available, and each member has been followed

up to the event at issue or to the end of the risk period, the cumulative

incidence rate can be directly calculated as the proportion of the population

of candidates, defined as of some zero time (T = t0), who experience the

transition during the risk period at issue. If there is attrition due to loss to

follow up or extraneous mortality, the proportion can be calculated as the

complement of the Kaplan-Meier or Nelson-Aalen survival function evaluated

at the end of the risk period at issue.

But what if we wish to calculate the 20-year risk of death for persons aged

39.25, using the USA data from 2000-2007? Since this source population of

subjects is dynamic – with new people continually entering at the lower bound
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(and within the range) of each age-interval and others exiting it (within the

range and) at the upper bound, and a maximal membership duration of 7

years – it is not possible to directly calculate the proportion of the population

of candidates, defined as of t0 = 39.25, who would die during the 20-year risk

period at issue. However, it is possible to do so indirectly using the statistical

methods used to make ‘current’ lifetables. In this synthetic approach, the

data from successive age categories (say 1 year wide) are ‘spliced together’

to project the experience of the hypothetical cohort. If data are abundant,

the curve formed by joining the ‘lx’s – the projected percentages still alive at

the end of each year– by straight lines will be relatively smooth. But what

if we had fewer data, and wish to calculate a smooth survival curve [S(t)]

from a smooth incidence density curve ID(t), such as the one displayed in

Figure 1? Or what if we wish to convert an incidence density of 0.0975 (first)

percutaneous injuries per month —assumed constant over a 12-month risk

period, into a 12-month cumulative incidence (proportion-type) rate or risk?

Chiang (1984, p198) tells us that the equation that converts a smooth

ID(t) function into a risk “has been known to students of the lifetable for

more than two hundred years. Unfortunately, it has not received much atten-

tion from investigators in statistics, although various forms of this equation

have appeared in diverse areas of research”.

The coverage of this equation in the modern epidemiology era begins with

Miettienen 1976. His worked example addressed the 30 year risk of bladder

cancer for a 50 year old man, and Miettinen’s calculations assumed that
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“without bladder cancer he would survive that period.” Since our exam-

ple addresses the 20 year risk of death – from any cause – for 39.25, 59.25

and 79.25 year old persons, competing risks are not relevant. Thus, the for-

mula given by Miettinen can be used without qualification: the cumulative

incidence-rate (CIR) for the age span a′ to a′′ is (in his notation, but with

his IDa changed to ID(a)),

CIRa′,a′′ = 1− exp

[
−
∫ a′′

a′
ID(a)da

]

Miettinen gave, without commentary, the source for this equation as Chi-

ang (1968). In his 1985 textbook, Miettinen again describes “the direct [al-

gebraic] relation between incidence density (ID) and [the conceptual] cohort

(cumulative) incidence (CI).

Specifically, incidence density determines for a cohort (defined

at T = t0) the proportion which in the absence of attrition ex-

periences the event before some common, quantitatively defined

subsequent point in the time (T = t1). With IDt the ID at

T = t, the CI for the interval t0 to t1 is (Chiang, 1968, Miettinen

1976a)

CIt0,t1 = 1− exp

[
−
∫ t1

t0

(IDt)dt

]
.

As he had done in 1976, he also gave the version where the integral is replaced

by a finite sum, but provided no insight into the ‘anatomy’ of either the
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continuous or the step-function version.

Rothman (1986, pp 29-31) defines cumulative incidence, as “the propor-

tion of a fixed population that becomes diseased in a stated period of time.”

He tells us that “it is possible to derive estimates of cumulative incidence from

incidence rate.” – again with the proviso that “there are no competing risks

of death,” and provides the mathematical formula that links cumulative inci-

dence with the integral of the incidence rate function. Several epidemiologic

textbooks since then have provided this mathematical expression, However,

of the 15 modern texts JH has examined, only Rothman’s 1986 textbook

mathematically derives the relationship. Unfortunately, the formal geomet-

ric and calculus-based derivation it uses2 does not provide any insight into

‘why’ or ‘how’ the ‘exp’ function comes into it. Thus, to may epidemiolo-

gists, especially in the absence of any worked examples, it remains a purely

mathematical result.

