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theory of counting processes, Fleming and Harrington (1991) and Thernei
and Grambsch (2000) show how different types of residual can be used, an
give detailed practical examples. Two other types of residual, introduced by
Nardi and Schemper (1999), are particularly suitable for the detection of out
lying survival times.

Influence diagnostics for the Cox regression model have been considered by
many authors, but the major papers are those of Cain and Lange (1984}, Rel
and Crépeau (1985), Storer and Crowley (1985), Pettitt and Bin Daud {1954
and Weissfeld (1990), Pettitt and Bin Daud (1990) show how time-dependence
in the Cox proportional hazards model can be detected by smoothing the
Schoenleld residuals. The LOWESS smoother was introduced by Clevelaw!
(1979), and the algorithm is also presented in Collett (2003).

Yome other graphical methods for evaluating survival models, not mon
tioned in this chapter, have been propesed by Cox (1979) and Axjas (1954
Gray {1990) describes the use of smoothed estimates of cumnlative hazan|
functions In evaluating the fit of a Cox model.

Muoist of the diagnostic procedures presented in this chapter rely on an inlor
mal evaluation of tabular ar graphical presentations of particular statistics. i
addition to these procedures, & variety of significance tests have heen praponed
that ean be used to asses the goodness of fit of the model. Examples includy
the methods of Schoenfeld (1980), Andersen (1982), Nagelkerke ef al (1U51],
Ciampi and Etezadi-Amoli (1985), Moreau ef al. {1983), Gill ane Sehumachio
{1987}, O'Quigley and Pessione (1980), Quantin et al. (1996}, Gronnesby anil
Borgan (1996), and Verweij ef al, (1998). Reviews of some of these goodnea of
fit tests for the Cox regression model are included in Lin and Wei (1991 anil
Quantin et al. (1996). Many of these test involve statistics that are quite com
plicated, and the procedures are not widely in computer software for survivil
analvsis, A more simple procedure for evaluating the overall fit of a mtlel Tuw
been proposed by May and Hosmer [1998).

Dauid Lolbett .

CHAPTER 5

Parametric proportional hazards
models

When the Cox regression model is used in the analysis of survival data, there
|w no need to assume a particular form of probability distribution for the sur-
wival times. As a result, the hazard function is not restricted to a specific
unetional form, and the model has Hexibility and widespread applicability.
i the other hand, if the assumption of a particular probability distribution
Mot the data is valid, inferences based om such an assumption will be more pre-
e, In particular, estimates of guantities such as relative hazards and medizan
survival times will fend to have smaller standard errors than they would in
Ahe shgence of a distribufional assumption. Models in which a specific proba-
hility distribution is assumed for the survival times are known as paremetric
nodeds, and parametric versions of the proportional hazards model, described
i ('hapter 3, are the subject of this chapter,
A probability distribution that plays a central role in the analyvsis of survival
dloatn is the Weibull distribution, introduced by W. Weibull in 1951 in the
bt of industrial reliability testing, Indeed, this distribution is as central to
(e parametric analysis of survival data as the normal distribution is in linear
Anudelling. Proportional hazards models based on the Weibull distribution are
Vweliore considered in some detail,

B 1 Models for the hazard funection

Wpee o distributional model for survival times has been specified in terms of a
probnhility density function, the corresponding survivor and hazard functions
wnn ke obtained {rom che relations

5(::):1/0 A (5.1)
il
) = Zi0) = - 5 {08 S0} (5.2

where f(t) is Lthe probability density function of the survival times. These
Felntlonehips were devived in Section 1.3 An alternative approach is to specily
B lunctomal form Tor Che Tivaned funetion, from which the survivor function
Al prabalality denady Tynetona ean be determbned from thie reqnutinnﬂ

NH) = osp [ - H(DT, {h3)

" 0(13 { ¢ r‘r\_f,] S‘:‘.{rvrw\/f Dol,‘?[ﬂ u; Hredecal &MA
R10ed. 2eos,
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and
) = h)S(O =~ 2, (5.9
where .
H(t) = ]0 h{w) du

is the integrated hazard fumetion.

