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fairly narrow range. Rather, the point in time is the time of observation for each 
child. The fact that each child's disease status was observed only as of one point 
in time, not monitored over a period of time, is the key feature. The calendar 
time period and age range over which the examinations were done are relevant as 
descriptors, along with place and other population-defining characteristics, to put 
the prevalence estimate in its proper context. Prevalence can be compared across 
time periods or age groups, just as other disease frequency measures can. 

In some studies, the observation times on individuals may indeed be syn- 
chronized in calendar time, by age, or on another time scale. Then prevalence also 
pertains to a specific time point on that time scale. 

Example: A study of Crohn's disease and ulcerative colitis in Manitoba, Canada, 
used administrative data from the province's only health insurer to identify persons 
who had received care for one of these chronic gastrointestinal diseases (Bernstein 
et al., 1999). Prevalent cases as of December 31,1994, were those who had made 
the requisite number of medical visits for the condition during the preceding two 
years and who had not died or emigrated from Manitoba before the end of 1994. 
The resulting prevalence estimate pertained to what can be considered a point in 
calendar time-December 3 1, 1994. 

Example: The prevalence of HN infection among inmates entering U.S. correc- 
tional facilities was estimated from HIV-1 antibody tests on routine blood samples 
obtained upon entry to jail or prison (Vlahov et al., 1991). These intake examina- 
tions occurred on various calendar dates, but they pertained to the same point on 
the time scale that chronicled each inmate's incarceration. 

INCIDENCE 

hcidence measures how frequently susceptible individuals become disease cases 
as they are observed over time. It is based on disease events, each of which repre- 
sents a transition from being at risk to being diseased. 

Counts 

An incident case occurs when an individual changes from being susceptible to 
being diseased, by the study's case definition. The count of incident cases is the 
number of such events that occur in a defined population during a specified time 
period. Recurrences of disease in the same person may or may not qualify as ' 

. , 
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incident cases, depending on the study's operational definition of *ease, as dis- 
cussed in Chapter 2. ! . . 

Simple counts of incident cases can bometimes be s a c i e n t  to guide he& 
planning. For example, knowing the number of lower-exti&&ty amputations'per 
year in a certain health plan could be used to the number of limb prostheses 

likely to be needed. . . 
Counts may alsb be adequate for comparing incidence acioss'ppp.datibns that 

can safely be assumed to be of similar size. 

Example: Phillips and colleagues (1999) found that, over a 16-year period, 113.8 
deaths due to substance abuse occurredin the U.9. during thk first week of the month 
for every 100 such deaths in the last week of the month. They hydothesized that 
the excess may be related to receipt of government benefit payments from Social 
Security, welfare, or military benefits at the beginning of each month. ~ e c a u s e  
the population at risk would be nearly the same size across different weeks of the 
month, the study could be based simply on the number of deaths in each oneiweek 
period. 

Example: h 2000, 702,093 new cases of genital Chlamydia trachomatis infec- 
tion were reported to the U.S. Centers for Disease Control and Prevention (CDC), 
compared with 358,995 new cases of gonorrhea (Centers 'for Disease Control 
and Prevention, 2001b). Assuming similar completeness of reporting for both dis- 
eases, these counts by themselves should accurately reflect differences in incidence 
between these two sexually transmitted diseases. This is because the sizes of the 
populations at risk for each disease should be about the same (or nearly so, after 
subtracting prevalent cases). - - . 

Cumulative Incidence 

Cumulative incidence is the proportion of initially susceptible individuals in a 
closed population who become incident cases during a specified time period. 

 umber of incident cases 
Cumulative incidence = 

Number of persons initially at risk 

Cumulative incidence is also sometimes called the incidence proportion or 
attack rate. It is the simplest measure of incidence to account explicitly for the 
size of the population at risk. 
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Example: A jumbo jet full of tourists bound from Tokyo to Copenhagen stopped 
at Anchorage, Alaska, for refueling and reprovisioning. Upon reaching cruis- 
ing altitude again, passengers were served breakfast. Somewhere over the po- 
lar ice cap, an illness characterized by cramps, vomiting, and diarrhea swept 
through the plane, and by the time they reached Copenhagen, 196/344 = 57% 
of passengers had become ill. Epidemiologists who investigated the outbreak 
used interview data and food service records to calculate the cumulative inci- 
dence of illness among those who did and those who did not eat various food 
items. Eating ham proved to be strongly associated with becoming ill. Among 
those who ate ham that had been prepared by a particular cook, 86% got sick, 
compared with none of those who ate ham prepared by a different cook. Mi- 
crobiological tests found heavy staphylococcal contamination of the suspected 
ham, which was eventually found to have resulted from improper food handling 
(Eisenberg et al., 1975). 

The time period cumulative incidence refers to is usually fixed, specified, and 
the same for all members of the study population. For example, the proportion 
of patients undergoing a surgical procedure who develop deep venous thrombosis 
during the two weeks after surgery could be termed the "two-week cumulative 
incidence" of that complication. 

