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a b s t r a c t

This article describes how, in the high-level software packages used by non-statisticians,

approximate non-parametric bootstrap samples can be created and analyzed without phys-

ically creating new data sets, or resorting to complex programming. The comparable per-

formance of this shortcut method, which uses Poisson rather than multinomial frequencies
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for the numbers of copies of each observation, is demonstrated theoretically by evaluating

the bootstrap variance in an example where the classic estimator of the sampling variance

of the statistic of interest has a known closed form. For sample sizes of 50 or more, boot-

strap standard errors obtained by this shortcut method exceeded those obtained by the

standard version by less than 1%. The proposed method is also evaluated in two worked

examples, involving statistics whose sampling distribution is more complex. The second

of these is also used to illustrate when one can and cannot use non-parametric bootstrap

samples.

© 2006 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The bootstrap method [1,2], is now widely used by statisti-
cians. It employs re-sampling, rather than closed-form expres-
sions derived from statistical theory, to estimate the sampling
distribution of a statistical estimator, and to derive p-values
and confidence intervals. The principle is straightforward, and
very appealing. In the non-parametric version, the actual data
set, containing n observations, is used to create a number (B)
of perturbed data sets (‘bootstrap samples’) of size n, and the
estimator in question is applied to each one; the variation
among these B estimators is then used to describe its sam-
pling variation. In the non-parametric version, the bootstrap
sample consists of copies of the actual observations. In the
parametric version, the bootstrap samples are generated from
the parametrically-specified distribution that is assumed to
have given rise to the original sample; the parameter values
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used to specify this distribution are estimated from the actual
observations.

In practice, even the simpler non-parametric bootstrap
technique is out of the reach of most non-statisticians—unless
they have ready access to a statistician who is comfortable us-
ing the general bootstrap tools available in statistical packages
such as S-Plus and R. Non-statisticians tend to use higher-
level statistical packages such as Stata, SAS, and SPSS. These
packages only have bootstrap inference tools available for a
limited number of procedures. Of the three, Stata appears to
have the broadest built-in implementation. There is just one
specific implementation (‘MULTTEST’) in SAS, although with
some programming ingenuity, it can be used for other ap-
plications. For both SAS and SPSS, end-users tend to rely on
user-supplied macros, each one for a specific statistic, avail-
able from web pages of vendors, or user groups, or individuals
located via an internet search. Of course, the more enterpris-
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ing end-users can modify a program, or macro, written for
another estimator, to suit the one in question.

Interestingly, some authors, e.g. [3], have developed sep-
arate ‘front-ends’ to generate non-parametric bootstrap sam-
ples, supply each sample in turn to a specific ‘stand-alone’ sta-
tistical procedure, collect the parameter estimates, and sum-
marize their distribution to calculate a bootstrap standard er-
ror or confidence interval. The aim was to “obviate the need
for expensive, high-end statistical packages and associated
script files written using in-built programming languages”.
Their method can be adapted to other statistical procedures
used in biomedical modeling applications. Others, e.g. [4] have
focused on a specific high-end statistical package and taken
advantage of the fact that it has bootstrapping built into one
specific routine. Hutson [5], although dealing with the specific
problem of correlated (repeated measures) data, uses a data
set of size n = 4 to explain how to create bootstrap samples
for any statistical procedure. The key to his approach is to
determine the (multinomial) number of copies of each orig-
inal observation to place in a particular bootstrap sample. He
shows how a random number function which generates real-
izations from different binomial distributions can be used to
achieve this.

2. Background

This sample can be analyzed directly using the actual data set,
but with these ‘numbers of copies’ (2, 0, 1, . . .) used as frequen-
cies in the FREQ statement (or ‘weights’ in Stata, or in SPSS).
Thus, rather than create B new data sets of size n × p, one can
append the B sets/columns of frequencies—as B new variables,
say freq1 . . . freqB—to the actual data set, thereby creating a
new data set of size n × (p + B). A simple macro can then be
used to run the PROC in question B times, using each ‘freq’
variable in turn as the FREQ variable.

For a particular bootstrap sample, the challenge is how to
generate a random frequency (‘number of copies’) to append
to the ith observation in the actual data set. Technically, the set
of n frequencies follows a multinomial distribution in which
there are n independent ‘trials’, each with n outcome cate-
gories, and category probabilities (1/n, . . . , 1/n) for each trial
[1, p. 286]. Although they can be generated exactly with some
programming, there is a much simpler shortcut. Even though
it does not yield frequencies that are exactly what is stipu-
lated, we have been sufficiently reassured by preliminary tests
to adopt it for routine use when sample sizes have been large.