5.1 The exponential distribution

The simplest model for the hazard function is to assume that it is constand
over time. The hazard of death at any time after the fime origin of the study is
then the same, irrespective of the time elapsed. Under this model, the hazard
function may be written as

for 0 <t < oo, The parameter 4 is a positive constant that would be esti-
mated by fitting the model to the observed data. From equation (5.3), the
correaponding gurvivor function is

S(2) =exp{—]0t,\du},

= B_At, (55)
and o the implied probability density function of the survival times is
f{t} iJ"ﬂ_J“q {ﬁ,hfl

for 0 < t < oo. This is the probability density function of a random variable
T that has an erponential distribution with a mean of A-L, 1t is sometimes
convement to write f = A~!, so that the hazard function is u~t, and the
aurvival time distribution has a mean of p. However, the former specification
of the hazard function will generally be used in this book.

The median of the exponential distribution, t(50]), is such that S{t(50)}
0,5, that is,

expl —At(50)} = 0.5,

so that q

More generally, the pth percentile of the survival time distribution is the valuo
t(p) such that S{t(p)}=1—(p/ 100), and using equation (5.5), this is

1 100
Hp) = 5 o8 (100 = p) :

A plot of the hazard function for three values of A, namely 1.0, 0.1 nnd 0401,

is given in Figure 5.1, anel the corresporniding probubility density. funetiong sy
shown in Figure 5.2, For [hewe vidues ol A, i jneonns Gl the corresponding
paponentind distrilmbions i 1, 10 and 100, and (e el gy ivil Ve are

0,04, t 04 mraed 0D, e Il-vgly,
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5.1.8 The Weibull distribution

In practice, the assumption of a constant hazard function, or equivalently
of exponentially distributed survival times, is rarely tenable. A more general
form of hazard function is such that

R(t) = Ant? L, (5.7)

for 0 £t < oo, a function that depends on two parameters A and «, which
are both greater than zero. In the particular case where v = 1, the hazard
funetion takes a constant value A, and the survival times have an exponential
distribution: For other values of 4, the hazard function increases or decreases
monotonically, that is, it does not change direction. The shape of the hazard
function depends eritically on the value of +, and so 7 is known as the shape
parameter, while the parameter ) is a seale paramefer. The general form of
this hazard function for different values of v i3 shown in Figure 5.3.

P i

=
9
o
c
o= y=2
=
[
8
T
- =1
/’ <yl
a

0
Tirme

Figure 5.3 The form of the Weibull hazard function, h(t) = Myt" ", for differon
valkes af 7.

Far this particular choice of hazard function, the survivor function is jven

G{t) = exp {— fl Neyur ! du} = exp(—AM7). {5.4)
The corresponding probability dgnsity funetion is then
Flt) = At L exp(=M"),
for (0 < 1 < oo, which is Che density of o vandion vaclshle thint bos o Wbt
distrabubion with soale parometor 5 sl sligs pagsietor Ihibe st b tion

ekl Toes chomrotesd WES <) Pl edaehit- bomned Gt ool Ok oDt v d bbby b Tonggnn §linas
Choe T Tonnid e, v sy 40 it loadboms e possiiivily sl
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The mean, or expected value, of a random variable 7' that has a W(A,+)
distribution can be shown to be given by

B(T) = A0 +1),
where I'(xr) is the gamma function defined by the integral

_.m
)= f u? e du,
0

The value of this integral is (z— 1)!, and so for integer values of 7 it can easily
be calculated. For non-integer values of T, tables of the gamma function, such
s those in Abramowitz and Stegun (1972), or suitable computer software,
will be needed to compute the mean. However, since the Weiliull distribution
is skewed, a more appropriate, and more tractable, summary of the location
of the distribution is the median survival time. This is the value #(50) such
that S{¢(50)} = 0.5, so that

exp {—A[#(50)]7} = 0.5,

1 L
More generally, the pth percentile of the Weibull distribution, t(p), is such

thik -
) ={ 5106 ()} - 59

The median and other percentiles of the Weibull distribution are therefore
tnuch simpler to compute than the mean of the distribution.

