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iduals lost or withdrawn during the follow-up years. Instead of using
0.5 years of risk, the exact total time contributed by individuals lost or
withdrawn can be directly calculated and produces the exact number
persons at risk. The difference between the exact and approximate
approaches is inconsequential in this example. The 9-year probability
using the exact follow-up times is 0.869 for individuals with body-mass
indexes in the upper quartile and 0.913 for the “normal” body-mass
individuals, compared to the approximate (@, = 0.5) values 0.867 and
0.911, respectively. In other study settings, however, individuals lost or
withdrawn from follow-up may have different outcome experiences,
necessitating careful selection of an adjustment method when exact
values are not available.

Three assumptions about the structure of the sampled population
are made to calculate a survival curve using life-table techniques. First,
all lost and withdrawn subjects are assumed to contribute, on the
average, half the survival information of an individual followed for a
complete year (or complete time interval). Second, the data collected
for a number of cohorts are combined to maximize the number of
observations available in each time interval to calculate the probability
of death. To give an unbiased estimate of survival probabilities, all
cohorts must experience the same pattern of mortality during the
follow-up period (again, the absence of interaction permits the data to
be combined). In terms of the kidney cancer data, the individuals who
entered the study in 1947, for example, are assumed to have the same
pattern of mortality as the patients who entered in 1951, which allows
the data from both groups to be used in the calculation of the
probability of surviving the first year after diagnosis. The third
assumption is that the lost and withdrawn individuals have the same
probability of death as the individuals remaining in the follow-up data
set. This conjecture is probably the most tenuous when applied to
individuals lost from observation. Situations certainly arise where other
assumptions make sense. For example, if it is assumed that all
individuals classified as lost actually survived, then

d, + 0.5w, ¢ d,
D . 9.30
qx L o 4= 05, (9.30)
or, if all individuals lost in fact died, then
d. + 0.5 “ d 0.5
q; — X + (ux + wqu) or qz — X + ux . (9.31)
l I, — 0.5w,

The probabilities ¢, and gy represent the extremes in terms of the
impact of the lost individuals on the calculation of the ¢,. These two
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extremes applied to the kidney cancer data yield 5-year survival
probabilities of P = 0.454 if all lost patients survive and Py =0.387if
all lost patients die.

Life-Table Measures of Specific Causes of Death

Hundreds of causes of death act simultaneously within human popula-
tions. Two approaches based on life-table methods provide an oppor-
tunity to isolate the individual impact of specific causes on the pattern
of human mortality. These methods help resolve two questions:

1. What is the age structure throughout the life span associated with
specific causes of death, taking into account other causes?

2. How does the probability of death from a specific cause change when
other causes are “‘eliminated” from the population?

The first question is answered by applying a multiple cause life table
(also called a multiple decrement life table). The second question is
addressed by a competing risk analysis.

Multiple Cause Life Table

A multiple-cause life table is similar to the single-cause life table but is
used to describe simultaneously the mortality patterns of a number of
diseases in a population. The goal of such a table is to organize and
display the age structure of individuals dying of specific causes. The
mechanics of constructing these age distributions are defined and
illustrated by a set of data consisting of California resident males who
died during 1980. The causes of death come from death certificates,
classified according to the ninth revision of thé International Clas-
sification of Diseases (ICD9) [Ref. 4]. These deaths are classified into
four categories—death from lung cancer (ICD9, code 162), deaths
from ischemic heart disease (ICD9, codes 410 to 414), deaths from
motor vehicle accidents (ICD9, codes E810 to E819), and deaths from
all other causes. Also necessary is a series of age-specific population
counts—the 1980 U.S. Census counts of California male residents are
used. The following life-table construction is abridged, which means
that the lengths of the age intervals are not consistently 1 year. Most
age intervals are 5-year lengths (represented as n,; for example, ngo = 5
years).

The basic components required to construct a multiple-cause life
table are the total number of deaths, the age-, cause-specific numbers of
deaths and the age-specific midyear populations. That is,
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D, = total number of recorded deaths in the age interval x to x + n,
DY = number of recorded deaths from ith cause in the age interval x to
x + ny, and
P, = total number of individuals at risk ages x to x + n, at midyear.