In some situations, the time period that cumulative incidence refers to may 
not be stated and may, in fact, vary among individuals. For example, the cumu- 
lative incidence of death before discharge among hospitalized patients is some- 
times used as a measure of disease severity or outcome. Because of differences in 
length of hospital stay, however, the amount of time at risk for death varies among 
patients. 

Cumulative incidence is easy to calculate and to interpret, but unfortunately 
it can only be measured directly in closed populations (as defined in Chapter 2). In 
particular, the population cannot gain or lose members during the period of follow- 
up, except for losses that occur after disease occurs. The reason is that cumulative 
incidence is designed to estimate the proportion of persons initially at risk who 
develop disease during follow-up. If gains or losses in the study population took 
place, the essential correspondence between the case count in the numerator, and 
the defined population at risk in the denominator, would be broken. For example, 
if a new member were to join the population partway through follow-up and then 
become a case, he or she would be added to the numerator, even though she or 
he had not been counted as a member of the denominator population at risk. If 
an original member of the denominator population were lost to follow-up, he or 

. . .  
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she might actually go on to become a case during the snfdy period 'who . . would go . 

undetected. . . . '  . 
Chapter 4 describes how cumulative incidence c& be &s't$ma(ed indirectly ' 

under certain assumptions,'even when follow-up data on some original population 
members are incomplete. It also describes methods for . .  obtaining . confidence limits. 

. . 
Incidence Rate 

The incidence rate is the count of incident cases divided by the amount of at-nsk ' , 

experience from which they arose. Its deno&nator . . is usually . . measured in'i&ts of 

person-time. . .  . . 

Number of incident cases 
Incidence rate = 

Amount of at-risk experience 
. . 

Whether disease recurrences are c0unted.h he.numeratpr,depends on the;study's : 
case definition, as discussedin Chapter 2 .  . . . 

The incidence rate also goes by several other names; including incidence : .  
density (a term originally suggested by Miettinen, '1976), person-time incidence 
rate, or sometimes simply incidence. 

. . 

Example: Gardner et al. (1999) studied on-the-job back s p r e s  ajld stiajns among 
3 1,076 material handlers employed by a large retail merchandise chajn. payroll data ' 

for a 21-month period during 1994-1995were 1inked.with job injury cl.*s, which 
provided data on the timirig of each'injury, body part injured, and mechanism of 
injury. A total of 767 qualifying back injuries &curred duilng 54;845 j247.y6rking 
hours, yielding an incidence rate of 1.40 back injuries per l00,,000 work&<h.ours. . % 

Higher incidence was found among males i d  among employees whose work was 
more physically demanding. ' 

. . 

The work force in this example c . ~ m p r i s e d ' ~  open, defined population.-~o.u- . 
sands of workers joined of left the cdmpany'during the study pe;iod. Only,on-the- 
job back injuries were of interest, so each worker's at-ri~k:~x~erienc.e c6osiste.d 
of many discontinuous time periods at  wdrk, separated bi.period?. away from . 

work. These features of the research situation made an incidence-rate appxoach to 
measuring disease frequency attractive ~d .a good match to the availabledata. . .  , 

The basic rationale behind the incidence rate i; straightforward. other things 
being equal, the number of new cases of disease sh~uld~b.e,~ro~ortional  t?, ( I ) .  the 
size of the population at risk and 12) the mount  of time dver which Sb.sce&ble 
individuals are observed. The deno+nator simply .combines these tw6 el'emeats. 

. . 
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The number of cases and the number of persons at risk are unitless counts, while 
the time component of the denominator has units, so an incidence rate has units 
of time-'. 

Incidence rates can be used across a wide range of epidemiologic research 
situations. They can be applied to both closed and open populations, with or without 
detailed information on the time at risk for each individual, and for both recurrent 
and non-recurrent disease events~ircumstances in which cumulative incidence 
may be impossible to apply. 

Estimating incidence rate with detailed data on individual times at risk 

In many epidenliologic studies, detailed information is available on the amount 
of time at risk for each individual and the timing of each disease event. In the 
Gardner back-injury study, for example, payroll records furnished each worker's 
time on the job right down to the hour, and injury claims contained data on the 
timing of each back injury. 

To see how a person-time denominator is calculated from detailed individual 
data, consider the small population shown in Figure 3-3. It deliberately involves 
several features that would make cumulative incidence impossible to apply but that 
can be accommodated easily under an incidence-rate approach. Four cases occur 
among six individuals during a 30-day period. Some people enter late in the study 
period, some are observed only intermittently, some drop out early, one (person 
no. 4) is not at risk for part of the time, and one (person no. 5)  has two separate 
disease events. 

Depending on the study purpose, recurrent disease events in the same person 
might or might not be relevant and qualify for inclusion. In this instance, that 
decision affects the contributions of several individuals to both the numerator and 

1 
2 

g 3 
2 4 

5 
6 

I I I I I I I 
0 5 10 15 , 2 0  25 30 

Time (days) 

- under observation, - at risk + event 
but not at risk 

Figure3-3. Hypothetical Population to Illustrate Incidence Rate Estimation with Detailed Data 
on Individual Times at Risk. 