The hazard function and corresponding probability density function for
Weibull distributions with a median of 20, and shape parameters v = 0.5, 1.5
and 3.0, are shown in Figures 54 and 5.5, respectively. The corresponding
villue: of the scale parameter, A, for these three Weibull distributions is 0.15,
ODTE and 0.000087, respectively.

Since the Weibull hazard function can take a variety of forms, depending on
the vilue of the shape parameter, 7, and appropriate summary statistics can
b ensily obtained, this distribution is widely used in the parametric analysis
ol nurvival dats, '

(ol

[ Adwessing the suitability of a parametric model

Pilor to fitting & model based on an assumed parametric form for the hazard
function, o preliminary study of the validity of this assumption should be
dnetiinl out, One approach would be to estimate the hazard function using
Mo methods outhined in Section 2.3, If the hazard function were reasonably
womibant over Ve, Lig woald indicate that the exponential distribution might
oo itk el G el bt Ome the other hand, if the hazard function
Ao o dlecrpmmodl ol onionily wath ineroasing survival time, a model
ool ooy the Wotloadh ibiseeibartion would b indicated
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Figure 5.5 Probability denaity functiona for o Waibull distribution with a madian
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A more informative way of assessing whether a particular distribution for
the survival times is plausible is to compare the survivor function for the
data with that of a chosen model. This is greatly helped by transforming
the survivor function to produce a plot that should give a straight line if the
nssnmed model is appropriste.

Suppose that a single sample of survival data is available, and that & Weibull
distribution for the survival times is contemplated. Since the survivor function
for & Weibull distribution, with scale parameter A and shape parameter 7, is
friven by

H{t) = exp =M},

taking the logarithm of S(t), multiplying by —1, and taking logarithms a
pecond time, gives

log {—log S(t)} = log A + ylogt. (5.10)

We now substitute the Kaplan-Meier estimate of the survivor function, S(t),
for S{t) in equation (5.10). If the Weibull assumption is tenable; S{t) will be
“elose™ to S(t), and & plot of log{ — log §(t)} against log ¢t would then give an
ipproximately straight line. From equation (1.7), the cumulative hazard func-
tion, H(t), is —log S(t) and so log{— log S(t)} is the log-cumulative hazard,
A plot of the values of log{—log S(t)} against logt is a log-cumulative hazard
pilot, introduced in Section 4.4.1 of Chapter 4.

If the log-cumulative hazard plot gives a straight line, the plot can be used
It provide a rough estimate of the two paramieters of the Weibull distribution.
Specifically, from equation (5.10), the intercept and slope of the straight line
will be log A and +, respectively. Thus, the slope of the line in a log-cumulative
linzitrd plot gives an estimate of the shape parameter, and the exponent of the
liitercept provides an estimate of the scale parameter. Note that if the slope
ul the log-cumulative hazard plot is close to unity, the survival times could
liwi: an exponential distribution.

Frample 5.1 Time to discontinuation of the use of an IUD
In Example 2.3, the Kaplan-Meier estimate of the survivor function, S{#),
fur the data on the time to discontinuation of an TUD, was obtained. A log-
vumulative hazard plot for these data, that is, a plot of log{ — log S (1]} against
Iy 1, i shown in Figure 5.6.

T'he plot indicates that there is a straight line relationship between the log-

Uhimulutivie hazard and logt, confirming that the Weibull distribution is an
Wppaprinte model for the discontinuation times. From the graph. the inter-
et of the line is approximately —6.0 and the slope is approximately 1.25.
Appresimnie eatimates of the parameters of the Weibull distribution are there-

fiite A* = exp(—6.0) = 0,002 and v* = 1.25. The estimated value of vy, the
Aliijre parameter of the Weibull distribution, is quite close to unity, suggesting

Hint the discontinnation times might be adequately modelled by an exponen-
il distribution,

Il informal estimates of A and 4 can be used to estimate the parameters
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Figure 5.6 Log-cumulative hnzdrd plot for the diata from Erample 1.1

of the distribution, and hence functions of these estjmg,tﬂ?, such as the me
dian of the survival time distribution, However, this gmr_rh:.ml_' a}:prumh does
not lead to a measure of the precision with which the quanh:mas have besn
estimated. In view of this limitation, a more formal Wy of filting paramelri
models to survival data is developed in the next section,