In this note, the method is explained, and in a simple situ-
ation amenable to exact calculation, its performance is com-
pared with that of the exact (‘standard’) version. An actual
data set example which Efron and Tibshirani [1] used to illus-
trate the bootstrap algorithm for more complicated situations
is also reworked, and used to compare the standard and pro-
posed methods.
For the past decade or so, one of the authors [JH] has pro-
grammed the non-parametric bootstrap calculations himself.
Although the examples here will use SAS, the technique we
describe is more general, and simpler. When the data set
is small, the simplest approach is to create one larger data
set containing B × n observations—with an additional vari-
able (say ‘sample’) to identify each bootstrap sample. Each
bootstrap sample consists of n observations, drawn with re-
placement, from the n actual observations. Then, using the
‘BY sample’ statement, one applies the SAS procedure (PROC)
in question, and saves the relevant parameter estimates from
each of the B bootstrap samples to a file. From this file, with B
estimates, PROC UNIVARIATE can then be used to obtain the
relevant features of the sampling distribution. When the data
set is large, and storage space become an issue, it is more ef-
ficient to use a macro to create a bootstrap data set, run the
PROC on it, append the relevant parameter estimates to a file,
and delete this bootstrap sample before repeating the cycle.
Our impressions of the relative speeds of the two approaches
have been confirmed by the formal evaluation of Novikov [6]
who found that the ‘BY’ approach was 80 times faster than the
macro approach. On occasion, a mix of the two approaches is
helpful: a macro can process k ‘batches’ of data sets; for each
batch, a data set containing size B/k bootstrap samples is cre-
ated, the ‘BY’ approach is used to obtain k estimates, and then
this data set is deleted.

More recently, JH has been using a different system, pro-
vided the PROC in question allows one to use the FREQ state-
ment. It can be explained as follows: let us consider an actual
data set containing n observations and p variables, so that the
data file is of size n × p. Say that a particular bootstrap sam-
ple from this contains two ‘copies’ of actual observation 1, no
‘copy’ of actual observation 2, one of actual observation 3, etc.
If a built-in bootstrap routine only reports standard errors
and confidence limits, without showing the distribution of the
B bootstrap estimates, end-users may not realize that the non-
parametric bootstrap does not always work well, and that the
parametric version may be more accurate. We are unable to
offer omnibus methods for the much more sophisticated sta-
tistical programming needed for the parametric version. How-
ever, we do present a second worked example, where for one
quantity of interest the non-parametric version works well,
but for another, the parametric version is more appropriate.

3. Computational method: performance in
a known situation

Instead of generating n random frequencies from a multino-
mial distribution with n equiprobable categories, and a sample
size of n, one can generate n independent random frequencies
from a Poisson distribution with expectation 1. Whereas in the
standard version, the bootstrap samples are all of size n, this
shortcut results in bootstrap samples of variable size: their ex-
pected size is n, but the S.D. is n1/2.

To see how this affects the performance, consider one of
the simplest of all inference calculations, the estimation of
the sampling variability of the mean, ȳ, of n independently
selected observations, {y1, . . . , yn}, from a distribution with
mean � and variance �2. Denote the multinomial and Poisson
frequencies by {m1, . . . , mn} and {p1, . . . pn}, respectively.

Then, the standard bootstrap estimate is:

ȳ∗ =
∑

yi × mi

n
=

∑
yi × mi∑

mi

,
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whereas the shortcut version, based on the Poisson frequen-
cies, is:

ȳ∗∗ =
∑

yi × pi

n′ =
∑

yi × pi∑
pi

.

Among (i.e. over) all possible bootstrap samples, the variance
of the standard ȳ∗ is:

Var[ȳ∗] = 1
n2

∑∑
yiyj Covar[mi, mj]. (1)

Now, E[mi] = n × (1/n) = 1, Var[mi] = n × (1/n) × (1 − 1/n) =
(n − 1)/n, and Covar[mi, mj] = n × (0 − (1/n) × (1/n)) = −1/n.
Substituting these into (1) yields:

Var[ȳ∗] = 1
n2

∑
y2

i (n − 1)/n −
∑

i

∑
j�=i

yiyj(−1/n).

