Appendix to Hanley and McNeil Radiology paper "A Method of Comparing the Areas under ROC curves derived from same cases."

PS (JH 2002.09.17): This was a first (? rough) step in the early 1980's. The method of *DeLong ER*, *DeLong DM*, *Clarke-Pearson DL Comparing the areas under two or more correlated receiver* operating characteristic curves: a nonparametric approach. Biometrics. 1988 Sep;44(3):837-45 is more elegant and less parametric. They implemented it using a SAS macro. The paper by Hanley JA, Hajian-Tilaki KO. Sampling variability of nonparametric estimates of the areas under receiver operating characteristic curves: an update. Acad Radiol. 1997 Jan;4(1):49-58 shows how to implement the DeLong et al. method by spreadsheet (or by a simple SAS program available on the website http://www.epi.mcgill.ca/hanley/)

Appendix

Calculation of r

Let Arêa_x and Arêa_y represent estimates of the ROC areas Area_x and Area_y. Then the correlation r between Arêa_x and Arêa_y can be expressed as

$$r = \frac{Cov(Ar\hat{e}a_x, Ar\hat{e}a_y)}{SE(Ar\hat{e}a_x)SE(Ar\hat{e}a_y)}$$

(1)

Calculation of Denominator in (1)

From our first paper (4), the variance, or square of the standard error, is given by

$$Var(Arda) = \frac{Area(1 - Area) + (n - 1)(Q_1 + Q_2 - 2 Area^2)}{n^2}$$

where

n = number of abnormals [= number of normals, for simplification]

- Q1 = probability that a randomly chosen abnormal will appear more abnormal than each of two randomly chosen normals
- Q₂ = probability that two randomly chosen abnormals will each appear more abnormal than one randomly chosen normal

The area of the quantities Q_1 and Q_2 can be thought of as follows: let the "degree of abnormality" of a randomly chosen abnormal be represented by

 x_A , with mean μ_A and variance σ_A^2 . Similarly, let the degree of 2^2 abnormality for a randomly chosen normal be X_N , with mean μ_N and variance σ_N^2 . Then the area is the probability that an X_A and an X_N will be correctly ranked i.e.

Area = $Prob(X_A > X_N) = Prob(X_A X_N > 0)$

which is simply the probability that an observation V = $X_A - X_N$ which follows a distribution with mean $\mu_A - \mu_N$ and variance $\sigma_A^2 + \sigma_N^2$ will have a value greater than zero. If X_A and X_N are taken to be Gaussian, then the area equals the proportion of the standardized normal distribution to the left of $(\mu_A - \mu_N)/\sqrt{\sigma_A^2} + \sigma_N^2$.

In order to translate Q_1 and Q_2 into numerical terms, let X_{A1} , X_{A2} , X_{N1} , X_{N2} represent the values for two randomly chosen abnormals and two randomly chosen normals respectively, and again assume that X_A 's and X_N 's follow overlapping Gaussian distributions.

Then

 Q_1 = Probability (X_{A1} > X_{N1} and X_{A1} > X_{N2} ,

which can be calculated instead as

 $Q_1 = Prob(X_{A1} - X_{N1} > 0 \text{ and } X_{A1} - X_{N2} > 0)$.

If we define two new variables

 $V_1 = X_{A1} - X_{N1}$ and $V_2 = X_{A1} - X_{N2}$,

 Q_1 becomes the probability mass in the right upper quadrant of the bivariate (V_1, V_2) Gaussian distribution with means 3

$$\mu_{V_1} = \mu_A - \mu_N \qquad \mu_{V_2} = \mu_A - \mu_N ,$$

variances

$$\sigma_{\Psi_1}^2 = \sigma_A^2 + \sigma_N^2 \quad \sigma_{\Psi_2}^2 = \sigma_A^2 + \sigma_N^2 ,$$

and covariance

$$Cov(V_1, V_2) = \sigma_A^2$$

This quantity Q_1 can be obtained for various values of σ_A^2 , σ_N^2 and Area by IMSL subroutine MDBNOR (9) or other equivalent programs. The quantity Q_2 is obtained in a similar way, being the probability in the right upper quadrant of a bivariate Gaussian distribution with the same means and variances but with covariance σ_N^2 .