These quantities for male residents of California (1980) are given in

Table 9.11.
Average age-specific mortality rates calculated from Table 9.11 are

R, = D,/P, for the age interval x to x + n, and, similar to the single-
cause, complete life table,

anx
= 11 05n,R, (932)
is again the conditional probability of death, where n, is the length of
interval starting at age x. These probabilities are an extension of those
calculated in the single-cause life table [expression (9.4)] applied to age
intervals with widths of n, years. The value ¢, is, as before, the
conditional probability of death between ages x and x +n, for

Table 9-11. Deaths from four causes: California, males, 1980

P, DY DY D& 25

Age Population  Lung cancer IHD  Motor  All other

0-1 193,310 1 2 3 2,507

1-4 515,150 1 3 58 375

5-9 843,750 0 2 90 195
10-14 915,240 0 1 80 248
15-19 1,091,684 3 1 523 1,162
20-24 1,213,068 4 6 965 1,507
25-29 1,132,811 3 13 627 1,665
30-34 1,008,606 12 63 437 1,547
35-39 776,545 36 136 277 1,371
40-44 629,452 85 306 201 1,510
45-49 578,420 225 567 197 2,115
50-54 578,795 445 1,050 150 3,163
55-59 573,119 786 1,807 147 4,663
60-64 467,607 1,059 2,528 129 5,603
65-69 378,259 1,297 3,328 97 7,014
70-74 269,849 1,266 3,815 89 7,423
75-79 175,580 941 3,793 99 7,508
80-84 95,767 557 3,452 44 6,202
85+ 78,832 430 5,249 61 8,222
Total 11,515,844 7,151 26,122 4,274 64,000
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individuals alive at age x. For example, the probability of death for
individuals age 60 before age 65 is
5(0.0199) 9319

= DU 0.0949, where Rgo = —o—— = 0.0199.  (9.33
960 = 1770.5(5)0.0199 WhETE F60 = 467607 (9.33)

To “fine tune” these calculations, the 0.5 in the denominator is
sometimes replaced by better estimates of the average time lived by
those who died. The use of values other than 0.5, however, has little
impact on the final calculations for data covering the entire life span.

To compute the cause-specific conditional probabilities of death, the
¢, values are distributed proportionally (prorated) by the observed
numbers of death. Since

(i)
@ _ n, Dy

n,D,
& =P ¥ 0.5n,D,

d o MUx
e == 05n,D,

(9.34)

then

(0
0 x

x Dx 9x-

(9.35)

Continuing the illustration for the age interval 60 to 65, the
probability of dying from lung cancer between ages 60 and 65 for
individuals age 60 is

(tung) __ 1_(@0 0949 = 0.0108 (9-36)
00 = 9319 o '

The value ¢! is the age-, cause-specific conditional probability of death
before age x + n, for those alive at age x. These conditional proba-
bilities for the illustrative data are given in Table 9.12.

Since all causes of death are included, ¢, = Z ¢. The ¢© values
calculated from the California mortality data indicate that the cause-
specific conditional probabilities for lung cancer (¢'!) increase rapidly
after age 40 until about age 70 and then increase less rapidly in the
older ages. The same probabilities for ischemic heart disease (IHD)
(¢} also increase sharply at about age 70 but are generally associated
with older individuals (shifted to the right). The conditional proba-
bilities describing deaths from motor vehicle accidents (¢), however,
increase until ages 20 to 25, decrease and remain fairly constant until
age 70 and then sharply increase again. The cause-specific probabilities
for three causes of death are shown in Figure 9.4 (smoothed).

Again parallel to the single-cause life table, an arbitrary number of
individuals (l;) can be distributed according to the conditional
probabilities of death to produce the distribution of the number of life-



Table 9-12. Conditional probabilities: California, males, 1980

9 ¢ i ¢ g

Age Total Lung cancer IHD  Motor All others

0-1 0.01292 0.00001 0.00001 0.00002 0.01289

1-4 0.00339 0.00001 0.00002 0.00045 0.00291

5-9 0.00170 0.00000 0.00001 0.00053 0.00115
10-14  0.00180 0.00000 0.00001 0.00044 0.00135
15-19  0.00771 0.00001 0.00000 0.00239  0.00530
20-24  0.01018 0.00002 0.00002 0.00396 0.00618
25-29  0.01014 0.00001 0.00006 0.00275 0.00731
30-34  0.01016 0.00006 0.00031 0.00216  0.00763
35-39  0.01165 0.00023 0.00087 0.00177  0.00878
40-44  0.01656 0.00067 0.00241 0.00158 0.01190
45-49  0.02648 0.00192 0.00484 0.00168 0.01804
50-54  0.04069 0.00377 0.00889 0.00127  0.02677
55-59  0.06256 0.00664 0.01527 0.00124 0.03941
60—-64  0.09492 0.01079 0.02575 0.00131  0.05707
65-69  0.14397 0.01591 0.04082 0.00119  0.08604
70-74  0.20896 0.02101 0.06330 0.00148 0.12317
75-79  0.29891 0.02279 0.09187 0.00240  0.18185
80-84  0.42235 0.02294 0.14217 0.00181  0.25543
85+ 1.00000 0.03080 0.37595 0.00437 0.58888

