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used, as in Example 2.2, but the grouping of the survival times does result in
some loss of information. This is particularly so when the number of patients
is small, less than about 30, say.

2.1.2 Kaplan-Meier estimate of the survivor function

The first step in the analysis of ungrouped censored survival data is normally
to obtain the Kaplan-Meier estimate of the survivor function. This estimate
is therefore considered in some detail. To obtain the Kaplan-Meier estimate, a
series of time intervals is constructed, as for the life-table estimate. However,
each of these intervals is designed to be such that one death time is contained
in the interval, and this death time is taken to occur at the start of the interval.

As an illustration, suppose that t(y), t(2) and () are three observed survival
times arranged in rank order, so that t(;) < t(z) < {(3), and that cis a censored
survival time that falls between t(5) and t(3). The constructed intervals then
begin at times t(y), t(2) and (3), and each interval includes the one death time,
although there could be more than one individual who dies at any particular
death time. Notice that no interval begins at the censored time of c. The
situation is illustrated diagrammatically in Figure 2.3, in which D represents
a death and C a censored survival time. Notice that two individuals die at
t(1), one dies at t(3), and three die at £(3).
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Figure 2.3 Construction of intervals used in the derivation of the Kaplan-Meier
estimate.

The time origin is denoted by to, and so there is an initial period com-
mencing at to, which ends just before ¢(;), the time of the first death. This
means that the interval from ty to ¢(;) will not include a death time. The
first constructed interval extends from t(;) to just before £(3), and since the
second death time is at t(3), this interval includes the single death time at £(y).
The second interval begins at time #(2) and ends just before t(s), and includes
the death time at t(3) and the censored time c. There is also a third interval
beginning at £3y, which contains the longest survival time, (3).

In general, suppose that there are n individuals with observed survival times
t1, 12, ..., . Some of these observations may be right-censored, and there may

also be more than one individual with the same observed survival time. We
therefore suppose that there are r death times amongst the individuals, where
r < n. After arranging these death times in ascending order, the jth is denoted
tegy, Tor gje=1,2,...,7, and so the r ordered death times are (1) <tz < <
t(yy. 'T'he number of individuals who are alive just before time t;), including
those who nre nhout to die at this time, will be denoted ny, for j =1,2,...,7

and d, will denote the number who die at this time, The time interval fromn



t(jy — 6 to t(;), where § is an infinitesimal time interval, then includes one
death time. Since there are n; individuals who are alive just before t(;y and d,
deaths at ¢(;), the probability that an individual dies during the interval from
t(jy — 0 to t;y is estimated by d;/n;. The corresponding estimated probability
of survival through that interval is then (n; —d;)/n;.

It sometimes happens that there are censored survival times that occur at
the same time as one or more deaths, so that a death time and a censored sur-
vival time appear to occur simultaneously. In this event, the censored survival
time is taken to occur immediately after the death time when computing the
values of the n;.

From the manner in which the time intervals are constructed, the interval
from t(;) to t(j11) — 4, the time immediately before the next death time
contains no deaths. The probability of surviving from ;) to £¢;11) — 9 i
therefore unity, and the joint probability of surviving from #;) — § to t(;) and
from ;) to t(j41) — 4 can be estimated by (n; —d;)/n;. In the limit, as § tends
to zero, (n; — d;)/n; becomes an estimate of the probability of surviving the
interval from £y to £(;1).

‘We now make the assumption that the deaths of the individuals in the sam-
ple occur independently of one another. Then, the estimated survivor func-
tion at any time, ¢, in the kth constructed time interval from #() to #(r11).
k=1,2,...,r, where #(,.1) is defined to be co, will be the estimated prob-
ability of surviving beyond #). This is actually the probability of surviving
through the interval from #(y) to t(x41), and all preceding intervals, and leads
to the Kaplan-Meier estimate of the survivor function, which is given by

30 =11 (a2, (24

j=1

fortxy <t <tip41),k=1,2,...,7r, with S(t)=1fort < t(1), and where £(,. 11
is taken to be oo. Strictly speaking, if the largest observation is a censored
survival time, t*, say, S(t) is undefined for ¢ > £*. On the other hand, if the
largest observed survival time, #(,), is an uncensored observation, n, = d,, and
so 8 (t) is zero for ¢t > t(;y. A plot of the Kaplan-Meier estimate of the survivor
function is a step-function, in which the estimated survival probabilities are
constant between adjacent death times and decrease at each death time.

Equation (2.4) shows that, as for the life-table estimate of the survivor
function in equation (2.3), the Kaplan-Meier estimate is formed as a product
of a series of estimated probabilities. In fact, the Kaplan-Meier estimate i
the limiting value of the life-table estimate in equation (2.3) as the number
of intervals tends to infinity and their width tends to zero. For this reason,
the Kaplan-Meier estimate is also known as the product-limit estimate of the
survivor function.