Rothman’s introductory textbook (2002, pp 33-38) uses heuristic argu-

ments, but does not show the full-blown formula. Instead, it uses two worked

examples. One assumed a mortality rate (incidence density) that remains

constant – at 11 deaths per 1000 P-Y – over a 20-year age span, and, by

proceeding year by year, as in a life-table, produced a cumulative incidence

or risk of 19.7%.3 The other addressed the risk, from birth through age 85, of

2the same one – with S(t) as the solution of a differential equation – typically used in
survival analysis textbooks.

3The 20 year-by-year calculations in the first example (Table 3.2) would not have
been any more complicated had the mortality rate changed from year to year rather than
assumed to remain constant.
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dying from a motor-vehicle injury, assuming no competing causes of death,

and ‘piecewise-constant’ rates of 4.7, 35.9, 20.1, 18.4 and 21.7 deaths per

100,000 person-years in the 5 age spans 0→ 15→ 25→ 45→ 65→ 85. The

product of the 5 interval-specific conditional survival probabilities yielded an

85-year survival probability of 0.984 and thus a 85-year risk of 1.6%

In each example, the textbook used “the simplest formula to convert an

incidence rate to a risk”

Risk = Incidence rate× Time

However, it offered the following cautionary remarks [italics added] :

It is a good habit when applying an equation such as [this] to

check the dimensionality of each expression and make certain

that both sides of the equation are equivalent. In this case, risk

is measured as a proportion and has no dimensions. Although

risk applies for a specific penod of time, the time period is a de-

scriptor for the risk but not part of the measure itself. Risk has

no units of time or any other quantity built in, but is interpreted

as a probability. The right side of [the] equation is the product

of two quantities, one of which is measured in units of the recip-

rocal of time and the other of which is simply time itself. This

product has no dimensionality either, so the equation holds as far

as dimensionality is concerned.
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The text also urges end-users to check the range of the measures. Risk is

“a pure number in the range [0,1]”; the product of incidence rate and time

(both of which have “a range of [0,∞]) can exceed 1.” Thus, “the [above]

equation is not applicable throughout the entire range of values for incidence

rate and time,” it is merely “an approximation that works well as long as

the risk calculated on the left is less than about 20%.”

We second these comments on units. However, rather than present an

approach in which the product of ID and time is sometimes ‘close to the

numerical value of risk’ and sometimes not, we prefer to explain that the

product has the same meaning no matter whether it is large or small, and

that a simple transformation of it will always turn it into a risk (proportion).

Chapter 3 in the 2nd and 3rd editions of Modern Epidemiology (1998,

2008) gives the discrete (i.e., summation) version of this 200-year old formula

and tells us that it is sometimes referred to as the exponential formula. It

is illustrated using a small numerical example. First, the Kaplan-Meier esti-

mator is used to arrive at a 19-year risk of 0.56. The exponential estimator

yields a risk of 0.52, but a reader may wonder which is an approximation to

which.

We now give the product of ID and time (or more generally, the sum

of products, i.e. the integral) in this 200-year old ‘exponential formula’ a

concrete meaning. This in turn will unveil the anatomy of the Nelson-Aalen

estimator.
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2 A different heuristic, inspired by Edmonds

To do so, we will take up Edmonds’ concept of a given number of persons

constantly living. Whereas he was concerned to keep the intervals small (in

fact to use infinitesimal calculus) because he did not want the force to vary

within the interval, ultimately we will consider much wider intervals, such as

20 years, where his assumption of a force continued uniform for that long –

as is the one by Rothman2002 – would be unrealistic.

2.1 Less complex: constant-in-time ID

We begin with a simpler shorter-term example, in which we wish to convert

an incidence density of 0.0975 (first) percutaneous injuries per month —

assumed constant4 over a span of 12 months – into a 12-month cumulative

incidence (proportion-type) rate or risk.

As Edmonds did, we assume that the ‘given number of interns’ is one

(1). We ask readers to imagine a ‘chain’, starting at t′ = 0 and extending

for 12 months until t′′ = 12. The chain is begun with a randomly selected

intern. That intern continues until he/she either reaches 12 months or is

injured before then. If the latter, and if the intern is first injured at say

age t, he/she is immediately replaced by a a randomly selected never-injured

intern. The chain proceeds, ‘with further replacements as needed,’ until it

reaches t′′ = 12. Throughout, there is 1 candidate, constituting a dynamic

4Data from Ayas et al. 2006. We treat an intern-year as 3000 working hours, so that
the ID= 0.00039 h−1.
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Figure 1: An average of 1.17 transitions (percutaneous injuries) in 1 intern-year (I-Y) of experience

