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%weibdiag (SURVDATA=ovdata, TIME=survtime, STATUS=status,
VSTATUS=0, XVARS=age treat, NXVARS=2, RSCORE=eta,
SIGMA=0.5489, QUTVALS=results);

proc print data=results;
run;
Again, plots constructed from the diagnostics produced by this macro can
easily be obtained.

12.4 Further reading

Allison (1995) provides a comprehensive guide to the SAS software for survival
analysis. Der and Everitt (2001) also include material on survival analysis in
their text on the use of SAS in data analysis. Therneau and Grambsch (2000)
give a detailed account of how SAS and S-PLUS are used to fit the Cox
regression model, and extensions to it. This book includes a description of a
number of SAS macros and S-PLUS functions that supplement the standard
facilities available in these packages. The use of S-PLUS in survival analysis
is described in Everitt and Rabe-Hesketh (2001). Venables and Ripley (2002)
show how to use the S environment as a powerful and graphical data analysis
system, implemented in S-PLUS, and include a chapter on survival analysis.
The use of Stata is illustrated in Rabe-Hesketh and Everitt (2000).
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APPENDIX A

Maximum likelihood estimation

This appendix gives a summary of results on maximum lileliliood estimation
that are relevant to survival analysis. The results presented apply equally
to inferences based on a partial likelihood function, and so can be used in
conjunction with the Cox regression model described in Chapter 3, and the
fully parametric models introduced in Chapters 6 and 6. A full treatment of

tl.ne theory of maximum likelihood estimation and likelihood ratio testing is
given by Cox and Hinkley (1974).

A.1 Inference about a single unknown parameter

Suppose that the likelihood of n observed survival times, t;, Loy by, IS &
function of a single unknown parameter /7, and denoted L(8). The mazimum
likelihood estimate of 3 is then the value /3 for which this function is a maxi-
mum. In almost all applications, it is more convenient to work with the natural
logarithm of the likelihood function, log L(/3). The value /3, which maximises
the log-likelihood, is the same value that maximises the likelihood function
itself, and is generally found using differential calculus.

Specifically, § is the value of 3 for which the derivative of log L(3), with
respect to f, is equal to zero. In other words, 3 is such that

dlog L(3) i -4
dg g

The first derivative of log L(/3) with respect to 3 is known as the efficient
score for 3, and is denoted u(3). Therefore,

__dlog L(3)
=i,

and so the maximum likelihood estimate of 3, 3, satisfies the equation
u(f) = 0.

The asymptotic variance of the maximum likelihood estimate of A can be
I'unm{ |I1'u||1

u(B)

(.1 J"Bl"'.-"‘..f'.‘“” 1) r. (A1)
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or from the equivalent formula,

(E {dloié(ﬁ)}z)_

The variance calculated from either of these expressions can be regarded as
the approximate variance of {3, although it is usually more straightforward to
use expression (A.1). When the expected value of the derivative in expres-
sion (A.1) is difficult to obtain, a further approximation to the variance of /3
is found by evaluating the derivative at /3. The approximate variance of A is

then given by
(d2 log L(3) )
d@? al
p a
The second derivative of the log-likelihood function is sometimes known as
the Hessian, and the quantity
_g [$ 18 L(B)
dg?
i called the information function. Since the information function is formed
from the expected value of the second derivative of log L(f), it is sometimes
called the ezpected information function. In contrast, the negative second

derivative of the log-likelihood function itself is called the observed informa-
tion function. This latter quantity will be denoted (), so that

i = - {LoslO}.

The reciprocal of this function, evaluated at f, is then the approximate vari
ance of 3 given in equation (A.2), that is,

var (B) ~ %

-1

var (B) ~ — (A.2)

The standard error of 3, that is, the square root of the estimated variance of

B, is found from

P 1
se —
v V{i(8)}
This standard error can be used to construct confidence intervals for /4.
In order to test the null hypothesis that # = 0, three alternative test statis
tics can be used. The likelihood ratio test statistic is the difference hetween the

values of —2log L(B) and —21log L(0). The Wald test is based on Lhe wladistic
A%i(A),

and the score test statistic 1s :
fu(0)}-
()

Fach of these statistion hng an agymptotic ehisguarod disteiboation on 1L,
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under the null hypothesis that 3 = 0. Note that the Wald statistic is equivalent
to the statistic .
B

se(8)’
which has an asymptotic standard normal distribution.