To simplify matters, without any loss of generality, take
∑

yi =
0, so that ȳ = 0;

∑
(yi − ȳ)2 =

∑
y2

i
and

∑
i

∑
j�=i

yiyj = −
∑

y2
i
.

Furthermore, in the usual notation, let s2 =
∑

(yi − ȳ)2/(n − 1).
Then, the variance in question simplifies to:

Var[ȳ∗] = 1
n2

{(n − 1)/n + 1/n}
∑

y2
i = 1

n2
{1}(n − 1)s2

= n − 1 s2
= n − 1

V̂ar[ȳ], (2)
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bootstrap, is of the order of (100/n)%, for example a 2% over-
estimation of the variance when n = 50, a 1% overestimation
when n = 100 and so on. Indeed, the ratios suggest that:

Var[ȳ∗∗] ≈ {1 + 1/n}Var[ȳ∗] = n + 1
n

n − 1
n

s2

n
= n2 − 1

n2
V̂ar[ȳ] (4)

4. Worked examples

4.1. Example 1. Principal components and a ‘scientific
intelligence quotient’

Efron and Tibshirani [1, Chap. 7] used two examples to il-
lustrate that the simple bootstrap algorithm “can provide
standard errors for very complicated situations”. In the
first of these, they analyze the test scores of n = 88 stu-
dents on five scientific subjects. These data are available at
http://www.epi.mcgill.ca/hanley/software. The focus is on the
structure of these multivariate data, and on the extent to
which the five scores can be collapsed into just one, repre-
senting what the authors term a scientific “intelligence quo-
tient”. The extent to which the five scores represent a single
dimension is usually measured by the proportion of variance
explained by this first principal component. It is calculated as
the ratio of the largest eigenvalue to the total of the eigen-
values, and in this example is 679.2/(679.2 + 199.8 + 102.6 +
n n n

here V̂ar[ȳ] is the classic analytic estimator of the sampling
ariation. Davison and Hinkley [2, p. 22] establish this property
y a more direct argument.

Since n′ =
∑

pi is variable, the overall variation, Var[ȳ∗∗], of
he proposed Poisson-based estimator ȳ∗∗ can be calculated
s:

ar[ȳ∗∗] = Varn′ [E[ȳ∗∗|n′fixed]] + En′ [Var[ȳ∗∗|n′fixed]], (3)

here the inner E and Var are calculated conditionally—over
ll bootstrap samples with n′ fixed—and the outer Var and E

re evaluated using the distribution of n′. With n′ fixed:

n′ [ȳ∗∗|n′fixed] = (1/n′)
∑

yi × E[pi] = (1/n′)
∑

yi × (n′/n)

= (1/n)
∑

yi = ȳ,

o matter the size of n′, and so the first (variance) term in (3)
s zero. With n′ fixed, the approach that led to Eq. (2) allows us
o write the conditional variance as:

[ȳ∗∗|n′fixed] = 1
n′

n − 1
n

s2,

nd so the overall variance of ȳ∗∗ is the expectation of this
uantity over the distribution of n′. Now, by construction, n′

as a Poisson distribution with expectation n. Technically,
t could take on a value of zero, but with the sample sizes
o which this is applied (n > 20), we ignore this very un-
ikely scenario, and compute the expected variance numer-
cally using Prob[n′ = 1] onwards. Fig. 1 shows that the ratio
ar[ȳ∗∗]/Var[ȳ∗] = (1/n) × E[1/n′] is always greater than unity,
ut that the average over-estimation, relative to the standard
83.7 + 31.8) = 0.619. Efron and Tibshirani repeated the calcu-
lation on 200 bootstrap replications drawn from the original 88
subjects, to arrive at a bootstrap standard error of 0.047. More-
over, the histogram of the 200 bootstrap proportions “looked
reasonably normal”, suggesting that the 0.047 can be used to
form a symmetric 95% CI of 0.618 ± 1.96 × 0.047.