Table 9-13. Deaths from four causes: California, males, 1980

Ly a® P da® a®

Age Total Lung cancer IHD  Motor  All other

0-1 1,000,000 5 10 15 12,885

1-4 987,084 8 23 444 2,869

5-9 983,740 0 12 524 1,136
10-14 982,069 0 5 429 1,329
15-19 980,305 13 4 2,339 5,197
20-24 972,751 16 24 3,849 6,012
25-29 962,850 13 55 2,651 7,040
30-34 953,091 56 296 2,054 7,272
35-39 943,412 217 821 1,673 8,280
40-44 932,421 624 2,248 1,476 11,091
45-49 916,982 1,760 4,435 1,541 16,543
50-54 892,703 3,362 7,933 1,133 23,896
55-59 856,379 5,689 13,078 1,064 33,748
60-64 802,800 8,659 20,671 1,055 45,814
65-70 726,601 11,560 29,663 865 62,517
70-74 621,996 13,066 39,374 919 76,611
75-79 492,026 11,214 45,203 1,180 89,476
80-84 344,954 7,913 49,042 625 88,111

85+ 199,263 6,137 74,913 871 117,343
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Figure 9-4. Cause-specific probabilities of death for three specific causes
(lung cancer, ischemic heart disease, and motor vehicle accidents) for California
males, 1980.

table “deaths” for a population with a pattern of age-specific mortality
described by the estimated ¢ values. The cohort constructed from the
California data is shown in Table 9.13.

The life-table deaths given in Table 9.13 come from applying the
relationship ‘

49 = 1.¢? (9-37)

where, as before, [, represents the number of persons alive at the
beginning of age interval x. For example, the number of persons age 60
who die from lung cancer between age 60 to 65 is

4% = 802800(0.0108) = 8659. (9.38)

An additional table calculated by accumulating the deaths in each
cause-specific category is also a useful description of the life-table
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population. These sums represent the number of individuals who reach
age x and will ultimately die of a specific cause. In symbols,
WO =d® 4+ 49, + - +d? (9.39)

and to illustrate
Wg"(‘,“"’ = 8659 + 11560 + --- +7913 + 6137 = 58550 (9.40)

is the number of individuals who reach age 60 who will eventually die
of lung cancer. Again for the California data, see the values in Table
9.14.

The cumulative numbers of deaths provide the values necessary to
estimate the probability of death before age x for each cause. That is,
for the ith cause

we
D] ——% 9.41
FQ =1 Wo (9.41)
is the probability of dying before age x. Among individuals dying of
lung cancer, the probability of dying before age 60 is
58550

oy — | .~ =0.1673, 9.42)
Fes ! 70313 (

Table 9-14. Expected number of deaths after age x: Califor-
nia, males, 1980

ww we we w®
Age Lung cancer IHD  Motor  All other
0-1 70,313 287,809 24,707 617,171
1-4 70,308 287,799 24,691 604,285
5-9 70,301 287,776 24,248 601,416
10-14 70,301 287,765 23,723 600,280
15-19 70,301 287,759 23,295 598,951
20-24 70,287 287,755 20,955 593,754
25-29 70,271 287,731 17,106 587,742
30-34 70,259 287,676 14,455 580,702
35-39 70,202 287,380 12,401 573,430
40-44 69,985 286,558 10,728 565,151
45-49 69,360 284,311 9,251 554,059
50-54 67,601 279,876 7,711 537,516
55-59 64,239 271,943 6,577 513,620
60—64 58,550 258,865 5,513 479,872
65-69 49,891 238,194 4,459 434,058
70-74 38,330 208,531 3,594 371,540
75-79 25,264 169,157 2,676 294,929
8084 14,050 123,955 1,496 205,454

85+ 6,137 74,913 871 117,343
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or about 179, of the lung cancer deaths occur before age 60. Table 9.15
shows cumulative probabilities of death (F_ values) for the California
1980 data.

