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When we take the limit of the right-side expression as
the time interval approaches zero, we are essentially
getting an expression for the instantaneous probability
of failing at time ¢ per unit time. Another way of saying
this is that the conditional failure rate or hazard func-
tion A(t) gives the instantaneous potential for failing
at time ¢ per unit time, given survival up to time t.

As with a survivor function, the hazard function /i(7)
can be graphed as ¢ ranges over various values. The
graph at the left illustrates three different hazards. In
contrast o a survivor function, the graph of h(1) does
not have to start at 1 and go down to zero, but rather
can start anywhere and go up and down in any direc-
tion over time. In particular, for a specified value of 1,
the hazard h(t) has the following characteristics:

e it is always nonnegative, that is, equal to or
greater than zero;
¢ it has no upper bound.

These two features follow from the ratio expression in
the formula for h(t), because both the probability in
the numerator and the Az in the denominator are non-
negative, and since Ar can range between 0 and .

Now we show some graphs of different types of hazard
functions. The first graph given shows a constant haz-
ard for a study of healthy persons. In this graph, no
matter what value of 7 is specified, k() equals the same
value—in this example, A. Note that for a person who
continues to be healthy throughout the study period,
his/her instantaneous potential for becoming ill at any
time during the period remains constant no matter
what time is picked. When the hazard function is con-
stant, we say that the survival model is exponential.
This term follows from the relationship between the
survivor function and the hazard function. We will
return to this relationship later.
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The second hazard function illustrated shows a graph
that is increasing. This kind of graph is called an
increasing Weibull model. Such a graph might be
expected for leukemia patients not responding to treat-
ment, where the event of interest is death. As survival
time increases for such a patient, and as the prognosis
accordingly worsens, the patient’s potential for dying
of the disease also increases.

The third hazard function illustrated shows a graph
that is decreasing. This kind of graph is called a
decreasing Weibull. Such a graph might be expected
when the event is death in persons who are recovering
from surgery, because the potential for dying after
surgery usually decreases as the time after surgery
increases.

The fourth hazard function given shows a graph that is
first increasing and then decreasing. This tvpe of graph
is called a lognormal survival model. We can expect
such a graph for tuberculosis patients, since their
potential for dving increases early in the disease and
decreases later.

Of the two functions we have considered, S(r) and (1),
the survivor function is more naturally appealing for
analysis of survival data, simply because S(z) directly
describes the survival experience of a study cohort.

However, the hazard function is also of interest for the
following reasons:

* it provides insight about conditional failure rates:

* it may be used to identify a specific model form,
such as an exponential, a Weibull, or a lognormal
curve that fits one’s data;

* litisthe vehicle by which mathematical modeling of
survival data is carried out; that is, the survival model
is usually written in terms of the hazard function,
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Relationship of S(¢) and h(t):
If you know one, you can determine the
other.

General formulae:
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ds(t)
h(t)=— ———4’
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Formulae not important:

S(t) h(1)

Regardless of which function S(#) or h(t) one prefers,
there is a clearly defined relationship between the
two. In fact, il one knows the form of S(7), one can
derive the corresponding /(t), and vice versa. For exam-
ple, if the hazard function is constant—i.e., f(t) = A, for
some specific value A—then it can be shown that the
corresponding survival function is given by the follow-
ing formula: S(7) equals e to the power minus A times 7.

More generally, the relationship between S(1) and (1)
can be expressed equivalently in either of two calculus
formulae shown here.

The first of these formulae describes how the survivor
function S(¢) can be written in terms of an integral
involving the hazard function. The formula says that
S(t) equals the exponential of the negative integral of the
hazard function between integration limits of 0 and z.

The second formula describes how the hazard function
hi(t) can be written in terms of a derivative involving
the survivor function. This formula says that h(t)
equals minus the derivative of 8(t) with respect to ¢

divided by S(1).

The actual formulae are not important, because in any
actual data analysis a computer program can make the
numerical transformation from S{t) to h(t), or vice
versa, without the user ever having to use either for-
mula. The point here is simply that if you know either
S(t) or h(t), vou can get the other directly.