Note that if there are no censored survival times in the data set, n; — d,
njp1, § =1,2,...,k, in equation (2.4), and on expanding the product we get

- T T T
S(t) = 22 S g (2.5)
Y TLa 1.
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This reduces to ng1/ny, for k=1,2,...,r—1, with §(t) = 1 for t < t(1) and
S(t)=0for t > t(ry- Now, n; is the number of individuals at risk just before
the first death time, which is the number of individuals in the sample, and ngy;
is the number of individuals with survival times greater than or equal to £(j.1)-.
(lonsequently, in the absence of censoring, S(t) is simply the empirical survivor
function defined in equation (2.1). The Kaplan-Meier estimate is therefore a
generalisation of the empirical survivor function that accommodates censored
observations.

Frample 2.8 Time to discontinuation of the use of an IUD

Data from 18 women on the time to discontinuation of the use of an IUD
were given in Table 1.1. For these data, the survivor function, S(t), represents
the probability that a woman discontinues the use of the contraceptive device
ifter any time ¢. The Kaplan-Meier estimate of the survivor function is readily
obtained using equation (2.4), and the required calculations are set out in
Table 2.2. The estimated survivor function, S(t), is plotted in Figure 2.4.

Table 2.2 Kaplan-Meier estimate of the survivor
function for the data from Ezample 1.1.

Time interval n; dj (n;j—dj)/n; S(t)

0- 18 0 1.0000  1.0000
10- 18 1 0.9444  0.9444
19- 15 1 09333  0.8815
30~ 13 1 09231  0.8137
36— 120 0.9167  0.7459
59— 8 1 0.8750  0.6526
75— Topm 1 0.8571  0.5594
93— 6 1 0.8333  0.4662
97— 5 1 0.8000  0.3729

107 31 0.6667  0.2486

Noto that since the largest discontinuation time of 107 days is censored, S5(t)
I not defined beyond ¢t = 107.

U.1.8 Nelson-Aalen estimate of the surviver function

An nlternative estimate of the survivor funetion, which is based on the indi-
vidual evont times, is the Nelson-Aalen estimate, given by
) k
S(t) = H exp(—d;/n;). (2.6)
1=1
I'hin esthmnte can be oblained from an estimate of the cumulative hazard

Ninetion, as shown in Section 2.3.3, Moreover, the Kaplan-Meier estimate of
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Figure 2.4 Kaplan-Meier estimate of the survivor function for the data from Ez-
ample 1.1.

Aalen estimate. To show this, we use the result that

2 3
i T bl B,
which is approximately equal to 1 — z when z is small. It then follows that
exp(—d;/n;) = 1—(d;/n;) = (n; —d;)/nj, so long as d; is small relative to n;.
which it will be except at the latest survival times. Consequently, the Kaplan-
Meier estimate, S(t), in equation (2.4), approximates the Nelson-Aalen esti-
mate, S(t), in equation (2.6).

The Nelson-Aalen estimate of the survivor function, also known as Alt-
shuler’s estimate, will always be greater than the Kaplan-Meier estimate at
any given time, since e~* > 1 — z, for all values of z. Although the Nelson-
Aalen estimate has been shown to perform better than the Kaplan-Meier
estimate in small samples, in many circumstances, the estimates will be very
similar, particularly at the earlier survival times. Since the Kaplan-Meier esti-
mate is a generalisation of the empirical survivor function, the latter estimate
has much to commend it.

Ezxample 2.4 Time to discontinuation of the use of an IUD
The values shown in Table 2.2, which gives the Kaplan-Meier estimate of the
survivor function for the data on the time to discontinuation of the use ol
an IUD, can be used to calculate the Nelson-Aalen estimate. This estimate it
shown in Table 2.3.

From this table we see that the Kaplan-Meier and Nelson-Aalen estimator
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Table 2.3 Nelson-Aalen estimate of the
survivor function for the data from Ezam-
ple 1.1.

Time interval exp(—d;/n;)  S(t)

0- 1.0000 1.0000
10~ 0.9460 0.9460
19— 0.9355 0.8850
30- 0.9260 0.8194
36— 0.9200 0.7539
59— 0.8825 0.6653
75— 0.8669 0.5768
93— 0.8465 0.4882
97— 0.8187 0.3997

107 0.7165 0.2864

the precision of these estimates, which we do in Section 2.2, we see that a
difference of 0.04 is of no practical importance.

2.2 Standard error of the estimated survivor function

An essential aid to the interpretation of an estimate of any quantity is the
precision of the estimate, which is reflected in the standard error of the esti-
mate. This is defined to be the square root of the estimated variance of the
¢stimate, and is used in the construction of an interval estimate for a quan-
tity of interest. In this section, the standard error of estimates of the survivor
function are given.

