EPIB 681: Proportional Hazards Model: how parameters fitted, and their uncertainty estimated; how survival curves obtained, etc

|

Déja
Regression Models (semiparametric)
* Model (event) rates or hazards p h reg

» Models are multiplicative in rates/hazards
linear predictors if work in log[rate] or log[hazard] scale

* Proportionality of rates or hazards p h reg
Constancy of rate ratio parameter over time-bands

» Avoid modelling the nuisance parts
don't fit parameters that (a) are not our focus (b) waste "d.f."

» Use risksets & conditioning to reduce # parameters

» Choice of Time-scale and "Time-zero" is important
(has implications for risksets)

» Models, and conditioning as a way of eliminating

parameters, applicable to matched case-control studies

and even to c-c and other (e.g. consumer choice*)
studies with no 'time' element

Homework: Fruitfly longevity / Clayton Hills Exercises Ch 30

Other Resources

e Texts[http://ww.epi.ncgill.calhanl ey/ c681/ cox]
Kleinbaum's 'Self-Learning' textbook, Chapter 3/4
Collett Textbook, Chapter 3/4

[http://wwv epi.ncgill.calhanl ey/c681/cox]

New

Regression Models (semiparametric)
* Proportional hazards model

* Relationship b/w S]t] for z=1 and S[t] for z=0 [corner]
one is a constant power of the other

» Two log[-log[S] ] functions should be parallel
* uses relationship S[t] = exp[-H[t]]
* H[t] is the integrated or "cumulative" hazard

* -log[S] = HIt], so -log[S4[t]] = HR " {-log[Solt] ] }

2 -log[S] curves should be proportional (easier to judge parallel)

» hazard functions may not be stable enough
(so cannot assess whether 2 h[t] curves are proportional)

» Fitting proportional hazards model to data

« estimating HR by (Partial) Likelihood approach

* "Information”: how sharp is curvature of LogL fn

* Estimating HR via SAS PROC PHREG/Stata

» Estimating hg(t) and Sp(t) [ the "corner"]

« Estimating Sx(t) [ X = a specified covariate pattern]

 Split Records
(also a way to handle time-dep. covariates)

* ML estimation for stratified survival data

Readings

[ http://ww. epi.nctgill.calhanley/c681/cox ]
Clayton&Hills, Ch 30, sections 4-6
Pair of expository articles by JH
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Proportional hazards model

Simplest case (1 covariate z, 2 levels/groups which we will refer to as 0
and 1)

Compared with reference individuals (group 0), who have a hazard hg|t]
a timet, those in group 1 have a hazard that is a constant times hg|[t], i.e.

ha[t] _
holt] = constant

{Selvin uses'c' and Collett uses'y ' for HR, the hazard ratio} .
Equivaently, one can write

h[t] = HR « ho]
The hazard ratio HR will be a number between 0 and infinity. To makeit

easer to fit this parameter without having to constrain it within these
bounds, it helpsto re express HR as

HR=eb {orInHR]=Db}
so that the model becomes

ha[t] = €0« ho[{]
or

In[hz=1[t]] = In[hz=0[t]] + be(z=1) .
One can think of the In[hg[t]] asthe intercept and z as the indicator
variable for group in aregression. Note that the 'intercept’ here is afull
hazard curve over t; Unlike the case of other regressions, here the
intercept may be of interest. However we may not have enough data to

estimate it well, especidly if, asis often the case, it varies considerably
over t, or we do not have many events.

Relationship between S[t] for z=1 versus S[t] for z=0[" corner" ]
If hy(t) = €l ho(t), andif H[t] istheintegrated hazard,
then the integrated (or "cumulative") hazard for z=1is
Ha(t) = € Ho(t),
S0 that the survival functions are

Si(t) =eH1)

=e®Ho® = [eto] €

= [500]® =[] PR

Thus, thelog[-1og] functions should beparallel,
log[ -log[S:(0)] ]

:Iog[-log[So(t)HR] ]
=log[ HR* —log[ So(t)] ]

:Iog[HR] +|og[—|og[So(t)] ]
and separ ated by the quantity log[HR].

Thus one canvisually estimate b =log [HR] from log[-log S] plots.
If limited data, the hazard functions may be too unstable to use.