The age structure for each cause of death throughout the life span is
apparent from the F, values and the patterns for separate causes of
death can be contrasted. For example, 789, of all motor vehicle
accident deaths occur by age 60, while 179%, of lung cancer deaths occur
before age 60. These cumulative distributions are shown in Figure 9.15,
and a few representative summary values are given in Table 9.16.

The cumulative distributions reveal the distinct pattern of mortality
associated with three specific causes. Motor vehicle accidents, expec-
tedly, have the greatest impact at the younger ages, while, perhaps less
expectedly, the ischemic heart disease is associated with the older ages,
producing a median age at death of 78.8 years.

Lifetime Probability of Death

A multiple-cause life table allows a direct calculation of the lifetime
probability of death from a specific cause, which is occasionally a useful
summary of risk. The probability of dying from a specific cause is

Table 9-15. Cumulative distributions for four causes of
death: California, maies, 1980

FO F® F F®

Age Lung cancer THD  Motor  All other
0-1 0.00000 0.00000 0.00000  0.00000
1-4 0.00007 0.00004 0.00062 0.02088
5-9 0.00018 0.00012 0.01859  0.02553
10-14 0.00018 0.00016 0.03980 0.02737
15-19 0.00018 0.00017 0.05716  0.02952
20-24 0.00037 0.00019 0.15184 0.03794
25-29 0.00060 0.00027 0.30764 0.04768
30-34 0.00078 0.00046 0.41494  0.05909
35-39 0.00158 0.00149 0.49809 0.07087
40-44 0.00467 0.00435 0.56580 0.08429
45-49 0.01355 0.01216 0.62555 0.10226
50-54 0.03858 0.02757 0.68792  0.12906
55-59 0.08640 0.05513 0.73379 0.16778
60—-64 0.16730 0.10057 0.77685  0.22246
6569 0.29045 0.17239 0.81954 0.29670
70-74 0.45486 0.27545 0.85453  0.39799
75-79 0.64069 0.41226 0.89171 0.52213
8084 0.80018 0.56932 0.93946 0.66710

85+ 0.91272 0.73971 0.96476  0.80987
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Figure 9-5. Cumulative distributions of age at death for t.hree specific causes
(lung cancer, ischemic heart disease, and motor vehicle accidents) for California

males, 1980.

estimated by the number of people who died of that cause divided by
the number of persons who could have died (those at risk). The .table (?f
the expected numbers of deaths after a specific age contains this
information (Table 9.14). The first row in the table contains the to.tal
number of individuals ultimately dying from each cause over the entire
life span. Since 1,000,000 males make up the 1980 California life-table
“population at risk” (sum of the first row of Table 9.14), then

P(dying from lung cancer) =70,313/1,000,000=0.070

P(dying from ischemic heart disease) =287,809/1,000,000=0.288

P(dying from motor vehicle accident) =24,707/1,000,000=0.025
(

P(dying from other causes) =617,170/1,000,000=0.617

Table 9-16. Median age (as well as 25th and 75th percentiles) at death

Median  25th percentile 75th percentile

Lung cancer 71.98 64.45 78.1(7)
Ischemic heart disease 78.82 69.34 86.

Motor vehicle accidents 36.40 24.20 58.09
Other causes 75.03 63.16 83.79
All causes 74.64 63.37 83.86
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are the lifetime probabilities of dying from any one of the three specific
causes.

Each row in the table allows the estimation of the lifetime probabil-
ity associated with individuals of a specific age. For example, for males
age 60, the lifetime probability of dying of lung cancer is
58,550/802,800 = 0.073, where 802,800 is the number of individuals
alive at the beginning of the age interval 60—65 (the sum of the row age
60-65) and 58,550 is the number who died of lung cancer after age 60.
Three cause-specific conditional probabilities for the 1980 California
data are:

P(dying from lung cancer after age 60) = 58,550/802,800=0.073

P(dying from ischemic heart disease after age 60) =258,865/802,800 = 0.322
P(dying from motor vehicle accident after age 60) =5,513/802,800 =0.007
(

P(dying from other causes after age 60) =479,872/802,800 = 0.598.

The cumulative probability of death from a multiple-cause life table
is related to the lifetime probability of death from a specific cause. The
probability 1 — F@ is the conditional probability of death after age x
among those who ultimately die of cause i. The lifetime probability of
death from a specific cause ¢ is the conditional probability of death from
cause i for all individuals who reach age x. That is, the first probability
is P(death after age x|death from cause i) and the second is P(death
from cause 7|death after age x). Specifically, 1 — F{5"® — P(death after
60|death from lung cancer) = 58,550/70,313 = 0.833 and P(death
from lung cancer|death after 60) = 58,550/802,800 = 0.073.