Because the Kaplan-Meier estimate is the most important and widely used
sstimate of the survivor function, the derivation of the standard error of S(t)
will be presented in detail in this section. The details of this derivation can
e omitted on a first reading.

£.2.1* Standard error of the Kaplan-Meier estimate

The Kaplan-Meier estimate of the survivor function for any value of ¢ in the
Interval from £(x) to f(x41) can be written as

k
i=1
for k = 1,2,...,r, where p; = (n;—d;)/n; is the estimated probability that an
Individual survives through the time interval that begins at ¢(;), 7 = 1,2, ..., 7.
Twking logarithms.



and so the variance ol log .o (f) 18 given by

k
ar {logg(t)} = Zl var {logp;}. (2.7
3=

Now, the number of individuals who survive through the interval beginning
at t(;) can be assumed to have a binomial distribution with parameters n
and p;, where p; is the true probability of survival through that interval. The
observed number who survive is n; —d;, and using the result that the varianc
of a binomial random variable with parameters n, p is np(1 — p), the varianc
of n; — d; is given by

var(n_,- - d) = njpj(l —pj).

Since p; = (n; — d;)/n;, the variance of p; is var (n; — d; )/ﬂ, that is, p;(1 -
p;)/n;. The variance of p; may then be estimated by



pill —pj)/n;. (4.0)

In order to obtain the variance of logp;, we make use of a general result
or the approximate variance of a function of a random variable. According to
his result, the variance of a function g(X) of the random variable X is given

oy
var (g0}~ { G} v (), 29

This is known as the Taylor series approzimation to the variance of a function
»f a random variable. Using equation (2.9), the approximate variance of log p;
s var (p;.)/ p?, and using expression (2.8), the approximate estimated variance
of log p; is (1 — p;)/(n;P;), which on substitution for p;, reduces to

d;

. 2.10
ni(n; — d;) (210

From equation (2.7),

var {logS } Z -—dJ (2.11

and a further application of the result in equat.ion (2.9) gives

var {logS } [S’(t)]z {.‘;‘(t)},



se {S*")} = S () ¢ D fif_d_ , (2.14
j .?

n
J=1

i the notation of Section 2.1.1.
‘I'le standard error of the Nelson-Aalen estimator is

se {5‘( } i

2
(2.15
althonugh other expressions have been proposed.

. ulh

4.8.9 Confidence itervals for values of the survivor function

Oites the standard error of an estimate of the survivor function has beer
aalonlitod, w confidence interval for the corresponding value of the survivor
Ranietion, nt n given time £, can be found. A confidence interval is an interval
galhmnte of the survivor funcetion, nnd is the interval which is such that there i
8 promcribed probability thint the vilue of the teae survivor funetion is included



15 given by

N

k d.
se {S(t)} sS4y, —L Y | (2.13

= nilny —dj)

for ty <t < t(k+1). This result is known as Greenwood’s formula.
If there are no censored survival times, 7; —d j = Mjt1, and expression (2.10
becomes (n; — nj+1)/njnj41. Now,

k k
Zuﬂzz L 1) _m—mn
n]- !

j=1 T+ jm1 \Th+1 N1Mk+1
which can be written as R
1—5(t)
nlg(t) '

iince .‘;’(t) = Ng41/ny for bigy £ <tps1), K =1,2,...,7 — 1, in the absence
of censoring. Hence, from equation (2.12), the estimated variance of § (t) is
9(t)[L — S(t)]/ny. This is an estimate of the variance of the empirical sur-
vivor function, given in equation (2.1), on the assumption that the number

)f individuals at risk at time ¢ has a binomial distribution with parameters
[ 1 iq(’:}

.2.2* Standard error of the life-table and Nelson-Aalen estimates

I'he life-table estimate of the survivor function is similar in form to the
Knplan-Meier estimate, and so the standard error of this estimator is ob-
Mlned in a similar manner. The standard error of the life-table estimate is

Hven by
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within it. The intervals constructed in this manner are sometimes referred tc
as pointwise confidence intervals, since they apply to a specific survival time

A confidence interval for the true value of the survivor function at a giver
time ¢ is obtained by assuming that the estimated value of the survivor func-
ion at t is normally distributed with mean S(t) and estimated variance
siven by equation (2.12). The interval is computed from percentage point.
of the standard normal distribution. Thus, if Z is a random variable that
has a standard normal distribution, the upper (one-sided) a/2-point, or the
swo-sided a-point, of this distribution is that value 2/, which is such tha
P(Z > zaj2) = /2. This probability is the area under the standard norma
curve to the right of z,/, as illustrated in Figure 2.5. For example, the two
sided 5% and 1% points of the standard normal distribution, zg 025 and zg gos
are 1.96 and 2.58, respectively.

al/2 al2

_za;"2 0 Zm{z
Value of z

Figure 2.5 Upper and lower c/2-points of the standard normal distribution.