The "basaline" hazard function hy(t) can be from some parametric family
[e.g. hp(t) = constant { negative exponentia distribution of failure times},
Weibull, ...] or can be unspecified. In the latter case, the mixture of a
parametric form for HR and a'free’ form for hy(t) is why the model is
called "semi-parametric”.
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More general case (1 covariate z, with possibly several levelsor possibly
continuous; or several covariates, continuous/discrete/mixed}

For short, refer to set of covariates{z1, z», ..., z«} as z ; without loss of
generdlity, refer to areference group of individuas as having{ z,=0,
2=0, ..., =0} as z=0).

Compared with reference individuals (group with z=0), who havea
hazard h[t] a timet, those with covariatevalues{zy, 2o, ..., z} havea
hazard that is some multiple times ho[t], where the multiple depends only
onzi.e.

hzt_
mH—HWH

or
hz(t) = HR(2) * ho(1)

Most often, HR(z) istaken aslog-linear i.e. thelog of HR(z) istaken as
linear inthe k parameters{b1, by, ..., by} i.e.

logl HR(2) ] = {b1z1 + bozp + ... + byz}
or
HR(z) = exp{biz; + boz, + ... + byz}.

Since
exp{b1z1 + bozo} = exp{b1z1} * exp{boz},

we can rewrite model as
hz(t) = HR(z1) * HR(z2) * ... * HR(z) * ho(t)

or

S0 =[] =[so] *Re+HR2* . +HR

where HRy isshorthand for exp{b;z;}, samefor HR, etc.

I mportant to have the "corner" covariate pattern near the actual z values
(s0, might want to 'center' the z valuesfirst, beforefitting.

Not precluded from using products or power s of the z's.

Fitting proportional hazards model: Risksets

Our primeinterest isin estimating the parameters of HR; we will also, as
asecondary objective, estimate hy(t). The keys to the estimation are the
Risk Sets, the collections of candidates for (individuals at risk just
before) each distinct failure time (event)

Simplest case (1 covariate z, 2 levels or Tx groups which we will
distinguish using indicator variable z= 0 and z=1). In e.g. below, a*
denotes afailure (event), a+ denotes a censored observation; and time
runs from left to right [note: to estimate HR function we do not need the

faillure & censoring times themselves, only their order with respect to z].

Raw data...

z=1

z=0 ° + °

It iseasier to lay them out as separate time lines [in the 'early days
before computers, some investigators would represent survival dataon

their patients using lines of thread along awall].

z=1 —-

2=l ————+

z=1 o

z=1 .

z=0 .

z=0 +

z=0 .
R skset # 1 2 3 4 5

Cox argued that since there are no failures (events) between the ¢'s, we
do not know much about the hazards in these gaps [unless we want to
posit parametric form for hg(t) or Sy(t)]. In any case our prime interest
isin HR, and so we will concentrate just on these risk sets.
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Estimating HR by (Partial) Likelihood approach

It helpsto lay it out the 5 risk sets as follows (note that in the 5th riskset
thereis'no contest') ...

0=d;
S1
mn

do

So
No

w|jw o AWE
whE N o
NNV Nk
RO ROR

1
0
1

In the Maximum Likelihood method, we find that value of the HR which
maximizes the likelihood of the obser ved data pattern (the sequence
isindicated in bold above) The likelihood isafunction of HR. To
construct it, we need a probability model for each table (ie for the
outcome in each riskset) and an assumption regarding the separate
tables. In the calculation of avariance for the MH datistic (log rank test)
we aready assumed that the 2x2 tables were realizations of
hypergeometric (urn sampling) models and that the tables could be
treated asif they were independent of each other. We could do the same
here to set up alikelihood.

For each risk set, we ask

" Given that the event occurred, what isthe chance that it ocurred
to theindividual it happened to, rather than to someone elsein the
risk set?"

Consider arisk set where the event happened at t to a person with z=1.