(117 in 100 I-Y), so that ID = 1.17 year−1. 100 ‘chains’ start at t = 0; each continues for 12 months,

each using as many replacements (Gen. 1, 2, . . . ) as necessary to complete the chain. The different

shaded areas represent the population-time for generations 0, 1, . . . . The proportion of chains that are

completed using the initial (Gen. 0) intern is exp[−1.17] = 0.31, i.e., 31%, so the 1-year risk is 100% -

31% = 69%. The proportion of chains in which, by time t, the initial (Gen. 0) intern has been replaced,

i.e., the cumulative incidence rate up to time t, is 1 − exp[−ID × t] = 1 − exp[−(integral up to time t)]

The straight line (the product of ID and time, scaled up by 100) involves a constant number of candidates

at each time point, and thus overestimates the cumulative incidence rate – substantially so as generation

0 is replaced.
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population with a constant membership of 1.5

The number of replacements required is a random variable, with possible

values 0, 1, 2, . . . . Its expected value (mean) is µ = 0.0975 m−1 × 12 m =

0.00039 h−1×3000 h = 1.17 first injuries. Readers will recognize µ as integral

of the ID(t) function over the 12-month age-span. The probability that the

chain is completed by the same intern who initiated it is the probability that

0 replacements are required. The probability that it is not is the complement

of this ‘survival’ probability. Since the number of replacements (transitions,

first injuries) in the 12 months is a Poisson random variable.6, we can first

calculate the probability that the chain is completed by the same intern

who initiated it as the Poisson probability of observing 0 events when 1.17

events are expected, i.e., as exp[−1.17] = exp
[
−
∫ t′′

t′
ID(t)dt

]
= 0.31. The

probability that the initial intern fails to complete the chain, i.e., is injured

before the 12 month period ends is 1−exp
[
−
∫ t′′

t′
ID(t)dt

]
= 1−0.31 = 0.69.

Thus the 12-month risk of injury is 69%.

Fig 3, modeled on Fig 1 in Miettinen 1976, shows the expected values

for 100 separate such chains, and illustrates why the product of ID and time

(the 1.17, the integral) is not a risk per se, but rather an expected number

of events (transitions, turnovers, injuries) in a dynamic population of size

5Another realistic ‘chain’ might be the experience, over a period a′′−a′, of a computer-
server formed from a pool of exchangeable computers, all of the same age at time a′: if
the computer currently acting as the server fails, it is immediately replaced by another
from the pool of computers still operating.

6Thus, it takes an average of 2.17 interns to provide the 1 intern-year of experience
(in the computer- and other mission-critical examples, the years of experience – service –
would be called ’up-time’.)
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1. To accumulate 100 intern-years of service, an average of 217 interns is

required. Of the 100 who initiated the chains (the average service of these

100, whom we might call ‘generation 0’, is 0.596 P-Y per intern) 31 complete

them and 69 do not. Thus, the 12-month risk is 69%. On average, of their

69 replacements (generation 1), 36 complete the chains and 33 do not; and

so on, so that in all – over the initial and replacement generations, totaling

100 P-Y – 117 do not and 100 do.

The proportion of chains in which, by time t, the initial (Gen. 0) in-

tern has been replaced, i.e., the cumulative incidence rate up to time t, is

1− exp[−ID × t] = 1− exp[−(integral up to time t)] The straight line (the

product of ID and time, scaled up by 100) involves a constant number of can-

didates at each time point, and thus overestimates the cumulative incidence

rate – substantially so as generation 0 is replaced.

Table 3.2 and Figure 3.3 of Rothman 2002 show a 20-year cumulative

incidence rate, but using an incidence density of 0.011 yr−1, so that the

expected number of transitions in a dynamic population of 1 is 0.011yr−1 ×

1 yr = 0.22. That curve is identical to the first 0.22/0.0975 = 2.3 months of

the curve for the percutaneous injuries.

The expected numbers of ‘cumulative deaths’ column in Rothman’s Table

3.2 can be (and probably were) arrived at using the ‘exponential’ formula

1000× { 1− exp[− 0.011yr−1 × (number of years)] }.
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The quantity 0.011 yr−1 × (number of years) is the integral of the ID func-

tion, i.e., the expected number of transitions, over the number of years in

question.