Competing Risks

British statistician William Farr (1875) was among the first to discuss
the problem of estimating the risk of one disease while other risks are
operating in the studied population. This problem was also explored by
the early French mathematicians Bernoulli and D’Alembert and later
by a British actuary Makeham. The issues are neatly summarized by
the following simple example given by J. Berkson and L. Elveback
[Ref. 5]:

Two marksmen shoot at a range of targets under conditions in which, ifa
target is struck, it instantly drops from view so that it cannot be struck
again. Represent the striking rate of marksman 1, that is the probability
of a hit when he is firing alone, as Q| and similarly the rate of marksman 2
when he is firing alone as Q,. The probability when one risk operates
alone is called the net risk or rate and is represented by upper case Q;

when it operates together with another risk it is called the crude risk or
rate and is represented by lower case g.
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Suppose N targets are exposed and marksman 1 shoots first, followed by
marksman 2:
Rate for 1 is ¢; = Q4;
Rate for 2is ¢ = (1 — Q;)Q;
Total rateis g=¢; + ¢, = Q; + Q, — Q1 Q..
Suppose marksman 2 shoots first, followed by marksman 1, then:
Rate for 2 is g5 = Q5;
Rate for lis ¢; = (1 — Q,)Q.4;
Total rate is ¢ = ¢; + ¢ = Qs + Q, — L1 Qo

It is seen that the total crude rate with both marksmen shooting is the
same, whichever marksmen shoots and assuming independence of the net
probabilities Q; and Q,, this will be true in general. Regardless of the
ordering of the shooting or whether the two marksmen shoot together, the
total crude rate is given by the “total rate,” which, of course, can be
derived as the complement of the product ‘of the probabilities,
P,=1—~Q, and P, = | — Q,, of not being struck (survival rate).

If, from independent trials, we know @, the net rate of marksman 1,
and have a record of ¢, the crude rate when both shot together, we can

',

derive the net rate Q, from “total rate”:

_‘I_QA .
Q'Z_I—Q,,' (9.43)

Rarely are the net probabilities Q ; or Q , known, but, rather, the crude
probabilities ¢;, ¢,, and ¢ can be estimated from c.ollected '(?ata.
Manipulation of these crude probabilities, under specific conditions,
allows estimation of the net probabilities from observed data.

For the following discussion of competing risks, it is assumed tha‘t
only two causes of death are of interest and only a single age interval is
considered (simply 0 to 1). These two assumptions do not affe(.:t.the
principles underlying the competing risk argument (mathf:matxcw.ns
say, ‘““there is no loss of generality”) and simplify the notation.

The formal definitions of the two central probabilities are:

Crude probability: ¢; = the probability an individual who is alive at
the start of the interval dies from cause i in the presence of cause j,
sometimes called the mixed probability of death. o

Net probability: Q; = the probability an individual 'V.VhO is alive at
the start of the interval dies from cause i when cause j is not present,
sometimes called the pure probability of death.

The marksman example shows a relationship between the net and
crude probabilities [expression (9.43)], but is not much use unles.s one
of the net probabilities is known. To estimate the net probabilities
further statistical structure is needed. First, assume that the net
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probabilities are described by exponential functions, where 4; and A,
are hazard rates associated with causes 1 and 2, respectively, and where

Qi=1—¢* and Q,=1—¢" (9.44)
and, second, that the probability of surviving the interval is
P(surviving) =P Py = (1- Q) (1-Qp) = (e M) (e H)=e ¥ "hm ™4
(9.45)

where 4 =1, + 1,. That is, cause 1 and cause 2 are statistically
independent. Cause 2 can be thought of as a specific cause of death and
cause 1 as all the other causes combined. Then, the net probability Q
describes the likelihood of death as if death from cause 2 was not
possible (cause 2 “removed”’). The exponential survival model will be
explored in more detail in the next chapter.

Expression (9.45) for the probability of surviving the interval is valid
only when cause 1 and 2 are statistically independent. Although death
from cause 1 is mutually exclusive of death from cause 2, it is still
important that the mechanisms underlying these two events act
independently. In terms of the marksman example, independence
means that the hits and misses of one marksman do not influence the
accuracy of the other marksman and conversely. Equivalently, cause of
death 1 is assumed not to be related in any way to cause of death 2.
Independence of causes of death is certainly not a realistic assumption
for some diseases, particularly chronic diseases. The influence of non-
independence of diseases on the estimate of the net probabilities has not
been extensively studied.