If the hazard for persons with z=1 is HRehq(t) and 1ehy(t) for those with
z=0, and if intherisk set there are n; and ng persons respectively, then
the [conditional] probability that the event happened to that particular
person with z=1 out of thery, and ng "at risk' is

HR « ho[t]
Ny e HRehg[t] + nge 1« ho[t]

which smplifiesto

HR
nme*HR + nge1

Conversdly, in arisk set where the event happened to a person with z=0.
then the [conditional] chance that the event happened to that particular
person with z=0 out of them and ng 'at risk' is

1
nmeHR + nge1

Thus, for the example above, the product of the probabilities of the
observed outcome (likelihood) in each of the 4 informative risksetsis

L= HR 1 , HR _ HR
“4HR+3 2HR+3 2HR+2 HR+1

Thislikelihood L(HR)= prob(data | H/I?) can be evaluated for arange of
HR valuesin order to find the value HRy;. which mazimises L. e.g.

HR 12 1 2 4 8 16
Lx10® 14 36 58 61 48 30

Thefunction L & derived functions are shown graphically on next page.
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Li kel i hood or inthelog Likelihood scale...

0. 006
LogL
0. 005 5.5
0. 004 6
0. 003
-6.5
0. 002
HR -7
0 10 20 30 40 50 B = Log[ HR]

Or with the parameter B = Log[HR] ... -1 0 1 2 3 4

Li kel i hood The Derivative of thelog Likelihood ...

0. 006} 2.

0. 005} 1 sl

0. 004¢ .| d LogL / dB

0. 003}

0. 002} 0.5¢

B = Log[ HR]
0. 001} . . . . . ,
| og[ HR] -1 0 1 2 3 4
-1 0 1 2 3 -0.5

Tangent to logL curveiszeroat B = 1.14 (wecall thisB_hat or b];

So... HRy = exp[b] = 3.14.

[}
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Uncertainty / Information concerning log [HR]

The 'sharpness or 'flatness of the logL (HR) curvein the vicinity of B =
1.14 gives an indication of how sensitive logL isto changesin log[HR]
i.e. of how well or badly other values of log[HR] would do in producing
alargelikelihood. This can be measured by the 2nd derivative of logL
(or if you like by the tangent to the 1st derivative curve) with respect to
B. Note that the L curveincreases until B = 1.14 then decreases. Thus
the dope diogL /dB goes from positive to negative over thisrange. ie the
2nd derivative is negative. Since we are Ssmply interested in the curvature
we use the negative of the 2nd derivative; it will be abig positive quantity
when the curvature is very sharp, and asmall positive quantity when the
curvatureisvery dow.

The plot below shows that the curvature of logL is quite small
(approximately 0.7412 at B = 1.14). This negative of the 2nd derivative
of thelog likelihood, evaluated at the ML estimate, is called the
"Information" in the data. Its reciprocal is agood measure of the
variance of the ML estimate of B.

1
0.8/ N
0.6 - d(dLogL/ dB) / dB
0.4
0.2
B

-1 0 1 2 3 4
We usualy work with B =log[HR], since the sampling variability of bis
more symmetric. The I[B] calculated at b = 1.14 is approximately
0.7412, yielding SE[b] = ((1/0.7412) = 1.16, yielding a 95% CI for
HR=exp[B] of {0.3to 31} .The 4 informative risk sets provide just a

small amount of information about log[HR] and our confidence in
values near the ML estimateislow.

6

Estimating HR via SAS PROC PHREG (Stata below)
DATA a;
INPUT event tine tx ; /* Note arbitrary times */
LI NES; /* only CRDER matters */

1 2 1 /* event=0 stands for censored obsn. */

0 4 1

1 6 0

1 8 1

0 10 0

1 12 1

1 14 0

title null nodel; proc phreg data = a
model time*event(0) = ;

Dependent Variable: TIME Nurmber of Event & Censored Val ues
Censoring Variabl e: EVENT

Censoring Val ue(s): Tot al Event Censored % ensored
Ti es Handl i ng: BRESLON 7 5 2 28.57
NOTE: No expl anatory variables in this nodel. -2 LOGL = 11.27

JH LOGL =log[{1/7} x {1/5} x {1/4} x {1/2})] = LO§ 1/280] = -5.63

title nodel with tx; proc phreg data=a;
model tinme*event(0) = tx / RISKLIMTS;

Testing dobal Null Hypothesis: BETA=0
Wt hout Wth Covari ates
-2 LGGL 11.27 10.15