.. . 

Table 3-1. Example of Incidence Rate calculation, Keyed . . toFigure 3-3 ' .  
, ... 

If AU Cases Quahfy ' Ef Only First Cases Qualify 

CONTRIBUTION ' ' .DAYS . ~0r-qkmm0~ . ' DAYS 

PERSON TO NO. OF CASES . ', AT RISK TO NO. OF C A S P  %RISK. 
~ ~ 

1 1 22 1 . ' ' ,  17.5 
2 0 21 . . o .  . ' 21 
3 . 25 , o  :' . 25 

4 1 .  . '11.5 . . 1, '. ' 11.5 ' ' 

5 2 .  185 . . : 1 , 1.5 
6 0 0 '. 3.0 . . .- . 30  

. . . . . . 
.. . 

, 4  .3 Total cases 
Total person-days ' 1 2 . 8  . . 106.5 . 
Incidence rate-per 3.13 , , 2.8.2 . . 

100 person-day s . . 
. . . . . ~ .. . 

. . . . .  
' ,  . 

the denominator of the incidence rate estimate. Table 3-1 showsthe c.alcu~la~.ons 
both ways. . . .  

~f recurrent events qualify, then both of the disease, evknts in no. 5 

are added to the numerator. In addition, anyone who becomes a case may . 
continue thereafter to contribute person-time .at risk 'to the denornipator, 
because he or she remains at risk for recurrence. : : 
If recurrent events do not qu&fy, $en person no. 5'cdntributes only one 
event to the numerator. ~n'~ddition, anyone ~hobecouie .~  a case co&butes 
no further person-time to the denominator thereafter, because he of'shc is 
no longer at risk for,a first event. ' . . . . 

I Estimating incidence rote without tlet9iled data on individudl times at iisk , 

Often detailed information about each population member's t h e  ,at risk is 
unknown and not feasibly obtainable. This problem often arises, for example, when . 
the defined population of interest consists of residents 6f a gebgraphi&.*ea over 
some time period. The number df incidelit cases may be readily available, but the : 
challenge is to estimate the total amount of p.eis.on-time at risk from wFch 
cases arose. 

Figure 3-4 provides a graphical example. It shows gradual,&owthin the size 
of a true population at risk over. an observation period that extends from Time A 
to Time E. Total person-time at risk coiresgnds to .the area of the shaded rLGion, 
whicb could be calculated exactly if moment-by-moment details about the 'size 

. . 
. . 
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*Observation period ---A 

Figure 3-4. Estimating Average Size of the Population at Risk. 

of the population at risk were known. Otherwise, the area must be estimated by 
sampling the size of the population at risk at one or more time points, averaging 
these population-size estimates, and multiplying by the duration of the observation 
period. Variations of this approach include: 

1. Using estimated population size at mid-period (here, Time C) as an esti- 
mate of the average. This method might be suitable when a single popu- 
lation count is made at or near the middle of the observation period. This 
could apply, for example, to a county or state observed over the four-year 
period from 1998 to 2001, because 2000 was a census year. 

2. Averaging the estimated population size at the start and at the end of the 
observation period (here, Times A and E). This method might be suitable 
if, for example, the observation period spans a 10-year period between 
two decennial censuses. 

3. Averaging several population size estimates made periodically during the 
observation period. For example, government planning agencies in many 
areas publish year-by-year estimates of population size and composition 
for geopolitical areas. Average population size over a four-year observation 
period could then be estimated by averaging four annual estimates. 

Example: Some 702,093 new cases of genital Chlamydia trachomatis infection 
were reported in the U.S. in 2000 (Centers for Disease Control and Prevention, 
2001b). The U.S. Census Bureau estimates that the population of the U.S. on 
July 1,2000 was about 282.1 million. Under method no. 1 above, 282,100,000 can 
be treated as an estimate of the average size of the population at risk during the 
one-year period from January 1,2000, through December 31, 2000, yielding an 
estimated 282,100,000person-years at  risk. The estimated incidence rate of geni- 
tal Chlamydia trachomatis infection would therefore be 702,093/282,100,000 = 

.00249 = 2.49 cases per 1000 person-years at risk. 
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. . 

By similar logic, it is sometimes p6ssible to'calculate an incidence rate from a 
published paper even if the results are not reported as If a cohort of:N persons 

is described as having been followed for k i ~  average bf ?; years, then they expen._ 
enced NF person-years in all. 1f:all of .this p&son-time can be consid.efed 'at-iisk 
time, and if c incident cases occur, then C/NT is an estimate'@f the in'cidencerite.. ' 

For some diseases, the prevalence of disease may be high enough, or a not5at- 
risk state common enough, that the discrepancy bemeerr total po.pulation size 
and size of the true population at risk is too large. to be ignored. Corrections 
may then need to be based on the e~timated~revalence df disease or the etiinated . 
proportion of the population that is not at risk..For example,, the estimatedincidence 
of dementia in the elderly has been found to increase co?sid.crably after prevalent . 

cases of dementia were subtracted fr&n the denominator (Rocca et al., 1998). For 
uterine cancer, higher and almost certainly &re accurate indidence estirnat.6~ have 
been obtained when the estimated nuriber'of women with a prior hystei&tomy : 
were subtracted from the denominator ( ~ i r i e t t ,  1980). 