5.3 Fitting a parametric model o a single sample

Parametric models can be fitted fo an ghserved set of survival d_atn uging Lhe
method of maximum likelihood, cutlined in Section 3.3. ansn{er ﬁn:i Ll
situation where actual survival times have been ubspwe:.i for n Endwl(h:llll.l' ‘
so that there are no censored observations. If the pr_u't?abﬂmf dens«:ty Iﬁmc-l b -nI
of the fandom variable associated with survival time is f{t), the likelihood o
the 1 observations f1,z... ., tx is simply the product

L1
| LS
i=1
Thiis likelihood will be a funetion of the unknown parameters i Ll prcladinliny
density function, and the maximum likelibood estimates of these parnmelers
are those valnes for which the likelihood function i nomaximam. In o et
it 18 menerally more eofvenivnt Lo work with the Tonritlian o Lhie hhln-h!u ol
function. These yalues of the unknawn prnmeiars in Phie ity Fonetwon
thint maximiso the log-lkelihood areob cours ki mie ol Wk arax s
i Tibeebiboodd Tametion el »
W now oomieler tho apore ksl sitisticn whisnw W maevivad distin dnet s
dpe oF wee venmaped auovivel e Hpreuitivally, oo Wit ool the o
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individuals die at times t;,f2,..., 1 and that the survival times of the re-
maining n — r individuals, t],63,...,4_., are right-censored. The r death
times contribute a term of the form

L,
I )
=l
to the overall likelihood function. Naturally, we cannot ignore information
about the survival experience of the n— r individuals for whom a censored
survival time has been recorded. If a survival time is censored at time 1* | say,
we know that the Hfetime of the individual is at least £, and the probability
of this event iz P(T 2 1"), which Is S(¢"). Thus each censored observation
contributes a term of this form to the likelibood of the n observations. The
total likelihood function is therefore

L n—r
[1 760 I sttty (5.11)
i=1 =1

in which the first produet is taken over the r death times and the second over
Lhe vt — ¢ censored survival times,

More compactly, suppose that the dats are regarded as n pairs of abserva-
tipns, where the pair for the #th individual is (f;.8:), 1 = 1, 2,...,n. In this
notation, & is an indicator variable that talkes the value zero when the sur-
vival time t; is censored and unity when #; is an uncensored survival time.
The likelihood funetion can then be written as

[THf@) ™ (s (5.12)
i=1

I'his function, which is equivalent o that in expression (5.11), can then be
tnximised with respect to the unknown parameters in the density and suyr-
vivor funetions. A more eareful derivation of this likelihood function is given in
Appendix B, which shows the relevance of the assumption of non-informative
consoring, mentioned in Seetion 1.1 of Chapter 1.

An ulternative exprssion for the likelihood function can be obtained by
writing expression (5.12) in the form

[ () }"‘
il ) U
'.I=Il { S[ti} |: 'I}
wo that, from equation (1,3) of Chapter 1, this becomes

1

[T tnted™ seu). (5.13)

Il
Thin version of e Welibood Bonotion s partiealacly vsefal when the probabil-
Wy clemmity Tomotiom b o comnpdbonted form, as it often does, Estimates of the
b ganeniedarn ke b Baeetion nee then fooand by msimising
Wb Dosgpai A0 o A0 it ibacd Tt G
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We now consider fitting exponential and Weibull distributions to a single
sample of aurvival data,

5.8.1* Fitting the exponential distribution

Suppose that the survival times of n individuals, 3, f,..- 1y, are asumed
to have an exponential distribution with mean A", Further suppose f.ha.t the
data give the actual death times of v individuals, and that the remaining n— 1
survival times are right-censoved.