These two assumptions (exponential survival and independence)
make it possible to estimate the risk from one cause while the other
cause is “‘removed” from consideration (net probability). To estimate
the net probability of death, a bit of algebra relates the crude and net
probabilities. Consider ¢ = crude probability of death in the interval,
death from either from cause 1 or 2, then

P(death) =g=1— PPy =1—¢ * (9.46)

Note that the crude probability has the same form as both net
probabilities. Furthermore,

(l—g)¥t="%=p, giving Q,=1—P=1~(1—g"%  (947)

This basic relationship [expression (9.47)] allows the estimation of
the net probabilities since the ratio of the two hazard rates A4,/1 is
estimated by d;/d, where d; represents the number of deaths from cause ¢
and d = d; + d, represents the total number of deaths from both causes
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in the time interval being considered. The estimated net probability of
death from cause 1 is, then,

g,=1-(1-2 - (9.48)
i l 4

where [ individuals are at risk from both causes of death at the
beginning of the interval.

The assumption that the net probabilities are a simple exponential
function may not be appealing in some situations [expression (9.44)].
An alternative estimate of the net probability can be derived from
intuitive considerations that do not involve an exponential risk model.
Individuals at risk can be classified into three categories: (1) died of
cause 1, (2) died of cause 2, or (3) lived through the interval. A death
from cause 2 can be considered as a person “lost to follow-up” with
respect to calculations for cause |. When cause 2 is “removed,” deaths
from cause 1 are undercounted since the former “lost to follow-up” are
then at risk. That is, the direct estimate of the net probability is too
small since a proportion of the individuals who would have died of
cause 2 and are “lost” can now die of cause 1. Those who would have
died of cause 2 are exposed to risk, on the average, for half the interval
so that 0.5d, represents the additional number of individuals at risk
when cause 2 is “removed.” The value 0.54,0Q ; estimates the number
of deaths from cause 1 among the individuals who would have died
from cause 2 if it were present. Therefore, “correcting” the number of
deaths d; gives

A, dy +0.54,0)

’

= (9.49)

and solving for the net probability Q] yields

d

B — 9.50
=054, (9:50)

Q=

The probability Q) is another estimate of the net probability of

death from cause 1 among [ individuals at risk. The net probability Q,1

is greater than crude probability ¢, since additional individuals are at
risk and die of cause 1 when cause 2 is “removed.” In general,

d; 4
R S— > —
[—05d;” 1

A

net probability = Q.= = ¢; = crude probability. (9.51)

For most applications of competing risk calculations the crude
probability and the net probability differ by very little. Expression
(9.51) indicates why. For Q, and ¢; to differ substantially, the
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Table 9-17. Competing risks: Exponential versus intuitive methods

¢i ;=005 010 015 020

Exponential 0.05 0.0513 0.1027 0.1541 0.2056

Intuitive 0.05 0.0513 0.1026 0.1538 0.2051
Exponential 0.10 0.0527 0.1056 0.1585 0.2116
Intuitive 0.10  0.0526 0.1053 0.1579 0.2105
Exponential 0.15  0.0543 0.1087 0.1633 0.2182
Intuitive 0.15  0.0540 0.1081 0.1622 0.2162
Exponential 0.20  0.0559 0.1112 0.1686 0.2254
Intuitive 0.20  0.0556 0.1111 0.1667 0.2222

competing cause of death must be a fairly large proportion of the
individuals at risk (4; has to be large relative to /), which is not usually
the case for human mortality data.

Although the exponential and intuitive estimates come from different
considerations, they differ little in value (Q, = Q::) for most situations.
Table 9.17 illustrates the similarity of the two expressions. If ¢ < 0.1,
then Q; — Q; < 0.001, showing why Q; and Q; are essentially equal
when applied to questions concerning competing risks among human
diseases. The net probability of death from a specific cause, if other
causes of death act independently, can also be estimated by considering
other causes as censored survival times. The topic of censored data is
developed in the next two chapters. It should simply be noted that
many of the methods applicable to censored data can be applied in the
context of competing risks.