. . 
. . 

. .  . .  . . 
Denominators other than person-time . . 

In some areas of epidemiologic research, such as the study of injuriei,'rne.trics . . 

other than person-time are often used to the ambunt of at-riskiexperience 
from which a set of incident cases arose. For example, the eiidence of plotor- 
vehicle collision injuries d k  be expressed as injuries per 100,000 p.ersoniyea;rs, 
as injuries per 100,000 licensed-driver-years, or as injuries' mi&.on,vehicle- .. 

miles traveled. The extent to which older adults are a high-esk group .for motor- , 

vehicle collision injuries has been shown to depend s&0ngly on which measure 
of incidence is used (Massie et al,, 1995). Relative to younger adults, a smaller . 
percentage of older adulti have a 'valid driver's license,'and even those whoid0 
have a driver's license drive fewer miles per year than youngerdrivers. Hence the 
increase in incidence by ageis more marked when the denominator . . is vehicle-miles ' ' 
traveled. 

. . 

Comparison of Cumulative Incidence a.nd'lncidence Rate. . . 

The distinction between cumulative inc'idence and inbidenee rate was q b c i -  ; 
ated by early epidemiologists and health statisticians (~&denb;oucke','198j!. The 
differences are both conceptual.and statistical ( ~ o r ~ e n i t e m e t  al., 1980; ~ l & d t -  
Johnson, 1975). Table 3-2'summarizes and contrasts several prop-erties f .these 
two measures of incidence. 

Despite the differences, the generic t e ~  incidence is widely applied to, 
both cumulative incidence and incidence rate throughout the.epid'emio1dgic lit- 
erature. The specific kind of incidence being discussed must sften be infene-d 
from the context. To accustom readers to this widespread practice, and for.brevity, . . 
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Table 3-2. Comparison of Cumulative Incidence and Incidence Rate 

CHARACTER1STIC CUMULATIVE INCIDENCE INCIDENCE RATE 
- 

Units None Time-' 
Range 0-1 &infinity 
Directly calculable by: Observing a closed Observing a closed or open 

population over time population over time with 
detailed data on individual 
times at risk 

Indirectly calculable by: Survival-analysis Estimating total person-time 
methods in presence as (average size of 
of censoring" population at risk) x 

(duration of observation 
penod) 

Individual-level hsk (probability) Hazard ratea 
counterpart 

4Discussed ln Chapter 4 

this book often simply uses the generic term incidence when its meaning seems 
unambiguous. 

Chapter 4 describes how confidence limits for incidence rates can be obtained; 
how cumulative incidence and the incidence rate are related mathematically and, 
under certain assumptions, computable from each other; and how incidence rates 
in a population relate to individual-level hazard rates. 

Variants of lncidence 

Incidence can actually be thought of as a family of disease-frequency measures. 
Some members of this family traditionally go by names of their own, but in reality 
they are just special types of incidence. 

Mortality 

Mortality is the incidence of fatal cases of a disease in the population at risk 
for dying of the disease. The denominator includes both prevalent cases of the 
disease as well as persons who are at risk for developing the disease. Subtypes 
are cumulative mortality and mortality rate. Mortality density and death rate are 
essentially synonyms for the mortality rate. 

Example: Some 8,911 deaths due to ADS were recorded in the U.S. in 2000 
(Centers for Disease Control and Prevention, 2001a). Essentially the entire U.S. 

. . . . . . 
. .. . . 
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population is considered to be at n~n-zero ,$skfor dying of &s, alt@.uih.the 
level of. risk clearly varies greatly from person to person. ~ e n c e  b e  'denohator  .. 
for the mortality rate is (estimated average',size of .the u.s:' population during 
2000) x (length of observation period) = i82,100,000, k 1 year. Ti@ &ort.dty 
rate for AIDS in 2000 was thus 8,911/282,100,000 = 3.16 deaths.per 100,000 ; 

. . 
person-years. .. 

- . . . . . . - . . 

. . . . I .  Fatality . . . . . . 

Fatality refers to the incidence of death from a disease y n g  pers.ons who 
develop thedisease. The difference between fatality and mortality is in their denom- ' 

inators. Fatality reflects the prognosis of 'the disease among cases; while mortality 
reflects the burden of deaths from the disease in the Ijopglation as a whole. 

In principle, cumulative fatality .and fatality rate can.be defined ,as sp.@i.al ,, 

types of cumulative incidence and incidence rate, respectively, ivith appropriate 
restrictions on who counts toward the- numerator and denominator. In practice, . 
these terms are rarely used,,although the underlying theory still applies. ., .: 

Instead, case fatality is .a commonly used 'measure of fatality. It is: 
. . 