For the exponential distribution,

flty=Ae™™, S(t) = g

and on substituting into expression (5.12), the likelihood function for the o
shgervations is given by

£ =L Qe ()™,
i=1

where 8; is zero if the survival time of the ith individual is censored and uniiv
otherwise. After some simplification,

(N =[] A%,

=1

and the corresponding lop-likelihood function is
LF] n
log L(A) = &ilog A — A Yt
=1 i=1

Since the data contain r deaths, 31, & = r and the log-likelihoad function
becomes

log L(A) = rlog A=A ti.
=1

We now need to identify the value L, for which the log-likelihood function @
& maximum. Differentiation with respect to A gives

dlogL(A) 7
———— =)t
dA A ;

and equating the derivative to zero and evaluating il b A pives

A r‘/'\:f‘ (b L)

for Lhe i Dlkelthood satomtor af 8

i

L he gpeendy ol ans exponeiitol i bbb b g LRI T] R TR TS AT
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likelihood estimator of u is

T
H':}'- II;Etl.
=1

This estimator of u is the total time survived by the n individuals in the data
set divided by the number of deaths obeerved. The estimator therefore has
mtuitive appeal as an estimate of the mean lifetime from censored survival
duta.

The standard error of either A or /i can be obtained from the second deriva-
tive of the log-likelihood function, using a result from the theory of maximum
likelihood estimation given in Appendix A. Differentiating log £(A) a second
fime gives

d*logL{})  r
daz
nnd so the asymptotic variance of A is

-1
var (1) = {_E (ﬂ“iugL{,\})} _X

di? r
Consequently, the standard error of A s given by
se (A) = X/ \/r. (5.15)

his result conld be used to obtain a confidence interval for the mean survival
tme, In particular, the limits of a 100(1 — &)% confidence interval for ) are
A L {ﬁnj, where z,/2 is the upper a/2-point of the standard normal
dintribution,

In presenting the results of & survival analysis, the sstimated survivor and
hinzard funetions, and the median and other percentiles of the distribution of
st vividl times, are useful. Onee an estimate of A has been found, all these fune-
bicms com be estimated using the resulls given in Section 5.1.1. In particular,

Abider the assumed exponential distribution, the estimated hasard function is

A(t) = A and the estimated survivor function is S(t) = exp(—At). In addition,
Wi estimated pth percentile is given by

1 100
Hw) = 3 log (mu —~ P_) . (5.16)
il fhe esbimated median survival time is
f(50) = A log 2, (5.17)

Tl wtmnelsrd ervor of an estimate of the pth percentile of the distribution of
Ayl e can be Tonnd using, the result for the approximate variance of a
b tion of i random variable given in equation (2.9) of Chapter 2. According

b Uk vomnd L, o spprosbonsdigon: tocthe varianee of a funetion q{j\} nf_i 15 such
i,

q]

v gt \)} o0 {‘If’l{\'\}} vir (A) (h.18)
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Using this result, the approximate variance of the estimated pth percentile is
given by

; 2
e (i)} = {108 ()} e
On simplifying this and taking the square root, we gel
4 1 100 -
se {i(p)} = T 08 (mu _P) se (A),

and on further substituting for se(A) from equation (5.15) and i(p) from
equation (5.16), we find

se {f(p)} = f(p)/+/r- (5.19]
In particular, the standard error of the estimated median survival time is
se {£(50)} = £{50)/\/r- (5.20)

Confidence intervals for a true percentile are best obtained from exponenti-
ating the confidence limits for the logarithm of the percentile. This procedure
ensures that confidence limits for the percentile will be non-negative, Again
making use of the result in equation (5.18), the standard error of logi(p) i

given by . . )
se {log f{p)} = ip) ' se {ip)},

and after substituting for se {#(p)} from equation (5.19), this standard erron
becormes

se {logi(p)} =1//r.
Using this result, 100(1 — «)% confidence limits for the 100pth percentile arv
exp{log (p) £ zq72/v/r}, that is, £(p) exp{zase/v/r}, where za is the upper
o /2-point of the standard normal distribution.

Ezample 5.2 Time to discontinuation of the use of an IUD

In this example, the data of Example 1.1 on the times to discontinualion
of an TUD for 18 women are analysed under the assumption of a constil
hazard of discontinuation, An exponential distribution is therefore fitted 1o
the discontinuation times. For these data, the total of the observed and right

censored discontinuation times is 1046 days, and the number of uncensored
times is 8. Therefore, using equation (5.14), A = 9/1046 = 0.0086, and the
standard error of A from equation (5.15) is se (A) = (L0086, /9 = 0.0020, T
estimated hazard function is therefore h(t) = 0.0086, t > 0, and the eatbmnted
survivor function is S{t) = exp(—0.0086 ¢}, The estimatied hazard and survivol
functions are shown in Figures 5.7 and 5.8, respectively.