The SAS code for the standard bootstrap based on multi-
nomial frequencies of inclusion and for our proposed use
of Poisson frequencies to generate ‘approximate’ bootstrap

Fig. 1 – Ratio of the variance of the proposed bootstrap
estimator to that of the standard bootstrap estimator of the
sampling variability of the mean of n independent
observations, as a function of n. The proposed estimator
uses samples in which the number of times an observation
is included follows a Poisson distribution with mean 1. The
standard bootstrap uses frequencies, which follow a
multinomial distribution with n equiprobable outcome
categories, and n trials.

http://www.epi.mcgill.ca/hanley/software
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Table 1 – Estimates of standard error obtained by the standard (multinomial-based) and the proposed (Poisson-based)
versions of the non-parametric bootstrap, applied to two data sets

Data set/parameter Method 5000 samples 25 batches of 200

Median Inter-quartile range

Efron/PC1a Standard 0.0477 0.0489 0.0455–0.0496
Proposed 0.0480 0.0480 0.0462–0.0502

Miller/�b Standard 1.67 1.69 1.61–1.73
Proposed 1.70 1.68 1.63–1.75

a PC1: first principal component (point estimate 0.619). Data are the test scores of 88 subjects, analyzed by Efron and Tibshirani [1, Table 7.1].
b � is the ratio of mortality rate before, to that after, change-point (point-estimate: 7.82). Data are the survival times of 184 patients post cardiac

transplant [Miller and Halpern, 7].

samples are available online. In this case, the small size of
the data set meant that it was just as practical to create a sin-
gle data set containing all 200 bootstrap data sets as it was to
use a single data set of 88, where each observation had 200
associated frequencies (the former has the advantage that it
does not require a macro).

The user will find that the second significant digit of the
standard error varies with the starting seed used for the ran-
dom number generation. JH (somewhat lazily) uses the same
seven digit odd number, e.g. 5555555 for many of his simu-
lations, and it just so happened that using this initial seed
to create the 200 samples gave a standard error of 0.0475,
very close to that reported by Efron and Tibshirani. A seed of
3333333 gave an estimate of 0.0505. This illustrates that—with
both the standard and proposed methods—the estimate of the
standard error is itself stochastic, and that a larger number of
bootstrap samples is required to produce estimated standard
errors that are stable to two decimal places.

The top half of Table 1 compares the standard errors ob-
tained by the two methods. Since the sample size is n = 88,
the proposed method, as might have been expected, yields
the same stability as the standard one.

4.2. Example 2. Change-point: how long is the
high-risk period after cardiac transplant?

A goal in many survival analyses is to provide clinicians with

fore February 1980 [7,8]. At the time of analysis, 113 of the
patients had died, leaving 71 survival times right-censored.

The maximum likelihood estimators of these parameters
were developed by Yao [9], but only for the case where none
of the observations are censored. Approximate confidence in-
tervals using the likelihood ratio process were constructed by
Loader [10]. For confidence intervals for the change-point �,
Pham and Nguyen [11] showed that the parametric bootstrap
could be used, but that the non-parametric one could not.
In contrast, for confidence intervals for the rate ratio �, Yao’s
work suggested that both the parametric and non-parametric
bootstrap methods would be appropriate—but only if samples
sizes were ‘large enough’. MacGibbon and Groshen [12] ex-
tended Yao’s work and Pham and Nguyen’s results concerning
the parametric bootstrap to data sets that include censored
observations.

Since the focus of this paper is on the non-parametric boot-
strap, we use this change-point estimation problem primarily
to evaluate how well our shortcut Poisson-based method per-
forms in relation to the standard multinomial-based one for
the rate ratio �. And as a by-product, we ask how the official
non-parametric one compares to the parametric one. How-
ever we also use the example to show how the non-parametric
bootstrap (both the standard and our proposed shortcut ver-
sions) can be easily misused to provide misleading results in
the case of the more challenging estimation of the change-
point parameter, �.
brief summaries, which emphasize the important conclusions
and are easy to communicate. Knowing the shapes of mor-
tality and other event-rate functions, for example, can be an
important for the management of patients, the scheduling
of follow-up examinations, and when communicating with
patients and relatives. Although the mortality rate in the
days, months and years following heart transplant probably
changes more gradually and more smoothly over this time, it
may be more useful to present the mortality rate as a simpler
function. A number of authors have used a simple change-
point model for this reason. In this model, the mortality rate
(or ‘hazard’ function) is constant (�1) up until a certain day �,
then changes to a lower constant (�2) beyond �. This ‘change-
point’ parameter �, and the ratio � = �1/�2, which measures
the size of the change in rates, have been the object of a
number of data-analyses. Here we consider the estimation of
these parameters from a classic data set, containing the post-
transplantation survival of the 184 patients who received heart
transplants in the Stanford heart transplantation program be-
The results are shown in Fig. 2. For the ratio parameter, the
smooth distributions of parametric and non-parametric boot-
strap estimates are virtually interchangeable, as are the stan-
dard and proposed versions of the latter (right half of Fig. 2, and
bottom half of Table 1). However, for the change-point param-
eter, the problems with the non-parametric version (even the
standard one) are quite evident in the multimodal and over-
dispersed distributions (left half of Fig. 2). By contrast, the dis-
tribution of the parametric bootstrap estimates is quite regu-
lar, and agrees well with the range estimated by the likelihood-
based one calculated by Loader [10].