A.2 Inference about a vector of unknown parameters

The results in Section A.1 can be extended to the situation where n observa-
tions are used to estimate the values of p unknown parameters, 3y, fs, ..., By
These parameters can be assembled into a p-component vector, 3, and the
corresponding likelihood function is L(3). The maximum likelihood estimates

of the p unknown parameters are the values 81, 5s, ..., Bp, which maximise
L(B). They are therefore found by solving the p equations
dlog L ,B) ‘ —0
dﬁ, Bltieiil

fori'= 1,25 simultaneously.
The vector foz-med from f#, 0, ..., 0, is denoted B, and so the maximised
likelihood is L(B). The efficient score for 8;, j =1,2,...,p, is

dlog L(3)
u(g) = =228,
b d }Bj
and these quantities can be assembled to give a p-component vector of efficient

scores, denoted u(3). The vector of maximum likelihood estimates is therefore
such that
u(B) =0,

where 0 is the p x 1 vector of zeroes.
Now let the matrix H(3) be the b X p matrix of second partial derivatives
of the log-likelihood function, log L(8). The (j, k)th element of H(8) is then

8% log L(B)

0;608, ’
forj=1,2,....,p,k=1,2,...,p, and H(B) is called the Hessian matriz. The
matrix

1(8) = —H(B)

is called the observed information matriz. The (j, k)th element of the corre-
sponding ezpected information matriz is

_E (leogL(ﬁ))
0606 )
The vﬂrmu('e-covana.nce matrix of the p maximum likelihood estimates, ﬁl , ﬁz,
-, [}, written var (8), can then be approximated by the inverse of the ob-
served information matrix, evaluated at /3, s0 that

vn.r{fi) ~ I ().
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The square root of the (j, j)th element of this matrix can be taken to be the
standard error of §;, for j =1,2,...,p. .

The test statistics given in Section A.1 can be generalised to the multi-
parameter situation. Consider the test of the null hypothesis that :-.111 the
[B-parameters in a fitted model are equal to zero. The likelihood ratio test
statistic is the value of

2{log L(B) ~ log L(0) } ,

the Wald test is based on e
B I(8)8,
and the score test statistic is
u/(0) I~ (0)u(0).

Each of these statistics has a chi-squared distribution on p d.f. under the null
hypothesis that 8 = 0.

In comparing alternative models, interest centres on the hypothesis that
some of the S-parameters in a model are equal to zero. To test this hypoth-
esis, the likelihood ratio test is the most suitable, and so we only consider
this procedure here. Suppose that a model that contains p + ¢ parameters,
BiyBz2y. s Bps Ppsis - - -5 Bptqg, 15 to be compared with a model that only con-
tains the p parameters (i, 0z,...,0p. This amounts to testing the null hy-
pothesis that the ¢ parameters 3,1, Bpy2:- .- ”8“1“ in the model with p + ¢
unknown parameters are all equal to zero. Let 3, deELote the vector of es-
timates under the model with p + g parameters and 8, that for the model
with just p parameters. The likelihood ratio test of the null hypothes.is that
Bpt1 = Bp+2 = **+ = Ppiq = 0 in the model with p + g parameters is then
based on the statistic

2 {log L(B,) — log L(ﬁz)} ;

which has a chi-squared distribution on ¢ d.f., under the null hypothesi.s. Tl{ih‘
test forms the basis for comparing alternative models, and was described in
greater detail in Section 3.5 of Chapter 3.

APPENDIX B

Likelihood function for randomly
censored data

Suppose that lifetime data for a sample of n individuals is a mixture of event
times and right-censored observations. Denote the observed time for the ith
individual by ¢;, and let §; be the corresponding event indicator, i = 1,2,...,n
so that 6; = 1 if ¢; is an event time, and §; = 0 if the time is censored.

The random variable associated with the event time of the ith individual
will be denoted by 7. The censoring times will be assumed to be random,
and C; will denote the random variable associated with the time to censoring,
The value ¢; is then an observation on the random variable 7; = min(T;, C;).
The density and survivor functions of T; will be denoted by fr,(t) and St (),
respectively. Also, fe,(t) and S, (t) will be used to denote the density and
survivor functions of the random variable associated with the censoring time,
C;.

We now consider the probability distribution of the pair (73, 9;) for censored
and uncensored observations, respectively. Consider first the case of a censored
observation, so that §; = 0. The joint distribution of 7; and ¢; is described by

P('.I".;' = 0= 0) = P(C{ R f)