Applications

The estimation of the net probabilities (exponential and intuitive) are
illustrated by a subset of data from a large study of the effects of
smoking on coronary heart disease mortality (Hammond and Horn
[Ref. 6] and reported in [Ref. 5]). A small part of these smokmg and
CHD data are given in Table 9.18.

As expected, the net probabilities of death from CHD for smokers
and nonsmokers increase, but moderately, when competing causes of
death are “removed.” The increase in net risk for CHD among smokers
and nonsmokers can be expressed as a difference or as a ratio (Table
9.18), providing an estimate of the “pure’ impact of smoking on CHD
risk. Some controversy exists over which is the ““best” expression for the
increased risk from smoking. The issues surrounding the choice of a
ratio versus a difference as an expression of risk are basically semantic
and are discussed elsewhere (see [Ref. 5 or 7]).
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in the time interval being considered. The estimated net probability of
death from cause 1 is, then,

- 4\
—1-(1-2 9.48
Q=1 (1 l) , (9.48)

where [ individuals are at risk from both causes of death at the
beginning of the interval.

The assumption that the net probabilities are a simple exponential
function may not be appealing in some situations [expression (9.44)].
An alternative estimate of the net probability can be derived from
intuitive considerations that do not involve an exponential risk model.
Individuals at risk can be classified into three categories: (1) died of
cause 1, (2) died of cause 2, or (3) lived through the interval. A death
from cause 2 can be considered as a person “lost to follow-up” with
respect to calculations for cause 1. When cause 2 is “removed,” deaths
from cause 1 are undercounted since the former “lost to follow-up” are
then at risk. That is, the direct estimate of the net probability is too
small since a proportion of the individuals who would have died of
cause 2 and are “lost” can now die of cause 1. Those who would have
died of cause 2 are exposed to risk, on the average, for half the interval
so that 0.5d, represents the additional number of individuals at risk
when cause 2 is “removed.” The value 0.54,0 ; estimates the number
of deaths from cause 1 among the individuals who would have died
from cause 2 if it were present. Therefore, “correcting” the number of
deaths d; gives

s, dy +0.54,Q)

= (9.49)

and solving for the net probability Q] yields

dy

= (9.50)
[ —0.5d,

Q
The probability Q) is another estimate of the net probability of
death from cause | among / individuals at risk. The net probability Q}
is greater than crude probability ¢; since additional individuals are at

risk and die of cause 1 when cause 2 is “removed.” In general,
babili o 4% _ s crude probabilit (9.51)

= = 2 == it . .
net probability = Q} 1=054,” 1 p y

For most applications of competing risk calculations the crude
probability and the net probability differ by very little. Expression
(9.51) indicates why. For Q; and ¢; to differ substantially, the
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Table 9-17. Competing risks: Exponential versus intuitive methods

71 ¢,=0.05 0.10 0.15 0.20

Exponential 0.05 0.0513 0.1027 0.1541 0.2056

Intuitive 0.05 0.0513 0.1026 0.1538 0.2051
Exponential 0.10 0.0527 0.1056 0.1585 0.2116
Intuitive 0.10 0.0526 0.1053 0.1579 0.2105
Exponential 0.15 0.0543 0.1087 0.1633 0.2182
Intuitive 0.15 0.0540 0.1081 0.1622 0.2162
Exponential 0.20 0.0559 0.i112 0.1686 0.2254
Intuitive 0.20 0.0556 0.1111 0.1667 0.2222

competing cause of death must be a fairly large proportion of the
individuals at risk (d; has to be large relative to [), which is not usually
the case for human mortality data.

Although the exponential and intuitive estimates come from different
considerations, they differ little in value (Qi =~ Qii) for most situations.
Table 9.17 illustrates the similarity of the two expressions. If ¢ < 0.1,
then Q; — Q; < 0.001, showing why Q; and Q] are essentially equal
when applied to questions concerning competing risks among human
diseases. The net probability of death from a specific cause, if other
causes of death act independently, can also be estimated by considering
other causes as censored survival times. The topic of censored data is
developed in the next two chapters. It should simply be noted that
many of the methods applicable to censored data can be applied in the
context of competing risks.

Applications

The estimation of the net probabilities (exponential and intuitive) are
illustrated by a subset of data from a large study of the effects of
smoking on coronary heart disease mortality (Hammond and Horn
[Ref. 6] and reported in [Ref. 5]). A small part of these smoking and
CHD data are given in Table 9.18.