Estimates of the median and other pereentilea of the distribution of dinean
tinuation times can be found from Figaee 58 Bl more pecurile catimidos
are obtained from equation (5167 T petieulse, asitg eguation (507), i
median diseontinuation time w81 shis, and ate esbitebe of The SO0 )
contile of the disteibation of neontiontiog Einim i, Fevwnnn oeguand bovgn (006
L00Y = Toge 1O/OUCORG < 20700 Uhiis s bt g flie sssiiption tlint th

FITTING A PARAMETRIC MODEL TO A SINGLE SAMPLE 163

e 4

0008

.00

0n.oes

Estimatad hezard funciion

.00 A

0000 A, : :
0 20 40 60 80 100 120
Discontinuation time

Figure 5.7 Estimated hazard function on fitting the exponential distribution.
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Flgura .8 Estunaled surmvor function on fitting the exponential distribution.
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visk of discontinuing the use of an TUD is independent of time, 90% of women
will have a discontituation time of less than 268 days.

From equation (5.20), the standard error of the estimated median time to
discontinuation is 80.56/ /9, that is, 26.85 days. The limits of a 95% confidence
interval for the true median discontinuation time are

80.56 exp{+1.96/,/9},

and so the interval is from 42 days to 155 days. Confidence intervals for other
percentiles can be ealeulated in a similar manner,

5.2:8% Fitting the Weibull distribution

The survival times of n individuals are now taken to be a censored samplo
from a Weibull distribution with scale parameter A and shape parameter -
Suppose that there are r deaths among the n individuals and n — = right
censored survival times. We can again use expression (5.12) to obtain tho
likelihood of the sample data. The probahility density, survivor and hazand
Function of a W{A, ~) distribution are given by

F(i) = Mt exp(—AtY),  S(8) =exp(=M7), h(t) = Apt7,
and so, from expression (5.12), the likelihood of the n survival times is

5 1 i 16,

H{Af‘;rt;" &xp[—}tﬂ]} {exp(—a])} ",

i=1

where §; is zero if the ith survival time is censored and unity otherwise, Equiv
alently, from expression (5.13), the likelihood function is

n - &

H {Mrt.? } exp(—Atl).

=1
This is regarded as a function of A and +, the unknown parameters in the
Weibull distribution, and so can be written LA, ). The corresponding Loy
likelihood function is given by

log LA, ) =) dilog(Ay) + (y=1) 3 _bilogt; = A #],
=1

=l i=1

and noting that } 1 & = r, the log-likelihood becomes

log L{A A = rlog(Ay) + (v — 1) E 8 logt; — A Z t.
L |

=]

The maximum likelihood estimates of A and o oaee fonnd by differentint g
thizs function with respect to A and < equotiog the derividives focaero, il
evilunbing Chern ot A and 5 The pesudbiogg soumtions pre

E-)‘_“t;fau. (821
(1
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and

n T
T4+ 6logt;— AY tllogt; =0, (5.22)
Y i=1 i=1
From equation (5.21),
A=r/>"4, (5.23)
i=1

and on substituting for X in equation (5.22), we get the equation

n n
; -+ Z d;logt, — — Zt;’ logt; = 0. (5.24)
U ] i
This is a non-linear equation in 4, which can only be solved using an iterative
tumerical procedure. Once the estimate, 4, which satisfies equation (5.24),

lins been found, equation (5.23) can be used to obtain A.

In practice, a numerical procedure, such as the Newton-Raphson algorithin,
it used to find the values A and 4 which maximise the likelihood function
nimultaneously. This procedure was described in Section 3.3.3 of Chapter 3,
i connection with fitting the Cox regression model. In that section it was
nioted that an important by-product of the Newton-Raphson procedure is an
npproximation to the variance-covariance matrix of the parameter estimates,
fromm which their standard errors can be obtained.