Model Chi - Squar e
1.12 with 1 DF (p=0.29)

M. Esti nates

Paraneter Standard Wald Pr > R sk* 95% CL
Variable Estinmate Error Chi-Sg hi-$q Ratio Lower  Upper
X 1.14 1.16** 0.9685 0.33 3.14 0. 32 30.6

*  Technically speaking, should be called Hazard Ratio; Obtained as exp[1.14]
**  See 2nd Derivative graph on left:  SE[b] = Sgrt[var] = sgrt[1/Information]

Stata (after input, using same variable names as above)
stset time , failure(event)

* nul | m)d_el
stcox, estinmate

* model with tx ..
stcox tx, nohr

* nodel with tx ..
stcox tx

gi ves beta hats, not HR hats

gives HR hats, not beta hats
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Estimating hg(t) and Sy(t) [see Collett 83.8]

Once one has estimated HR, using FRy = exp[ /BM L], one can estimate
the baseline hazard (and S) via a procedure similar to the Kaplan-Meier
product method. One might have expected this type of non-parametric
approach, since no form is specified for hy(t).

One uses al the events (in both groups) even though the estimateis
supposed to represent individuals with z=0. The reason for thisisthat in
adataset with continuous covariates, there may be nobody with the
specific configuration of z'sthat one considers the 'reference’ population.

Aswith al modelling and regression, we are being 'synthetic’ and
borrowing strength from al thedata. As Collett explains, the derivation
is complex, but one can get some sense of the logic from the 2-sample
case where there isone event at atime [see Collett's ‘particular case
following his equation 3.16]. The way JH thinks of it isto imagine atwo
sample situation where we were given 2 samples of death times, 1 for
males and 1 for females (reference group), and told that the ratio (HR) of
the death rates in the population of males and females was say 2. Would
you just estimate aK-M curve for females using the data for females and
call it your best estimate of the 'reference’ of female S or would you try
to use al the data, including the deaths from males, to estimate a better
K-M curvefor females?

Cox [and later Kalbfleisch and Prentice] take the 'synthetic' approach.
One estimates a quantity Collett callsx for each riskset. Thisisthethe
‘conditional probability of survival'; estimates of these various success
probabilities are multiplied together to give the unconditional probability

X1 of surviving past the time of the 1st riskset, x1x» for surviving past the
2nd, etc asin the K-M approach.

If there are multiple events per riskset, one must iteratively solve equation
3.16 for x1. If thereisonly one, X, can be calculated directly as

/\_{ }1/HR
X= 1‘a° HR

where HR isthe calculated HR for the individual who suffered the event,
and the summation of the HR'sfor all the personsin the risk set.

To go back to our example of males and females and aHR of 2 for
malesrelativeto a"1" for females: suppose the risk set had 100 men and
50 women. From a hazard point of view, one can think of thisas

100" 2 + 50" 1= 250 "women equivalents'
at risk. Now if the one event occursto awoman, that is like saying that
we had afailure of 1/250 and thus

A—{l 1}1/1_{1 1 VY1 249
X=117aHR = ~ 250 = 250

If however the one event occursto aman, that islike saying that we had a
failure of 2/250 (or a success of 248/250) in two trials, so that in 1 tria
of 250, we should have a success of

{ aHR}llz { 250}U2@24§5%98
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Obvioudy, in smaller n's the differences would be more dramatic. For
example, with the data above, we had HRy. = 3.14 which for simplicity
wewill roundto HRy = 3. Thusin the 5 risksets, we had the
following structure

o=d; 1 0 1 1 -
1 3 2 1 0 -
n 4 2 2 1
d O 1 0 0 1
s 3 2 2 1 0
n 3 3 2 1 1
or in "z=0 equivaents', replacing each person in z=1 group with HR=3
o=d; 3 0 3 3 -
s1 9 6 3 0 -
n 12 6 6 3
d O 1 0 0 1
S 3 2 2 1 0
n 3 3 2 1 1

or, summing and putting al individualsinto "z=0 equivalents'...
do 3 1 3 3 1
S 12 8 5 1 0
No 15 9 8 4 1

N
Then the x 's are estimated as

{12 1/3 8 {5}113{4}1/3

or 0.93 089 0.86 0.63

yielding a Product Limit estimate of the § ] function for the z=0 group:

100 093 083 071 044 O
For the z= 1 group, the corresponding estimateis
1.00 0.933 0.83%3 0.713 0443 0

or
100 080 057 036 009 O

or (roughly)
&y(t) (estimated from 5risk sets)  and S(t) = { So(t) }3

0.83

0.71

0.44

0.00

to ty t t3 ty ts
Following isthe estimate of Sp(t) and S;(t) produced by PHREG.