Calculation of Numerator in (1)

To do this, we express each area estimate in its equivalent Wilcoxonstatistic formulation.

Area_x =
$$\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \frac{f_{j}}{s_{j}} / n^{2}$$

Arêa_y = $\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \frac{f_{j}}{s_{k,l}} / n^{2}$

where

S^(y) = 1 or 0, according to a similar rule, for the pair of images obtained with modality y.

Then using E as expected value or long run average over many samples,

Cov(Arêa_x, Arêa_y) = E(Arêa_xArêa_y) - E(Arêa_x)E(Arêa_y)

 $= \frac{1}{n^4} \sum_{i=j}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n} E(S^{(x)} S^{(y)}) - Area_x Area_y,$ = 1 [n²0₂ + n(n² - n)0_k + n(n² - n)0_k + (n² - n)(n² -

= $\frac{1}{n^4} [n^2 Q_3 + n(n^2 - n)Q_4 + n(n^2 - n)Q_5 + (n^2 - n)(n^2 - n)Area_xAreea_y]$ -Area_xAreay,

where

- Q₃= Probability that a randomly chosen abnormal will be regarded as more abnormal than a randomly selected normal, when each of the two subjects is imaged with each of the two modalities.
- Q₄= Probability that a randomly chosen abnormal will be regarded as more abnormal than a randomly chosen normal when using modality x, and that with modality y a second randomly chosen abnormal will be ranked more abnormal than the same randomly chosen normal.
- Q5= The reverse of Q4, i.e. with one randomly chosen abnormal and two randomly chosen normals.

The quantities Q_3 to Q_5 are calculated in a manner somewhat similar to that used for Q_1 and Q_2 . As illustration, to calculate Q_4 , let (X_{A_1}, X_{N_1}) represent the degrees of abnormality in a randomly chosen (abnormal, normal) pair of subjects imaged with modality x. Let (Y_{A_2}, Y_{N_1}) represent the degree of abnormality seen when the same normal and a second abnormal are imaged with modality y. Then

 $Q_4 = Prob(V_1 = X_{A_1} - N_1 > 0 \text{ and } V_2 = Y_{N_2} - Y_{N_1} > 0)$

Let the X's and Y's have Gaussian distributions as before, let the (X_N, Y_N) pair, corresponding to a single normal imaged by both modalities, have a correlation of ρ_N , and assume that their bivariate distribution is in fact bivariate Gaussian. Similarly, assume that the pair of observations (X_A, Y_A) for a single randomly selected abnormal have a bivariate Gaussian distribution, with correlation coefficient ρ_A . Then Q₄ becomes the probability in the right upper quadrant of the (V_1, V_2) bivariate Gaussian distribution with

$$\begin{split} \mu_{\nabla_1} &= \mu_{A_X} - \mu_{N_X} & \mu_{\nabla_2} = \mu_{A_y} - \mu_{N_y} \\ \sigma_{\nabla_1}^2 &= \sigma_{A_X}^2 + \sigma_{N_X}^2 & \sigma_{\nabla_2}^2 = \sigma_{A_y}^2 + \sigma_{N_y}^2 \end{split}$$

Covariance $(V_1, V_2) = Cov(X_N, Y_N) = \rho_N \sigma_{Nx} \sigma_{Ny}$ and can be obtained by subroutine MDBNOR.

For Q_3 and Q_5 , the correspondingly defined (V_1 , V_2) pairs will have bivariate distributions with obvious means and variances and with

6

 $\begin{aligned} &\text{Cov}(\mathbb{V}_1, \mathbb{V}_2) = \rho_A \sigma_{Ax} \sigma_{Ay} + \rho_N \sigma_{Nx} \sigma_{Ny} \\ &\text{in the case of } \mathbb{Q}_3, \text{ and} \\ &\text{Cov}(\mathbb{V}_1, \mathbb{V}_2) = \rho_N \sigma_{Ax} \sigma_{Ay} \\ &\text{in the case of } \mathbb{Q}_5. \end{aligned}$