Number of fatal cases 
Case fatality = 

Total number of cases. 

Case fatality can be viewed.as the curnulatiire incide&e of death due to the disease . 

among those who develop 1t. As with attack.rate, a fixed timepe$od after'disease 
onset may or may not be explicitly specified and must often be inferred from the 
context. As a variant of cumulative incidence, case fata1ity.i~ most readily appiid ' 
for diseases of relatively sh6rt duration., in Which there are i?$ losses t.0 fo.llow-up 

. . or deaths from other causes. 
. . 

. . . ~~~ . . 
Example: The National Highway Traffic iafety Adrninistr+tion (20.01) rep0rte.d. , 

that 4,739 deaths occurred,in the U.S: d h g  20.00 when a iedestzian was Btruck 
and killed by a motor vehicle. They esh.a te  that 78,000 pedestrians were in- 
jured in pedestridmotor-vehicle coilisions during that year. '~.a?e.d oii.,.these ' 
data, the case fatality of pedestridpotor-vehicle collision hjury in 2000 was 
4,739/78,000 = 6.1%. 

. . 
. . . % . . 

. . . . 
Proxy Measures of Incidence . . . . . . . . 

. . . . 
Sometimes good denominator data for the d.qsired measure of incidencecan- 
not feasibly be obtained. Yet case cohnts alone are likely't6 'bk inadeqtate .for ' 

. . .  . . . . 

. . . . . .  . . . . . 
. . 

. . . . 
. . . . 

. , 
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comparing incidence between populations that differ in size or other key charac- 
teristics. Under those circumstances, a proxy denominator may be better than none 
at all. 

Proportional mortality 

The proportional mortality for a disease is: 

Deaths from the disease 
Proportional mortality = 

Deaths from all causes 

As its name indicates, it is simply the proportion of all deaths that are due to 
a particular cause for a specified population and time period of interest. This 
proportion can provide useful descriptive information in its own right: for example, 
the statement that heart disease accounted for 30% of all deaths among Americans 
in 1999 refers to proportional mortality (National Center for Health Statistics, 
2001). 

For comparing disease frequency between populations, the main advantage 
of proportional mortality is that its denominator-total number of deaths--can 
usually be ascertained from the same source that furnishes its numerator. The 
count of all deaths serves as a proxy for person-time at risk under the assumption 
that, other things being equal, one would expect total deaths to vary in proportion 
to population size and in proportion to the duration of the monitoring period. 

A potential limitation of comparing proportional mortality between popula- 
tions or subpopulations can be illustrated by an example: 

Example: Berkel and de Waard (1983) studied mortality among Seventh-day 
Adventists (SDA) in the Netherlands over a ten-year period. The church pro- 
scribes its members from using tobacco or alcoholic beverages and recommends 
a vegetarian diet. These policies led the investigators to expect a reduced death 
rate among SDA from cancer (particularly lung cancer, which is strongly related 
to smoking) and heart disease. 

The second column of Table 3-3 shows the observed number of deaths among 
SDA, and the third column shows the percentage of those deaths due to each cause. 
For comparison, the fourth column shows the percentage of deaths by cause in a 
similarly aged sample of the full population of the Netherlands during the same 
ten years. Based on a comparison of proportional mortality (columns 3 and 4), 
there seems to be no evidence of a reduced occurrence of death due to lung cancer 
and only a slight reduction in mortality due to cardiovascular disease. ' 

But in this instance, the investigators also had detailed year-by-year data on 
the size of the SDA population, from which they could determine the number 

. . 
.. . . . 

Table 3-3. Proportional Mowty ' ~ d  Mortality Rate Analyses of Deaths among.Dutch 
' 

. . 
Seventh-Day Adventists (SDA) '. ' ' ' . 

. . . . . . 
. . 

. . . . ~ x ~ e c t e d  Deaths ' 

in %A, l3as.d on: .. 

OBSERVED ~roportional ' . N E T H E ~ S  N E ~ ~ L ' @ S  

CAUSE OF DEATHS . . PROPORTIONAL . MORTALITY. 
DEATH ~ S D A  'SDA ~ T H E R ~ . & S  MORTALITY :RAT& 

Lung cancer 12 2.5% 215% 12 -.. . '27 
Other cancer 103 , 21.3% . 18.9%. ' .  9.1 204 
Cardiovascular 227 47.1% ; 50.8% ' 245 597 
Other causes 130 , 27.0% 27.7%. 134. 299 

. . 

All causes 482 i00.0% ' 100.0% 482: " 1077 
~. ... 

[Source: Based on Berkel and de Waard (1983).] :., . , 

. . . . . . 

of person-years at risk contributed by SDA during the study period, by .age and 
gender. They obtained the age- and sex~s~ecific~mortality rates for the Netber1and.s. 
as a whole from published sources. By applying these ~ ~ t c h  mortality 
rates to the SDA denominator'data, they were able i9 estimate how many d.eath.s 
would have been expected among the SDA if they had expe.nence.d the mortality 
rates in effect for all Dutch.people of similar age and gender. . : . . 