First one must set up afile with the covariate patter ns for which one
wants survival (and other) curves.. Here there isjust one covariate z, with
2 values, so there are only 2 possible covariate patterns.

1. 2.

DATA cov_val s; title nodel with tx, and obtain curves;

| NPUT tx ; proc phreg data=a;
LI NES; nodel time*event(0) =tx / RSKLIMTS;
0 BASELI NE OUT = curves
1 COVARI ATES = cov_vals
; SURVI VAL = SURVI VAL
RUN LOGSURVY = LOGSURV
LOGLOGS = LOGLOGS;
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PROC PRI NT DATA=curves ROUND; RUN;
X TI ME SURM VAL LOGSURV LOGA.OGS

0 0 1.00 0.00 .
0 2 0.93 -0.07 -2.63 *
0 6 0.83 -0.19 -1.68 **
0 8 0.71 -0.34 -1.08 ***
0 12 0.45 -0.79 -0.23 *x*x
0 14 0.00 . .
1 0 1.00 0.00 . (difference)#
1 2 0.80 -0.23 -1.49 * (1.14)
1 6 0.56 -0.58 -0.54 ** (1.14)
1 8 0.35 -1.06 0.06 *** (1.14)
1 12 0.08 -2.48 0.91 **** (1.14)
1 14 0.00 . .

0.57* 0 1.00 0.00

0.57 2 0.87 0.14 1.98

0.57 6 0.70 -0.36 -1.03

0.57 8 0.52 -0.65 -0.43

0.57 12 0.22 -1.52 0.42

0.57 14 0.00 .

* 0.57 is the average, in the dataset, of the z val ues

# It is not a coincidence that there is a constant difference of 1.14
between thetwo FITTED log[ - log[S] ] curves: thisis a consequence
of the proportiona hazards assumption..

Plotting the EMPIRICAL log[ - log[S] ] curvesto seeif they are
reasonably parallel allows a visual check on the proportional
hazar ds assumption.

Stata

* store fitted survival for baseline group into new variable called s
stcox tx, basesurv(s)

* generate corresponding curve for tx=1 .. * ="to power of')
gens 1=s"(exp(1.14))

* graph -log[S] i.e., cumulative hazard curves (na= Nelson-Aalen)
stsgraph, na by(tx)

* graph -log[-log[ S]] versustime, so check if parallel
stsphplot, by(tx)

* stcoxkm plots Kaplan-Meier observed survival curves and compares
them to the Cox predicted curves for the same variable.

ML estimatesfor stratified survival data
(exercise.. follow Fig 3in part |1 of JH's expository article)

Consider the following pattern of observations for two treatments where
* denotes afailure (event) and + denotes a censored observation and
time runs from left to right. The observationsare in 2 strata.

Stratum 1
Rx1 ° + ° °
Rx2 . + .

Stratum 2
Rx1 - + °
Rx2 + ° °

The above cd culations used the data for stratum 1.
For the second stratum
a setuptherisk sets.

b set upthelikelihood contribution from each set and the overall
likelihood for the stratum (follow e.g. of stratum 1)

¢ cdculatethelikelihood for severa values of b

d draw asmooth sketch of the likelihood function (the numbers may
be so tiny that you prefer to plotting the log of the likelihood
function)

e at what value (approx) of b isthe function a maximum®?

f caculate numericaly the 1st and 2nd derivatives of the log likelihood
function in the neighbourhood of b_hat

Multiply thelikelihood (or add thelog Likelihoods) from the 1st
stratum and thelikelihood from b to produce the overall
likelihood (or log Likelihood) from the 2 strata combined. Then
maximize the combined likelihood (or log likelihood).

Individuals from different strata cannot be in same riskset
(but, if stratatoo fine, may have uninformative risksets)