5. Discussion

The theoretical calculations show that for sample sizes be-
yond 20, the ‘Poisson frequencies’ shortcut provides very simi-
lar variance estimates to the harder-to-program standard non-
parametric bootstrap estimator. It also performs well in ac-
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Fig. 2 – Frequency distributions of B = 2000 estimates of change-point (�, days after transplant, shown in left column) and
death rate ratio (�, right column) obtained by parametric and non-parametric bootstrap methods {the latter obtained by
using multinomial frequencies—the standard way—and by Poisson frequencies—the shortcut way}.

tual data sets where the estimator has a complex form. Thus,
we expect it also provides similar variance estimates for even
more complex estimators.

Although Efron and Tibshirani—in problem 7.4 [1, p. 84]—
ask the reader to calculate the Poisson approximation for the
multinomial probability that any particular observation oc-
curs exactly k times in a bootstrap sample, they do not exploit
this approximation. We used this approximation in cell occu-
pancy problems [13,14] but it also applies to the present ‘num-
bers of copies’ situation. While Davison and Hinkley never
mention the Poisson distribution, their Table 2.2 [2, p. 23] does
present the multinomial frequencies (in a simple example
where n = 10) in a way that suggests the Poisson approxima-
tion for larger sample sizes.

Despite this, our search of the literature did not find any
description or evaluation of the ‘Poisson’ shortcut described
here. However, using keywords Poisson and bootstrap, we did
find a description of a sequential bootstrap based on the Pois-

son distribution [15]. The authors’ main objective was to cre-
ate bootstrap samples, of variable size, in which there are
always m = n(1 − e−1) = 0.632 × n distinct observations. To do
this, they use what they call a “Poisson bootstrap” approach,
in which a set of independent Poisson frequencies, such as we
have proposed, is used only if exactly m of these frequencies
are non-zero; otherwise the sample of frequencies is rejected,
and a new set of n independent Poisson frequencies is drawn.
In previous work [16] they had shown that this sequential ap-
proach to resampling gave results which were within a dis-
tance O(n−3/4) from those of the usual bootstrap.

Although not quite as rigorous, the method proposed here
is much simpler to implement, and does not require knowl-
edge of the sample size, n, in order to generate the frequen-
cies. This same approach has been used in online bootstrap
aggregating (‘bagging’) in which a random number (0, 1, 2, . . .)
of copies of each arriving observation needs to be generated as
the observations appear, i.e. one by one, rather than in batch
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once all of the observations have arrived [17,18]. In all of our
applications, the entire set of n observations is already avail-
able, but they enter the SAS data set one by one, and so it is
easier to generate B independent Poisson frequencies for each
one, without having to consider the frequencies for the other
observations.

We did find one other work, [19] where this simpler ap-
proach was used. These authors note that for a fixed bootstrap
sample of size n, the distribution of the inclusion frequencies
(what we call {m1 . . . mn}) is multinomial, but state that “it is
simpler (and does not make a big difference—when n is suffi-
ciently large)” if one works with a Poisson distribution for the
size of the bootstrap sample, with n as the “mean number of
data points in the sample”. It was not clear whether this state-
ment applied only to their theoretical calculations, or to the
use of bootstrapping in practice.

The main purpose of this note is to convey a practical ap-
proach for end-users, particularly those who do their work
in SAS or SPSS. In writing it, we discovered mainly theoreti-
cal research, spread out in some disconnected disciplines. We
also came upon some very intuitive approaches, such as the
Bayesian bootstrap [20] that sadly have not yet been exploited
in statistical software for end-users.

Lastly, we do caution that there are some situations where
the non-parametric bootstrap does badly. Inferences using the
bootstrap are sensitive to model assumptions as illustrated by
our change-point example and by Rubin’s Bayesian bootstrap

Supplementary Material: SAS code

The supplementary material, in the form of SAS code,
can be found, in the online version, at http://www.epi.
mcgill.ca/hanley/software.
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