The rightmost columnof Table 3-3 s h q y  these results, i d  they leadto quite 
a diffeient conclusion. The observed numbers of lung &cer &d cardiovascular 
disease deaths in SDA were in fact sharply lower than the number of s.uch d-eaths 
expected based on rates for all ~ . u t c h  people of similar age adgender. But deaths 
from other causes were also 'substantially lower.than expected Binbng SDA: Hepce 
the proportions of SDA deaths from lung cancer and . heart.disease . differed very 
little from those in the Netherlands iri geneid. In this example, we wodd have 
been led astray if only a proportional mortality analysis had been possible. The 
total number of deaths was actually a poor proxy for.population sizk because of a . 

major difference in all-causes mortality between populations., . . .  

. . . . 
Other proxies for incidence are based on the s h e  basic.i&a, applied to non- . 

fatal events. For example, hospital admissions for diabetewaii be expressid as a 
proportion of all hospital admissions if no go0.d data are available on fhe,size of 
the true population at risk for hospitalization. Similarly, incldent cases of colon 
cancer can be expressed as a proportion of allincident candir cases. The same . 
potential pitfall applies, however: comparisons could be misleading :if the overall ' 

. . . . . .  . 
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hospitalization rate or the overall cancer incidence rate were to differ between 
populations being compared. Contrasts based on proxy measures must therefore 
be cautiously interpreted. 

Fetal death ratio 

In perinatal epidemiology, the frequency of fetal death in a certain population 
over a specified time period is quantified as: 

Number of fetal deaths 
Fetal death ratio = 

Number of live births 

The denominator for a cumulative-incidence measure of fetal death would be the 
total number of pregnancies. But some pregnant women may undergo spontaneous 
or elective abortions that can be difficult to ascertain and count. Hence the number 
of live births is used as a proxy for the total number of pregnancies. 

In contrast to proportional mortality, the fetal death ratio and other analogues 
that do not include the numerator as part of the denominator are not proportions. 

OTHER MEASURES OF DISEASE FREQUENCY 

Period Prevalence 

Earlier, prevalence was described as reflecting the frequency of the diseased state 
at a specified point in time. Especially when prevalence refers to a point in calen- 
dar time, the term pointprevalence is often used (Last, 2000). In contrast,.pen'od 
prevalence is a hybrid of prevalence and cumulative incidence. Like cumulative 
incidence, it refers to a period of time, rather than a point in time. Cases counted 
in its numerator, however, include both (1) cases that are extant when the obser- 
vation period begins, and (2) new cases that occur during the period. ~ e f e m n ~  to 
Figure 3-5, persons no. 1, no. 3, no. 4, and no. 5 would all count as cases. The 
denominator includes both ( I )  extant cases when the period starts and (2) persons 

Figure 3-5. Illustration of Period Prevalence. 
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. . 
at risk when the period starts. For Figure 3-5, the p'revalmce ur?uld'ths 

be 415 = 0.8. . . 

Period prevalence is essentially u&terpretable ex6ept & a closed 
for the same reasons that apply to cumulative incidence. For a c1ose.d populatian, 
if P = point prevalence when the observation period starts, and CZ. = c.urilulitive 
incidence among individuals at risk at 'hat t$ne, then period prevalence .can be . 

. . seen to be: . . .  . . 

.. . 

Period prevalence = 'P + (1 - P) . CZ . '  
. . . . 

For Figure 3-5, this would be 1/5 + (1 - 1/5) x 3/4 = 0.8. 
The main limtation of period prevalence is that point prevalence and cumula- 

tive incidence convey very different kinds of information about disease frequency. 
Those distinctions are lost when they are combined in this way, which limits 
the usefulness of period prevalence as a summary measure. When possible, point 
prevalence and cumulative Incidence are generally better kept separate as two more 
interpretable components. 

Yet sometimes this separahon cannot be made from the data available. For 
example, the U.S. Centers for Disease Control (1998) reported that 25.3 per 1000 
U.S. women who delivered a live-born infant during 1993-1995 had diabetes 
during the pregnancy, accordmg to data on the baby's birth certificate. Some of 
these mothers had dabetes before becoming pregnant, 'while others developed 
diabetes during pregnancy. In any event, all reportedly had.diabetes sometime 
during the period of pregnancy, so 25.311000 is probably best regarded as a period 
prevalence. 

Years of Potential Life Lost . . 

As noted earlier, case counts alone can be used to compare the frequency of two' 
or more diseases within the same population. For example, the purpose may be 
to help guide allocation of resources ,mong different programs aimed at specific 
diseases. Because of the special importance often attached to fatal cases, and 
because mortality data aie often readily available, such com~arisons are often 
based on the number of deaths from each disease. 