2.2 More complex: when ID varies over t

We deal now with the 20-year risk of death from any cause for a person aged

a′ = 79.25, based on the – clearly non-constant – ID function shown in Figure

1(A). Again, as Edmonds did, we imagine a 1-person ‘chain’ that starts with

a randomly selected living person aged a′ = 79.25 and extends – with ‘with

further replacements as needed’ – for 20 years until a′′ = 99.25.

The number of replacements (deaths) in the 1-day-wide interval centered

on age t, is a Poisson random variable with expected value ID(t)×(1/365.25).

The sum of 7305 independently distributed daily Poisson random variables,

each with a different expected value, is again a Poisson random variable with

expected value equal to the sum of these daily expected values.7 This sum

– effectively the integral, from 79.25 to 99.25, of the ID function in Figure

1(A) – is µ = 3.22 transitions/replacements/deaths. The sum of a number

of Poisson random variates is again a Poisson variate. Thus, we can first

calculate the probability that the chain is completed by the same person

7This (‘closed under addition’) property of the Poisson distribution is well known to
statisticians, but seldom exploited. Indeed, most epidemiologists – and many statisticians
– insist that a Poisson random variate can only arise from single ‘homogeneous’ process.
Yet, they – correctly – used the sum of observed numbers of cases over different age strata
with very different incidence densities, as a Poisson random variate. In doing so, they are
implicitly using the ‘closed under addition’ property of the Poisson distribution.
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who initiated it, as the Poisson probability of observing 0 events when 3.22

events are expected, i.e., as exp[−3.22] = exp
[
−
∫ 99.25

79.25
ID(t)dt

]
= 0.04. The

20-year risk is the complement of this, namely 1 - 0.04 = 0.96, or 96%. The

full risk curve is shown in Fig 1(B).

To obtain the 20-year risk for a person aged 59.25, we calculate 1 minus

the Poisson probability of observing 0 events when 0.47 events are expected,

i.e., 1 − exp[−0.47] = 0.37. The 40-year risk for a person aged 59.25 is 1

minus the Poisson probability of observing 0 events when 3.22+0.47 = 3.59

events are expected, i.e., 1− exp[−3.69] = 0.98, or 98%.

In Rothman’s 2002 example on the risk of dying of a motor-vehicle injury,

the expected number of such deaths in a continuous 1-person chain (dynamic

population) is

4.7

105Y
× 15Y +

35.9

105Y
× 10Y +

20.

105Y
× 20Y +

18.4

105Y
× 20Y +

21.7

105Y
× 20Y = 0.016335.

and so we arrive at the 85-year risk of 1 − exp[−0.016335] = 0.016 or 1.6%

with even fewer calculation steps that using the method he employed.8

3 Approximation to CI

From the expected value of 0.09 in Figure 1, the 20-year (all-cause mortality)

risk for a person aged 39.25 is 1−exp[−0.09] = 0.086 or 8.6%. This example,

8Although it is small enough to be a probability, the 0.016335 is not a probability per
se. Rather, it is the expected number of deaths from injury if 1 person (not necessarily
the same one) was constantly living’.
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and the one involving the expected value of 0.016335, are a reflection of the

fact that, with a small expected value (E), so that exp[−E] ≈ E,

Riska′,a′′ ≈ Expected no. (E) of events in (a′, a′′) span, if E is small.

The 1 − exp[−E] function can be closely approximated by E over the

range E = 0 to E = 0.1, but this approximation becomes less accurate

thereafter, as is shown by the following table9

Expected no. of events, E: 0.02 0.05 0.10 0.20 0.30 0.50 1.00

Risk = (1− exp[−E]) : 0.0198 0.049 0.095 0.181 0.259 0.393 0.632

% by which E overestimates Risk: 1 3 5 10 16 27 58

The percentage over-estimation by using Riskapprox = E, rather than the

exact expression Riskexact = 1− exp[−E], is close to 50×E. Large values of

E can arise from a low event rate operating over a longer time-interval, (e.g.,

0.47 from mortality rates in the 20 year age span 59.25 to 79.25) or higher

ones over a shorter one (e.g. 0.37 from mortality rates in the 1 year age span

99.25 to 100.25).