¥

This joint probability is a mixture of continuous and discrete components, but
to simplify the presentation, P(T} = t), for example, will be understood to be
the probability density function of 7}. The distribution of the event time, T
is now assumed to be independent of that of the censoring time, C;. Then,
P(C; =t,T; > t) = P(C; =) P(T; > t),
= fC¢ (t)S‘]"‘ (tJ}

so that
P(?‘i =1, 0; = 0) Si fca' (t)STi (t)
Similarly, for an uncensored observation,
Pln==t6 =1) = P(T; =1,C; > 1),
= P(T; =) P(C; > 1),
= fo (t)SCf (t)v

again assuming that the distributions of C; and T} are independent. Putting
these two results together, the joint probability, or likelihood, of the n obser-
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vations, t1,t2, ..., t,, is therefore
[T fn (60, (6} { o (8, (2 5,
=il

which can be written as

™ n
H fo(t:)' % Sc, (t:)* x H Fr(t:)% S, (8:)' .
i=1 i=1
On the assumption of non-informative censoring, the first product in this
expression will not involve any parameters that are relevant to the distribution
of the survival times, and so can be regarded as a constant. The likelihood of
the observed data is therefore proportional to

HfTi (ti)é‘ STs (ti)1_51v
i=1
which was given in expression (5.12) of Chapter 5.

It can also be shown that when the study has a fixed duration, so that
individuals who have not experienced an event by the end of the study are
censored, the same likelihood function is obtained. Details are not given here,
but see Klein and Moeschberger (1997) or Lawless (2002), for example.

APPENDIX C

Standard error of percentiles

In this appendix, an expression for the standard error of the percentiles of the
Weibull distribution is derived. More general results are given for the standard
error of the pth percentile in the Weibull proportional hazards model and the
general accelerated failure time model.

C.1 Standard error of a percentile of the Weibull distribution

In equation (5.25) of Chapter 5, the estimated pth percentile of the Weibull
distribution with scale parameter A and shape parameter v was shown to be

given by
) g 100 \1¥7
ek = [X]°g(100—p)J |

The variance of (p) is most easily found by first obtaining the variance of

log #(p). Now,
% 1 2 100
i) = =1 o
log t(p) p og{)\ log (100—13)}’

{r:l.J = log,i},

and so
logi(p) =

o

where

= loglo L
C¢p = loglog 00—p)

This is a function of two parameter estimates, A and 4, and so we can use the
result in equation (5.43) of Chapter 5 to obtain the approximate variance of
log t(p). From equation (5.43),

var {log#(p)} ~ (M)z s () (glog—f(pl)e -

) 0y
5 261";;(") 310;;{3’} cov (A, 4).
Now, the derivatives of log £(p) with respect to A and 4 are given by
dlogt(p) 1
e ol _5‘_’?,
dog !(p_) o ltp= lngé

L ¥ -][ 2



360 STANDARD ERROR OF PERCENTILES

and so the approximate variance of log {(p) is

N2 n
) (cp —log A) 2 (l:',!.J —log A)
Son2 var (A) + o var (¥) + T
The variance of £(p) itself is found from the result in equation (2.9) of Chapter
2, from which

cov(M,4). (C.1)

var {i(p)} ~ #(p)* var {log (p)}.

Therefore, from expression (C.1),
; i(p)* 2 A
var {800} = 520 {4 var (3) 4 3 (108 ) vr (9
+ 204 (cp —log :\) cov (M%) } !

and so the standard error of {(p) is the square root of this expression, that is,
i s e
se {i(p)} = (’p {'y var (1) + A2 (cp - logA) var (%)

+ 204 (t:,:U —log /\) cov (5\, ) }% . (C.2)

A 100(1 — @)% confidence interval for the true pth percentile is found from
exponentiating the corresponding confidence limits for log {(p). These limits
are

logt(p) + 2o/2 8¢ {log t(p)},

where se {logf(p)} is the square root of expression (C.1), and 2,5 is the upper
a/2-point of the standard normal distribution.

Note that for the special case of the exponential distribution, where the
shape parameter, 7, is equal to unity, the standard error of the estimated pth
percentile is

i(p)
se (A
5 (A).
From equation (5.15) of Chapter 5,
se(A) = A/,
where r is the number of death times in the data set, and so

se {t(p)} = t(p)/ V1,

as in equation (5.19).

C.2 Standard error of a percontile in the Weibull maodel

Using the parameterisation of the genersd Weitlmdl proportional hinzardi miodel
pdopted in Section 50O and elwowhore, Che estimated pth porcontile Tor an
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individual for whom the values of the explanatory variables form the vector

x is G
> 1 100 A
t(p) = —1 :
@) {.S«exp(ﬁ x) - (10{) _P)}

Again, the variance of log#(p) is found first, and writing

= loglo —l&

we get
2 il - A
log(p) = 5 (cp —logh—p3 m) : (C.3)

This is a function of the p- 2 parameter estimates A; 4 and fii, ;@2, carea fip, and
the approximate variance of this function can be found using a further gener-
alisation of the result in equation (5.43). This generalisation is best expressed
in matrix form.