Implicitly, these comparisons weight all. deaths equally. I t  has been argued, 
however, that "premature'! deaths-those occurring at younger ages-have greater 
social and economic impact than do deaths in old age, and that age at death should 
be considered when comparing diseases (Centers for Disease.Contro1 and Preven- 
tion, 1986). One measure designed to do.this is years ofpotential life Z ~ ~ ~ ( Y P L L )  
(Gardner and Sanborn, 1990). one Gersio?, used in reporting. of national health 

. . . . . . . . 

. . .  
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Table 3-4. Top Ten Causes of Death by Years of Potential Life Lost Before Age 75 Years 
and by Total Deaths: United States, 1998 

By Number of Deaths 
By Years of Potential Life Lost 

NLTMBER 
RANK DISEASE CATEGORY ypLL.15 " DISEASE CATEGORY OF DEATHS 

- 

1 Cancer 1716 Heart disease 724,915 
2 Heart disease 1343 Cancer 549,787 
3 Unintentional injuries 1052 Stroke 167,340 
4 Suicide 365 COPDb 124,153 
5 Homicide 301 Unintentional injuries 97,298 
6 Stroke 233 Diabetes mellitus 68,379 
7 COPDb 186 Pneumonia and influenza 63,686 
8 HIV infection 177 Alzheimer's disease 44,507 
9 Diabetes mellitus 174 Chronic renal disease 35,524 

10 Chronic liver disease 159 Septicemia 30,670 

"Years of potential life lost to age 75 years, per 100,000 persons age <75 years 
b~~~~ = Chronic obstructive pulmonary disease 
[Source: National Center for Health Statistics (2001).] 

statistics for the U.S.. is: 

X 

YPLL = )d0(x - a)  
a=l 

where a denotes age at death (in years), da denotes number of deaths at age a ,  and 
X denotes a particular cutoff age, often 65 or 75 years. Essentially, YPLL weights 
each death by the number of years before age X at which the death occurs. Deaths 
ininfancy getthe most weight; deaths at or after age X years get zero weight. YPLL 
can also be expressed per 1000 population (say), but this is not really necessary if 
all comparisons are made within the same population. 

The impact of this weighting by age at death is shown in Table 3 4 .  For the 
U.S. in 1998, it shows the top ten disease categories as ranked by YPLL with 
X = 75 and the top ten as ranked by number of deaths. Disease categories such 
as injuries, which tend to kill people at younger ages, rise higher in the ranking by 
YPLL. 

Criticisms of YPLL include the fact that the choice of a cutoff age X is 
somewhat arbitrary; rankings by YPLL depend on the age distribution of the 
population at risk, which also affects comparability of YPLL between populations 
or over time; and the implicit assumption that persons who died of a certain disease 

. . . . 
. ,  . 
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before age X )ears-would.othenvise$a& lived to &e3x  or be~ond(~ar:&ei:m.d{ 
Sanbom, 1990; Lai and Hardy, 1999). Nonefibless, YPLL is iqcreasingly reported 
as a measure of disease impact on a popul&.ion and conveys information that other 
such measures may not readily capture.. . , 

. .  . . . . . . . .  ... . . 
. .. 

EXERCISES 
. . 

.. , . - 

1. Atrial fibrillation (AF) is a heart rhythm abnormality that can be either chrbnic 
or "paroxysmal" (occbing in repeated episodes). @ increases the risk of 
stroke, but the excess risk can be reduckd by taking anticoGlants. . . 

To estimate the prbvalenct. of AF among older adult+ in'a cert* kegion o f .  
England, 4843 persons were sampled a! random fro& a kst of all pen:bns aged 
65 years or older who were registered with a Natiokal Health Service P r i r n ~  
care physician. Of the 3678 who participated and had an electroca@iogram,. 
207 were found to have AE 

To check for participation bias, medical records. were also reviewed for 
a sample of participants and for sample of nonpa$icip.ants. A diagnosis of 

AF was found somewhere in the medical record for 139/1413 in the participant 
sample and for 401382 in nonp&cip~ts. .. 

(a) Based on these results, what is your best e s k a t k  of tbe Prevalence .. of . AF' . 
among older adults in the region? , , 

(b) Do the results frorh medical record review for a spbsample of p.a&ci@nts. 

and nonparticipants suggest that persons with . AF . 'were a n j  more or less 

likely to be surveyed? . .. 
. . 

(c) Why do you think the of patients with AF ih the medicd record ' 
substudy was so much higher than the percentage fou;ld to have AF . in . the 
survey? 

2. The so-called "sex ratio" is usually calculated as the number of male cases of 
a condition divided by the number of female cases. 

(a) You are studying pattees of disease occurrence in your co&~unity using: 
data on hospital discharges. The:.sex ratio in 80 cases of pylonc stenosis, 
which is almost always diagnosed d k g  thefirst ye& of life, is found to be 
3: 1. (Duplicate hospitalizations by the same patients have been eliplinated..) 
Does this finding sdggest that male babies.8re at higher risk for, byloric 
stenosis than are female babies in your cominun@? Why or why k t ?  