Once estimates of the parameters A and + have been found from fitting the
Waibull distribution to the observed data, percentiles of the survival time dis-
tribution can be estimated using equation (5.9). The estimated pth percentile

il the distribution is
y 1 100 \ Y7
t{p) = {-Xlog (100-—13)} ) (5.25)

niil so the estimated median survival time is given by

) 1 1/%
(50) = {i log 2} . (5.26)
iThe standard error of the estimated pth percentile can be obtained using
i generalisation of the result in equation (5.18) to the case where the ap-

jroimnte variance of a function of two estimates is required. Details of the
ilorivation are given in Appendix C, where it is shown that

se {i(p)} = TTPE {ﬁ-”v&r{i} A (cp —log i)z var ()

b 2Ag (e — tog A) cov (4, :r'}}% ,_ (5.27)

b g bog ( HHIF”” p)

Wil
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The variances of A and 5, and their covariance, are found from the variance-
covariance matrix of the estimates.

As before, a confidence interval for the true value of the pth percentile, #(p),
is best obtained from the corresponding interval for logt{p). The standard
error of logt{p) is

A 1 o
se {logt(p)} = =—se{t(p)}, (5.28)
t(p)

and 100(1 — a)% confidence limits for log f(p) are
log £(p) & za 2 5e {log f(p}}.

Corresponding interval estimates for ¢(p) are found by exponentiating thes
limits. For example, the limits of a 100(1 — «)% confidence interval for the
median survival time, $(50), are £(50) exp [£z, jase {log £(50)}].

There is a substantial amount of arithmetie involved in these caleulations,
and care must be taken to ensure that significant figures are not lost during
the course of the caleulation. For this reason, it is better to perform 1l
caleulations using a suitable computer program.

Example 5.5 Time to discontinwation of the use af an IUD
In Example 5.1, it was found that an exponential distribution provides &
satisfactory model for the data on the discontinuation times of 18 TUD uscrs
For comparisan, a Weibull distribution will be fitted to the same data set
The distribution can be fitted using computer software, and from the resulting
output, the estimated scale parameter of the distribution is found to be A
0.000:454, while the estimated shape parameter i5 5 = 1676, The standanl
errors of these estimates are given by se [1] = 0,000965 and se (&) = 04060,
respectively. Note that approximate confidence limits for the shape paramoton,
%, found using 5 = 1.96se (), include unity, suggesting that the exponentinl
distribution would provide a satisfactory model for the discontinuation timen
The estimated hazard and survivor functions are obtained by substituling
these estimates info equations (5.7) and (5.8), whence

hit) = AqtT—,
&Ild - -
S(t) =exp (— J.t-”] .

These two functions are shown in Figures 5.9 and 5.10.

Although percentiles of the discontinuation time can be rend from (e eall
mated survivor function in Figure 5,10, they are better estimatbed using coqui
tiom (5.25). Hence, under the Weibull distribution, the median diseontinaat o
time can be estimated wsing equation (5.26), and i given by

1 L/1 .t
(507 - - Loyt 22 T
() ) {t)()[illl.’.l ' } ! :

As w check, notiee Ahal thayowe pertectly comslabond with the valoe of (e dee
conlinyatom thae correapondingg to 000 D e Flgaee BoLge The standod
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Figure 5.9 Estimated hazard function on fitting the Weibull distribution.
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error of this estimate, from equation (5.27) is, after much arithmetic, found
o be i
se {£(50)} = 15,795,
In order to obtain a 95% cunﬁglﬂnm interval for the mﬂdim? dizgcontinuation
time, the standard error of log £(50) is required. From equation (5.28),
15.795

and so the required confidence limits for the log median discﬂntinuati:‘m tiam
are log 79,272+ 1,96 = (0.199, that is, (3.952,4.763). The corresponding interval
estimate for the true median discontinuation time is (53.64, 117.15), so that
there is & 95% chance that the interval from 54 days to 117 days includes Ll
true value of the median discomtinuation time. This interval is rather wid
because of the small number of actual discontinuation times in the data sel,

It s interé:&ting to compare these results with those found in Example 5.2
where the discontinuation times were modelled using an exponential distril i
tion, The estimated median survival times are very similar, at 80.6 days [
the exponential and 79.3 days for the Weibull model, However, the standur!
error of the sstimated median survival time is 26.8 days when the times are
assumed to have an exponential distribution, and only 15.8 days under tle
Weibull model. The median is therefore estimated more precisely when the
discontinuation times are assumed (o have a Weibmll distribution.