9Miettinen1976 merely states that “when the cumulative incidence-rate is small, say
less than 10 per cent, it may be reasonably approximated by” this expected number;
Rothman1986 explains: “because ex ≈ 1 + x for |x| less than about 0.1, it is a good
approximation for a small cumulative incidence (less than 0.1). All of the textbooks that
present the exponential formula caution about the limited range (some say E ≤ 0.1, some
E ≤ 0.2) in which the approximation works.
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4 The Nelson-Aalen estimator

The Nelson-Aalen estimator of the survival function (see Collett, 2003) has

still to find its way into epidemiology texts. It is usually presented as an ‘al-

ternative to’ the Kaplan-Meier estimate. It is now included in most software

packages and is increasingly found in the medical literature. It requires few

mathematical operations than the Kaplan-Meier estimator. However, the

most commonly presented heuristics – – that the Kaplan-Meier estimator is

an ‘approximation to’ the Nelson-Aalen one – do not give the full story, or

explain why the Nelson-Aalen one is a natural estimator.

Both estimators are calculated for survival data that have been reduced

to J very narrow event-containing sub-intervals of the full [0, t] interval of

interest. Interval j is defined by distinct event-time tj. Intervals in [0, t] that

don’t contain events are ignored.10 The jth riskset is the set the ‘candidates’

(nj in all) just before the event(s) in interval j. Some sj ‘survive’ event-

containing interval j, while the remaining dj do not.

In the Kaplan-Meier Product Limit Estimator, each of the J empirical

conditional probabilities s1/n1, . . . , sJ/nJ is treated as a surviving fraction

of the previous fraction, and so, ultimately, the estimator is simply the overall

product of these:

Ŝ(t)KM =
s1

n1

× · · · × sJ
nJ

=
∏
j

sj
nj

=
∏
j

{
1− dj

nj

}
10Intervals with no events contribute multipliers of 1 to the product.
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The Nelson-Aalen Estimator is often merely presented, without justifica-

tion, as

Ŝ(t)NA = exp
{
−
∑
j

dj
nj

}
,

Curiously, sometimes, it is justified by the statement that “the Kaplan-Meier

Product Limit Estimator is an approximation to it.” This approximation

holds true when each dj/nj is small, so that 1 − dj/nj ≈ exp[−dj/nj], and

so that

Ŝ(t)KM =
∏
j

{
1− dj

nj

}
≈
∏
j

{
exp

[
− dj
nj

]}
= exp

{
−
∑
j

dj
nj

}
= Ŝ(t)NA

But the Nelson-Aalen Estimator of the survival function can also be

thought of as the Poisson probability of 0 events when E are expected.

This probability is exp[−E], where E is the number of events that would

be expected if a certain ÎD function i.e., a certain fitted force of morbid-

ity/mortality function, were applied to a dynamic population with a constant

membership of one (“one person constantly living”), over the time-span (0, t).

As above, E =
∫ u=t

u=0
ÎD(u)du. This rectangular wave function takes on J pos-

itive values ÎD1 to ÎDJ inside the J small event-containing intervals, and

the value ÎD(t) = 0 everywhere outside of these intervals If the width of

interval j is ∆t, then for all values of u within interval j, the fitted ID is
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ÎD(u) =
dj

nj×∆t
. Thus, the overall integral is a sum of J non-zero integrals:

E =
∑
j

{∫
ÎDj(u)du

}
=
∑
j

{
dj

nj ×∆t
×∆t

}
=
∑
j

{
dj
nj

}
.

Fig 4 illustrates the heuristics using data on the frequency of IUD discon-

tinuation because of bleeding (Collet, p5). The fitted number of transitions

(discontinuations),
∑9

1(dj/nj) = 1.25, is the number of transitions we would

expect in a dynamic population of size 1 followed for 107 weeks. This fitted

number is obtained by scaling the observed population-time so that there is

always 1 candidate, and scaling the numbers of transitions accordingly. The

107-week risk is therefore 1− exp[−1.25] = 71%.