A 100(1 — )% confidence interval for S(t), for a given value of ¢, is the
nterval from S(t) — za/2 se{S(t)} to S(t) + za/2 se {S(t)}, where se {S(t)} i
found from equation (2.13). These intervals for S(¢) can be superimposed or
, graph of the estimated survivor function, as shown in Example 2.5.

One difficulty with this procedure arises from the fact that the confidence
ntervals are symmetric. When the estimated survivor function is close tc
zero or unity, symmetric intervals are inappropriate, since they can lead tc
sonfidence limits for the survivor function that lie outside the interval (0,1)
A pragmatic solution to this problem is to replace any limit that is greate:
than unity by 1.0, and any limit that is less than zero by 0.0.

An alternative procedure is to transform S(t) to a value in the rang
(—00,00), and obtain a confidence interval for the transformed value. The
resulting confidence limits are then back-transformed to give a confidenc
nterval for S(t) itself. Possible transformations are the logistic transforma
ion, log[S(t)/{1 — S(t)}], and the complementary log-log transformation
og{—log S(t)}. Note that from equation (1.7), the latter quantity is the
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error of the transformed value of S(t) can be found using the approximation
in equation (2.9).

For example, the variance of log{—log 5(t)} is obtained from the expression
for var {log S(t)} in equation (2.11). Using the general result in equation (2.9),

var {log(~X)} = 55 var (X),

and setting X = log S(t) gives

: 1 4
var [log{— log S(t)}] &~ {log S'(t)}z = 'n.j(nj J_ d:.").

7=1

The standard error of log{— log S (t)} is the square root of this quantity. This
leads to 100(1 — )% limits of the form

5 (t)oxPl£7a/2 se{log(~ log S(8)11] ,

where z, 5 is the upper a/2-point of the standard normal distribution.

A further problem is that in the tails of the distribution of the survival
times, that is, when S(t) is close to zero or unity, the variance of 5(t) obtained
uning Greenwood’s formula can underestimate the actual variance. In these
tlrcumstances, an alternative expression for the standard error of S(t) may
be used. Peto et al. (1977) propose that the standard error of S(t) should be
ubtained from the equation

(300 - SO/L=5),

for by <t <tpgen, k=1,2,...,r, where g(t) is the Kaplan-Meier estimate
of §(t) and ny is the number of individuals at risk at ¢(z), the start of the kth
vonstructed time interval.

T'his expression for the standard error of S(t) is conservative, in the sense
that the standard errors obtained will tend to be larger than they ought to
e, For this reason, the Greenwood estimate is recommended for general use.

Foample 2.5 Time to discontinuation of the use of an IUD

T'he wtandard error of the estimated survivor function, and 95% confidence
Hmits for the corresponding true value of the function, for the data from
Kxnmple 1.1 on the times to discontinuation of use of an IUD, are given in
Table 2.4, In this table, confidence limits outside the range (0, 1) have been
taplaced by zero or unity.

Fyom this table we see that in general the standard error of the estimated
mirvivor function inereases with the discontinuation time. The reason for this
I thint entimntes of the survivor function at later times are based on fewer in-
dividhunla, A graph of the estimated survivor function, with the 95% confidence
Hinitn whown ns dashed lines, is given in Figure 2.6.

I dmportant to observe that the confidence limits plotted on such a
mranh are onlv valld for anv aglven tlme. Difforent methaode are needed to



Table 2.4 Standard error of 5(t) and confidence intervals for S(t)
for the data from Ezxample 1.1.

Time interval ~ 3(t) se {S(t)} 95% confidence interval
0- 1.0000 0.0000
10~ 09444  0.0540 (0.839, 1.000)
19- 0.8815  0.0790 (0.727, 1.000)
30— 0.8137 0.0978 (0.622, 1.000)
36— 0.7459 0.1107 (0.529, 0.963)
59~ 0.6526  0.1303 (0.397, 0.908)
75— 0.5594 0.1412 (0.283, 0.836)
93~ 0.4662 0.1452 (0.182, 0.751)
97— 0.3729 0.1430 (0.093, 0.653)
107 0.2486 0.1392 (0.000, 0.522)
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Figure 2.6 FEstimated survivor function and 95% confidence limits for S(t).

produce confidence bands that are such that there is a given probability, sucl
as 0.95, that the survivor function is contained in the band for all values of {
These bands will tend to be wider than the band formed from the pointwis
confidence limits. Details will not be included, but references to these method:

are given in the final section of this chapter. Notice also that the width of thes
intervals is very much greater than the difference between the Kaplan-Meie
and Nelson-Aalen estimates of the survivor function, shown in Tables 2.
and 2.3. Similar calculations lead to confidence limits based on life-table ane

Nelson-Aalen estimates of the survivor function.