Suppose that 6 is a vector formed from k parameter estimates, 81, 0, . .., O,
and that g(8) is a function of these k estimates. The approximate variance of
() is then given by

var {(0)} =~ d(0)’ var (8) d(8), (C.4)

where var (8) is the k x k variance-covariance matrix of the estimates in 8,
and d(0) is the k-component vector whose ith element is

99(6)
86.5 B

for § = 1,2k S
‘We now wrlte V for the (p+2) x (p+2) variance-covariance matrix of A, ¥

and By, Bz, . . . , fp. Next, from equation (C.3), the derivatives of log £(p) with
respect to these parameter estimates are

dlogi(p) 1
B AN

dlogi(p) ¢y —logh— Bz
o i '

dlogt(p) oy
;4

for j = 1,2,...,p, where z; is the jth component of @. The vector d(8)
in equation (C.4) can be expressed as —4 'dy, where dy is a vector with
components A1, '?_l{cp—log,i—)éfm}, and xq,®,...,x,. Then, the standard
orror of log {(p) is given by

se {logf(p)} =4/ (d,Vdy), (C.5)
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from which the standard error of #(p) itself is obtained using
se {i(p)} = t(p) se {logi(p)} (C.6)

Notice that for the null model, that contains no explanatory variables, the
standard error of logf(p) in equation (C.5) reduces to the result in equa-
tion (C.2).

C.3 Standard error of a percentile in the AFT model

The general accelerated failure time model for the random variable associated
with the survival time of the ith of n individuals, T}, is such that

log T = p+ aq1i + aa®e; + - - - + apy; + 06,

where 214, 94, ..., Tp; are the values of p explanatory variables in the model,
u is the intercept parameter, ¢ is the scale parameter, and ¢; has a particular
probability distribution. This model was considered in detail in Chapter 6.
On fitting this model, the estimated pth percentile can be expressed as

ti(p) = exp {6€;(p) + A+ Gyz1; + Bamo; + -+ + Gppi }

where €;(p) is the pth percentile of the distribution of ¢; and fi, &y, ds, ..., d,. 0
are the estimated values of the parameters in the accelerated failure time
model. See Table 6.2 of Chapter 6 for a summary of the possible forms of
Ei(p).

The estimated percentiles of the distribution of T} are functions of the pa-
rameter estimates in the log-linear accelerated failure time model, and so the
standard error of these estimates can be found using the general resulf in
equation (C.4). Specifically, the vector 6 now has p + 2 components, namely
iy @y, G, ..., 0,0, and var (@) is the variance-covariance matrix of these pa
rameter estimates. Equation (C.4) shows how the variance of a function of
the parameter estimates can be obtained from the vector of derivatives, d(@),
of the estimated percentiles. However, it is much more straightforward to firs(
obtain the variance of log #;(p), since the derivatives of log #;(p), with respect to
ft, 61, G, ..., Gp, G, are 1, Tyi, Tog, . . ., Tpi, €;(p), Tespectively. Equation (C.6) is
then used to obtain the standard error of the estimated percentile. Confidence
intervals for a percentile will usually be formed from an interval estimate for
logti(p). Note that most computer software for survival analysis can providoe
the standard error of specified percentiles.

APPENDIX D

Additional data sets

This appendix contains a number of data sets, together with some suggestions
for analyses that could be carried out. These data sets may be downloaded
from the publishers’s or author's web site, at the location given in the preface.

D.1 Chronic active hepatitis

In a clinical trial described by Kirk et al. (1980), 44 patients with chronic
active hepatitis were randomised to the drug prednisolone, or an untreated
control group. The survival time of the patients, in months, following admis-
sion to the trial, was the response variable of interest. The data, which were

given in Pocock (1983), are shown in Table D.1, in which an asterisk denotes
a censored survival time.

Table D.1 Survival times of patients
suffering from chronic active hepati-

fis.
Prednisolone Control
2 131* 2 41
6 140* 3 54
12 141~ 4 61
54 143 7 63
56" 145* 10 71
68 146 22 T p
89 148* 28 140*
96 162~ 29 146*
96 168 32 158
125* 173* 37 167"
128" 181~ 40 182*

Summarise the data in terms of the estimated survivor function for each
treatment, group. Compare the groups using the log-rank and Wilcoxon tests.
I”'{t Cox and Weibull proportional hazards model to determine the significance
of the treatment effect. Compare the results from these different analyses in
Lerms of the significance of the treatment effect, and. for the model-based
analyses, the estimated hazard ratio and corresponding 95% confidence limits.
Obtnin o log-cummulative hingard plot of the data, and comment on which
twothod of wnadyuis i (e most npproprinte