SUMMARY

T = survival time random variable

t = specific value of T

$ = (0,1) variable for failure/censorship
S(t) = survivor function
h(t) = hazard function

At this point, we have completed our discussion of key
terminology and notation. The key notation is T for
the survival time variable, ¢ for a specified value of
T, and 5 for the dichotomous variable indicating
event occurrence or censorship. The key terms are
the survivor function S(z) and the hazard function
h(t), which are in essence opposed concepts, in that
the survivor function focuses on surviving whereas the
hazard function focuses on failing, given survival up
to a certain time point.




V. Basic Data Layout for Computer 15

IV. Goals of Survival Analysis
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We now state the basic goals of survival analyses.

Goal 1: To estimate and interpret survivor and/or
hazard functions from survival data.

Goal 2: To compare survivor and/or hazard func-
tions.

Goal 3: To assess the relationship of explanatory
variables to survival time.

Regarding the first goal, consider, for example, the two
survivor functions pictured at the left, which give very
different interpretations. The function farther on the
left shows a quick drop in survival probabilities early
in follow-up but a leveling off thereafter. The function
on the right, in contrast, shows a very slow decrease in
survival probabilities early in follow-up but a sharp
decrease later on.

We compare survivor functions for a treatment group
and a placebo group by graphing these functions on
the same axis. Note that up to 6 weeks, the graph for
the treatment group lies above that for the placebo
group, but thereafter the two graphs are at about the
same level. This dual graph indicates that up to 6
weeks the treatment is more effective than the placebo
but has about the same effect thereafter.

Goal 3 usually requires using some form of mathemat-
ical modeling, for example, the Cox proportional haz-
ards approach, which will be the subject of subsequent
modules.

V. Basic Data Layout for
Computer

Data layouts:
* for computer use
* for understanding

We previously considered some examples of survival
analysis problems and a simple data set involving six
persons. We now consider the general data layout for a
survival analysis. We will provide two types of data lay-
outs, one giving the form appropriate for computer
use, and the other giving the form that helps us under-
stand how a survival analysis works.
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For computer: We start by providing, in the table shown here, the
basic data lavout for the computer. Assume that we
have a data set consisting of n persons. The fivst col-

Indiv. # { 30X, X TX, umn of the table identifies each person from 1, starting
// at the top, ton, at the bottom.
1 t 5, Xy X0t X
i 1 11 12 ip L. . . .
) ; b, Xy Xop T X The remaining columns after the first one provide sur-
2 2 e 7 vival time and other information for each person. The

. . second column gives the survival time information,
. which is denoted 7, for individual 1,15 for individual 2,
and so on, up to ¢t for individual n. Bach of these t's
gives the observed survival time regardless of whether
) the person got the event or is censored. For example, if
) person 5 got the event at 3 weeks of follow-up, then
: te = 3 on the other hand, if person 8 was censored at 3
weeks, without getting the event, then fg = 3 also.

d To distinguish persons who get the event from those
. who are censored, we turn to the third column, which
i, p 5 X X, X gives the information for 8, the dichotomous variable
i ! i T2 1 that indicates censorship status.
. ~ Thus, 8, is 1 if person 1 gets the event or is 0 it person
Failure }:,xplzjmatmﬁv 1 is censored; &, is 1 or 0 similarly, and so on, up
stafus variables through §,,. In the example just considered, person 53,
f ) who failed at 3 weeks, has a8 of 1; that is, 85 equals 1.
Indiv. # t S X, X, * Xp In contrast, person 8, who was censored at 3 weeks,
has a § of 0; that is, 8g equals 0.
1 f 5 Xy Xt T X ‘ o
2 t 5, Xy ) ORI O Note that if all of the &; in this column are added up,
. . their sum will be the total number of tailures in the
. - data set. This total will be some number equal to or
. . less than 11, because not every onc may fail.

The remainder of the information in the table gives
values for explanatory variables of interest. An
explanatory variable, X;, is any variable like age or
exposure status, E, or a product term like age X race
that the investigator wishes to consider to predict sur-
vival time. These variables are listed at the top of the
table as X, Xy, and so on, up to Xp. Below each vari-
able are the values observed for that variable on each

" , 5, X, X, x”p person in the data set.