As expected, the net probabilities of death from CHD for smokers
and nonsmokers increase, but moderately, when competing causes of
death are “removed.” The increase in net risk for CHD among smokers
and nonsmokers can be expressed as a difference or as a ratio (Table
9.18), providing an estimate of the “pure” impact of smoking on CHD
risk. Some controversy exists over which is the “best’” expression for the
increased risk from smoking. The issues surrounding the choice of a
ratio versus a difference as an expression of risk are basically semantic
and are discussed elsewhere (see [Ref. 5 or 7]).
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Table 9-18. Competing risks: Deaths after 44
months of follow-up for ages 60-66

Nonsmokers Smokers

CHD=d, 552 921
Other=4d, 714 1,095
Population 20,278 21,594
Crude 0.0272 0.0427
Exponential 0.0277 0.0438
Intuitive 0.0277 0.0438

Difference 0.0155 (crude}; 0.0161 (net)
Ratio 1.567 (crude); 1.579 (net).

Occasionally the argument is put forth that cancer increases in the
last three or four decades, at least in part, are due to the decrease in
mortality from infectious diseases. This thought is based on the idea
that deaths from infectious diseases operate early in life, thereby
eliminating a proportion of individuals who would die of cancer later in
life. Data for the years 1900 to 1950 that reflect on this question are
given in Table 9.19.

Using competing risk estimates, the net probabilities show no reason
to believe that the decreasing mortality from infectious disease plays a
role in the observed increase in cancer mortality. Comparison of the
crude and net probabilities (multiplied by 100,000) for cancer deaths
shows essentially identical values for all six decades. That is, under the
conditions for a competing risk calculation, “removing” infectious
disease as a competing cause of death does not change the national
mortality pattern of cancer deaths over the years 1900 to 1950.

The expression for net probabilities can be used when specific causes
of death are available and the results summarized with life-table

Tabte 9-19. Competing risks: Total cancer and infectious disease deaths by year for the
uU.s.

Year 1900 1910 1920 1930 1940 1950
Infection 240,077 225,565 191,958 137,971 90,239 60,370
Cancer 48,700 70,414 88,793 119,985 158,943 208,109
Total deaths 1,308,056 1,356,535 1,382,887 1,394,611 1,422,161 1,472,842
Population 76,094 92,407 106,466 123,188 132,122 151,683
Crude 64.00 76.20 83.40 97.40 120.30 137.20
Intuitive* 64.10 76.29 83.48 97.45 120.34 137.23

Note: the crude cancer mortality rate s (degneer/population) x 100,000, and population is given in thousands.
*Net probabilities multiplicd by 100,000
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Table 9-20. Expectation of life for specific competing causes of death
“eliminated,”” California, 1980

Age  No causes* CVD* THD* Lung cancer*  Motor*

0 70.92 80.63 73.79 71.80 71.81
20 52.41 62.61 55.33 53.31 53.19
40 34.49 44.71 37.49 35.41 34.68
60 18.16 28.01 20.08 18.96 18.22
80 7.07 16.56 8.07 7.18 7.07

*Cause of death climinated (cause f).

functions. The exponential-based expression for a net probability of
death from cause i at age x using life-table deaths is

Qeui=1—(1- ge) 1, (9.52)

where d{? represents life-table deaths from ith cause in the interval x to
x+ 1 and d, = d + d9 represents the total life-table deaths. The net
probabilities Q , ; reflect the impact of mortality at age x from cause ¢
with the cause j “removed” and can be used to calculate other life-table
functions, particularly the expectation of life. For example, if all deaths
from cardiovascular disease (CVD deaths = cause j) are “eliminated”
and a life table based on the remaining causes of death (all non-CVD
deaths = cause ¢) is computed, then an estimate of the years of life lost
attributable to cardiovascular disease is found by comparing the “net”
expectation of life with the expectation calculated when all causes of
death are operating. That is, the life-table functions are based on the
net probabilities Q  ; rather than the crude probabilities ¢,.. Table 9.20
gives the expectation of life for 1980 California males for five selected
ages. Also included are the expectations of life when three other causes
of death (ischemic heart disease, lung cancer, and motor vehicle
accidents) are each “removed.” The impact of cardiovascular disease
on the total mortality picture is clear. The life-table competing-risk
calculations indicate that the expectation of life would be increased
about 10 years if cardiovascular discase was ‘‘removed” as a risk of
death and a 1-4-year increase would result if ischemic heart disease
was “removed.” Almost no impact on the expectation of life is
observed when lung cancer or motor vehicle accidents are “removed”
as causes of death.