4.1 Terminology

The Nelson-Aalen estimator is increasingly used, but unfortunately, it has

led to some confusion. This stems from the fact that the expected number

of events in a 1-person dynamic population is sometimes close to the risk,

and sometimes not, and that descriptions are not always clear as to which

of these two numbers is being reported. Statisticians tend to refer to the

expected number of events, i.e., the sum of products or integral, as the ‘inte-

grated hazard’ or the ‘cumulative hazard’. These terms should not confuse,

but – as Rothman et. al (1998, 2008) lament – the term “cumulative inci-

dence” certainly could. To avoid just this possibility, throughout I have used

Miettinen’s term “cumulative incidence rate”, but also tried to ensure that
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Figure 2: Heuristics for Nelson-Aalen Estimator, using data on IUD dis-
continuation because of bleeding (Collet, p5). 18 women began using an
intrauterine device (IUD) for contraception, and were followed until the end
of the study (entry was staggered) or until they discontinued it for unre-
lated reasons (total: 9 instances, treated as censored onservations), or until
they discontinued it because of bleeding ( 9 instances). The upper panel
shows the actual population-time using the function N(t), i.e., the number
of candidates at time t, and the timing of the 9 transitions. The lower panel
shows the population-time scaled so as to always have one candidate, and
the numbers of transitions scaled accordingly. Using the incidence density
pattern in the top panel, we would expect

∑9
1(dj/nj) = 1.246 transitions in

a dynamic population of size 1 followed for 107 weeks. Thus, the probability
that a person who begins using an IUD at t = 0 will have discontinued it by
t = 107 is 1− exp[1.25] = 0.71, or 71%.
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readers know when I use the word “rate” in the ‘proportion’ sense.11 Stata

software can calculate and plot the “the Nelson-Aalen cumulative hazard”.

As the user can verify using a dataset with a large expected number of cases

(transitions) (e.g., the IUD one), what is indeed produced and plotted is an

increasing (cumulative) set of expected numbers – each one a sum of products

(an integral). Thus, they are not risks. But as Rothman 2002 and several

others explain, the expected number will, in low-expected number situations,

give a reasonable approximation to the risk. In such circumstances, the cu-

mulative hazard will not greatly overstate the risk. However, it will do so

when the expected number is high enough. Unfortunately, in the intermedi-

ate range where it is above say 0.1 but does not exceed unity, the user may

not recognize that it is not a risk.

5 Recommended practice and terminology

So what should users do? First, we live in an age when everyone has ready

access to the exponential function: it is even available on pocket calculators

and smart phones. So, unless we are in extreme and unusual situations where

we are forced to do the computations – division to get ID’s, and multiplication

and addition to get the expected numbers (integrals) – by hand, and cannot

remember the series for exp[−x]12 we should always convert the expected

11I agree with Miettinen that epidemiologists do not have the right to proscribe use of
the word rate to describe a proportion, when the word is widely used this way in common
parlance; or to to restrict its use to a (time-based) transition rate.

12exp[−x] = 1− x + x2/2− x3/6 . . . .
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numbers (the E’s) into risks, using the exact formula 1− exp[−E]. We have

to compute E anyway, so the conversion to risk is only a small additional

step.

Second, we should follow the advice of experts, and plot risk curves rather

than survival curves (Pocock et al. 2002). They recommend should plots go

‘up, not down’.

Third, if need be, we should either ourselves use the ‘exponential equation’

to convert the “the Nelson-Aalen” cumulative hazard values from Stata into

risk values, or prevail on the Stata developers to make this an option.

Fourth, now that we know they are conceptually different – even if some-

times they have close to the same numerical value – we should not – as some

have done – label the vertical axis the “Nelson-Aalen cumulative hazard” but

entitle the figure the “Cumulative Risk of Death from Cancer.”

Last, should we consider avoiding altogether the words cumulative inci-

dence, or cumulative incidence rate, or cumulative incidence proportion, and

instead simply use the word risk? I can think of two reasons to do so. One,

it is the term used when referring to the output of ‘risk-prediction’ equa-

tions. There is no confusion when we see the words “Risk Assessment Tool

for Estimating Your 10-year Risk of Having a Heart Attack13. Two, even

though Miettinen teaches that (a) the cumulative incidence rate (or cumu-

lative incidence proportion) is a population concept, and that (b) risk refers

to the probability for an individual, in the end we use (a) as an estimate of

13http://hp2010.nhlbihin.net/atpiii/calculator.asp
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(b). So, why not just use (b) directly and avoid (a)? Doing so might not

be terminologically correct, but the amount of confusion that it would avoid

might be worth it, and it would be unlikely to do much damage. It would also

be good to reduce the use of the confusing word ‘cumulative’. In a ‘t-year

risk’ curve, plotted against t, the word ‘cumulative’ is probably redundant.

And in a ‘t-year cumulative survival’ curve (a common default wording in

software packages), the word ‘cumulative’ is an oxymoron – survival curves

(the estimated proportions/percentages still in the initial state) go down; it

is the transitions (from the initial state) that are cumulated.
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