X. = Age, E, or Age X Race

1

________-4‘




Rows

Columns
et e
« D ]
# r 5 X, X, X,,
! oo Xy Xttt Xy,

- EXAMPLE

The data: Remission times (in weeks)
fortwo groups of leukemia patients

Group 1

- (Treatment) » = 21

Group 2 ’
(Treatment)n = 21

6,6,6,7, 10,
13,16, 22, 23,

6+, 9+, 10+, 11+, -
17+, 19+, 20+,
25+, 32+, 32+,
344,35+

1,1,2,2,3,
4,4,5,5,
8,8,8,8,
111,12, 12,
- 15,17,22,23
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For example, in the column corresponding to X, are
the values observed on this variable for all » persons.
These values are denoted as X, X,,, and so on, up to
X,;; the first subscript indicates the person number,
and the second subscript, a one in each case here, indi-
cates the variable number. Similarly, the column cor-
responding to variable X, gives the values observed on
X, for all n persons. This notation continues for the
other X variables up through X,

We have thus described the basic data lavout by
columns. Alternatively, we can look at the table line by
line, that is, by rows. For each line or row, we have the
information obtained on a given individual. Thus, for
individual j, the observed information is given bv the
values 4, 8], Xﬂ’ X, etc., up to X»p. This is how the
information is reac[{ into the computer, that is, line by
line, until all persons are included for analysis.

As an example of this data layout, consider the follow-
ing set of data for two groups of leukemia patients: one
group of 21 persons has received a certain treatment;
the other group of 21 persons has received a placebo.
The data come from Freircich et al., Blood, 1963.

As presented here, the data arc not yvet in tabular form
for the computer, as we will see shortly. The values
given for each group consist of time in weeks a patient
is in remission, up to the point of the patient’s either
going out of remission or being censored. Here, going
oul of remission is a failure. A person is censored if he
or she remains in remission until the end of the study,
is lost to follow-up, or withdraws before the end of the
study. The censored data here are denoted by a plus
sign next to the survival time.
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EXAMPLE (continued)

Here are the data again:

Notice that the first three persons in group 1 went out
of remission at 6 weeks; the next six persons also went
out of remission, but at failure times ranging from 7 to
23. All of the remaining persons in group 1 with pluses
next to their survival times are censored. For example,
on line three the first person who has a plus sign next
to a 6 is censored at six weeks. The remaining persons
in group one are also censored, but at times ranging
from 9 to 35 weeks.

Thus, of the 21 persons in group 1, nine failed during
the study period, whereas the last 12 were censored.
Notice also that none of the data in group 2 is cen-
sored; that is, all 21 persons in this group went out ol
remission during the study period.

We now put this data in tabular form for the computer,
as shown at the left. The list starts with the 21 persons
in group 1 (listed 1-21) and follows (on the next page)
with the 21 persons in group 2 (listed 22-42). Our n for
the composite group is 42.

The second column of the table gives the survival times
in weeks for all 42 persons. The third column indicates
failure or censorship for each person. Finally, the
fourth column lists the values of the only explanatory
variable we have considered so far, namely, group sta-
tus, with 1 denoting treatment and 0 denoting placebo.

If we pick out any individual and read across the table,
we obtain the line of data for that person that gets
entered in the computer. For example, person #3 has a
survival time of 6 weeks, and because & = 1, which
means that this person failed, that is, went out of
remission, the X value is 1 because person #3 is in
group 1. As a second example, person #14, who has a
survival time of 17 wecks, was censored at this time
because 8 = 0. The X value is again 1 because person
#14 is also in group 1.
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As one more example, this time from group 2, person
#32 survived 8 weeks and then failed, because d = 1: the
X value is 0 because person #32 is in group 2.

VI. Basic Data Layout for
Understanding Analysis

For analysis:

Ordered # of # censored in  Risk

failure  failures (Z(/»), fiiv 1)) set
(1(,')) (m]-) (51]') R(f(j))

Lo=0  my=0 90 R(1(p)
Ly n, 4 R(T(l))
12 n, 4, R(l(z))
L) my 9y R(l(k))

We are now ready to look at another data layout,
which is shown at the left. This layout helps provide
some understanding of how a survival analysis actually
works and, in particular, how survivor curves are
derived.