Other percentiles of the discontinuation time distribution, and accompany
ing standard errors and confidence intervals, can be found in a similar fashion
For example, the 90th percentile, that is, the time beyond which 10% of thos
in the study continue with the use of the IUD, is 162.23 days, and 95% conli
dence limits for the true percentile are from 95.41 to 275.84 days, Natice (it
the width of this confidence interval is larger than that for the median disoon
tiration time, reflecting the fact that the median is more precisely estinuiled
than other percentiles.

5.4 A model for the comparison of two groups

We saw in Section 3.1 that a convenient general model for comparing 1wo
groups of survival times is the proportional hazards model. ”"m‘. Hu_- Wi
groups will be labelled Group I and Group II, and X will be an ir.|||i1'||.|-II
variable that takes the value zero if an individual is in Group I and unity 10
individual is in Group II. Under the proportional hazards model, the fueand
of death at time ¢ for the ith individual is given by

halt) = o™ hot), (5

where m; is the value of X for the oth inpdividhinl, Consequently, the Hasanl
at time ¢ for s indisddunl i Ceonge Db B0, mid Gt Toe s indisbdinal H
Crromps 1138 Whig (0), whereogr o ppd ) Uhe gty o8 b Gl the Jogarithoe ol
Wi Fantder ol e Bsend for oo i ivtoboand b Chponge Th o thad o an idvigdal
i Ciponp |
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We will now make the additional assumption that the survival times for
the individuals in Group | have a Weibull distribution with scale parameter
A and shape parameter v, Using equation (5.29), the hazard function for the
iudividuals in this group is hy(t), where

ha(t) = Ayt7-3.

Now, also from equation (5.28), the hazard function for those in Croup 11 is
Whalt), that is,
WAL

This is the hazard function for & Weibull distribution with scale parameter {128
and shape parameter v. We therefore have thie result that if the survival fimes
of individuals in one group have a Weibull distribution with shape paratneter
v, and the hazard of death at time ¢ for an individual in the second group
w proportional to that of an Individaal in the frst, the survival times of
those in the second group will also have a Weibull distribution with shape
pirameter v. The Weibyll distribution is then said to have the proportional
huzards property. This property is another reason for the importance of the
Weibull distribution in the analysis of survival data.

541 The log-cumulative hazard plot.

Whin a single sample of survival times has a Weibull distribution W{X, 1),
Hie log-cumulative hazard plot described in Section 5.2 will give a straight
line: with intereept log A and slape 4. Tt then follows that if the survival times
b wecond group have a W(yd, ) distribution, s they would under the pro-
portional hazards model in equation (5.29), the log-cumulative hazard plat
Will give - straight line, also of slope 4, but with intercept log 1+ log A, 1T the
Mitimated log-cumulative hazard function is plotted against the logarithm of
Hw suevival time for individuals in two grouaps, parallel straight lines would
Hiban that the assumptions of a proportional hazards model and Weibull sur-
Vvl times were tenable, The vertical separation of the two lines provides an

Csbimnde of 3 = log 14, the logarithm of the relative hazard.

If the two lines in o log-cumulative hazard plot are essentially straight,
ik not parallel, this mesns that the shape parameter, =, is different in the
o gronps, and the hazards are no longer proportional. If the lines are not
Autienlnrly straight, the Weibull model may not be appropriate. However, if
Mo purves can be taken to be parallel, this would mean that the proporiional
Dipenridn ool is valid, and the Cox regression model discussed in Chaptor 3
hilght be more satisfactory.

Wiaraple 5.4 Prposts for women with breast cancer

W thin exnmple, we invedtignte whether the Weibull proporticnal hazards
sl e likaly bo b oppropriste for the dais of Example 1.2 on the sur-
WA e of vt cnmeer. padilents. These diea relite G0 women elassifiad

S g G ow et b Ut s were ponitively or negatively stadned. The
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