The first column in this table gives ordered failure
times. These are denoted by #’s with subscripts within
parentheses, starting ¢, ;, and so on, up to 1 by 1 (g,
I(1) and so on, up to #;. Note that the parentheses sur-
rounding the subscripts distinguish ordered failure
times from the survival times previously given in the
computer layout.
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Cénsored I's

Unordered Failed s

ordered (rm)

k = # of distinct times at which subjects

failed (k < 1)

Rénﬁésion Data: Group 1 -

(1 =21, 9 failures, k'=7)

G - om g - Rle)
=070 "0 " 21 persons ks’ktirvi‘ve > 0'wks
=6 1 21 persons survive 2 6 wks
Tty =T 11 17 persons survive 27 wks
tgy=10 1272015 persdngs‘urvix‘ié > 10 wks
tay=13 1 0. 12 persons survive 2 13 wks
tgy=16 1 3= 11 pgrSQris“su;yi?c; 16-wks
Hey=22- 01 70 7 persons SUrVi wks
(n=23 1. 5. .6 persons survive 223 wks

Totals 9 12

Remi§$i6n ;D,akta; Group 20 k
{n=21,21 failures, k =12) =

To get ordered failure times from survival times, we
must first remove from the list of unordered survival
times all those times that are censored; we arve thus
working only with those times at which people failed.
We then order the remaining failure times from small-
est to largest, and count ties only once. The value k
gives the number of distinct times at which subjects
failed.

For example, using the remission data for group 1, we
find that nine of the 21 persons failed, including three
persons cach at 6 weeks and one person each at 7, 10,
13, 16, 22, and 23 weeks. These nine failures have k = 7
distinct survival times, because three persons had sur-
vival time 6 and we only count one of these 6’s as dis-
tinct. The first ordered failure time for this group,
denoted as 1y, is 6; the second ordered failure time
loy 18 7, and so on up to the seventh ordered failure
time of 23.

Turning to group 2, shown at the left, we find that
although all 21 persons in this group failed, there are
several ties. For example, two persons had a survival
time of 1 week: two more had a survival time of 2
weeks: and so on. In all, we find that there were k = 12
distinct survival times out of the 21 failures. These
times are listed in the first column for group 2.

Note that for both groups we inserted a row of data
giving information at time 0. We will explain this inser-
tion when we get to the third column in the table.

The second column in the data layout gives frequency
counts, denoted by nz, of those persons who tailed at
each distinct failure time. When there are no ties at a
certain failure time, then 2. = 1. Notice that in group 1,
shown at the bottom left, there were three ties at 6
weeks but no ties thereafter. In group 2, there were ties
at 1,2, 4,5, 8, 11, and 12 weeks. In any case, the sum
of all the m2’s in this column gives the total number of
failures in the group tabulated. This sum is 9 for group
1 and 21 for group 2.
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The third column gives trequency counts, denoted by
qj, of those persons censored in the time interval start-
ing with failure time ;) up to the next failure time
denoted 1, . Technically, because of the way we have
detfined this interval in the table, we include those per-
sons censored at the beginning of the interval but not
at its end.

For example, the remission data, for group 1 includes
5 nonzero q]-’s: gr=4q,=1,g93=2,495=3,49; =5
Adding these values gives us the total number of cen-
sored observations for group 1, which is 12. Moreover,
if we add the total number of ¢’s (12) to the total num-
ber of m’s (9), we get the total number of subjects in
group 1, which is 21.

We now focus on group 1 to look a little closer at the
g’s. At the left, we list the unordered group 1 informa-
tion followed (on the next page) by the ordered failure
time information. We will go back and forth between
these two tables (and pages) as we discuss the ¢'s.
Notice that in the table here, one person, listed as #10,
was censored at week 6. Consequently, in the table at
the top of the next page, we have ¢ = 1, which is listed
on the second line corresponding to the ordered failure
time r; in parentheses, which equals 6.

The next g is a little trickier; it is derived from the per-
son who was listed as #11 in the table here and was
censored at week 9. Correspondingly, in the table at
the top of the next page, we have g, = 1 because this
one person was censored within the time interval that
starts at the second ordered failure time, 7 weeks, and
ends at the third ordered failure time, 10 weeks. We
have not counted here person #12, who was censored
at week 10, because this person’s censored time is
exactly at the end of the interval. We count this person
in the following interval.