(b) Below age 75, the sex ratio for myocardial infarc,tion is found to be 2: 1. 
Above age 75, it is about 1:2. Does G s  imply that rrikn in the area &e more 
prone to heart attacks below age 75, but that w61nc? are rnok after' 

that age? Why or why not? . . 
. , 

. . 
. . .. . 7 
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3. Lenaway eitd.CT992) desc~be&epidemio:~~~c~characte~~Lcs:0f~schoo1-re1ated 
in jdes  among 5,518 students in nine schools in the Boulder, Colorado, area 
during a particular school year. During this period, 509 injuries were reported, 
which occurred at the following times: 

llME PERCENT 

Before school 2% 
Morning 41% 
Lunch 27 % 
Afternoon 16% 
After school 14% 

Total 100% 

From this information, can you conclude that the risk of injuries was highest 
during the morning hours? Why or why not? 

4. If a hen and a half lay an egg and a half in a day and a half, how many eggs 
would one hen lay in three days? 

5. Vancouver, British Columbia, and Seattle, Washington, are geographically near 
each other and are quite similar with regard to population size and several 
measures of socioeconomic status. Over a seven-year period, the following data 
were obtained from the respective police departments concerning homicides, 
according to the weapon used. 

Percentage of Homicides Committed Using Each 
Weapon Type 

T Y P E  OF W E A P O N  S E A T E E  VANCOUVER 

Fiream 42.5% 14.3% 
Knife 27.4% 50.0% 
Other 30.1% 35.7% 

A newspaper reporter is sitting beside you when these data are shown at a 
press conference. He voices his conclusion that a Seattle resident may be more 
likely than a Vancouver resident to be shot to death by someone else, but that 
Seattleites can at least take comfort in knowing that they are less likely to be 
stabbed to death or killed by other weapons than are Vancouver residents. Do 
you agree? Why or why not? 
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ANSWERS . . .  . .  
. . 

. .. . . . , 

1. (a)  Prevalence = 20713678 = .056.. . .  ' 
. ' . .  , 

(b) AF was found for 13911413 = 9.3% of parijcip&ts rind 40/3.82 = 10.5% 
of nonparticipants, sdggesting little participation bias.: , . 

(c)  The kind of prevalence measured thecommu&ty survey was pointprei.a.- 

lence as of the time the electrocardiogram was taken for each .p&cipant., 
The kind of prevalence measured in the medical record review.'is be.tter 
considered periodprevalenc&. I t  referred not to the proportion of patients 
who had AF at a particular point in time, but over the &riod of time .during 
which patients hadreceived cak  from the clinic.whos& medical'record was 
reviewed. 

2. (a) In this instance, yds. At least in most societies, &ld.be safe to aisunie' 
that there are about equal numbers of male and f&de babes atriskd-ur-: 
ing the first year of life, even though . . the exact ?umbers , it . risk I .  :may . be 
unknown. 

(b) Not riecessarily. The shift in the sex ratio with idvin;ing'.age &ght be. 
largely due to differences in the gender compo~ition 'of the popula.tion 
at risk, with women outnimber&ng men at thk oldei agks bec.ays.e tliiy. 
generally live longer. 

3. No. We can convert the percentages back to the number.of cases that.oc.curred 
during each time period to get a set of numerardrs for some' kind of k i d e k e '  
measure. We could also probably asswe. that the nynber of s.tuflenfs at risk. 
during each of the time shown was about the same. But the dui-atisn' 
of each time period, while not specified, undoubtedly m e r e  among'the.time 
periods. The lunch period, for e$mple, probably lasted'only @I haur:or les.s, 
while morning could have spanned three or foui houis. clearly, the longer the 
time period, the more hjuriks we would expect to see in the.p.eriod, ,even if the. 
intrinsic risk to students per unit'of time were the same. . , , 

. .  . 

A good incidence 'measure here would be ae incidence rate, c&puted' 
using a person-time denominator. We cannot calculate it'from the . data .. given 

for lack of the time component of the denominator. 
4. This familiar riddle is actually an incidence-rate problem,The numbel: of eggs 

laid should be proportional to the n u d e r  of hens and to tbeamount of h e  spent. 
waiting for eggs. The '"incidence rate".of egg-laying is 1.5 eggs/(l.5 hens x. 
1.5 days) = 213 eggslhen-day. One hen ?n the job f?r three days &ounts td 
3 hen-days, so we would expect 3 k 213 = 2 eggs: ' , - 

5. The table concerns only "numerator 'data" on the distribution of homic,id&s by. 
weapon type. It does not show whether the incidence of hoinicides, bxrall or 
of any type, is higher in one city than in the other. ' . . , . . .  

. . 
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Here are the actual homicide incidence rates from the two cities during 
1980-1986 (Sloan et al., 1988): 

Incidence of Homicide per 100,000 Person-Years by Weapon l j p e  

TYPE OF WEAPON S E A n L E  VANCOWER 

Firearm 4.8 1.0 
Knife 3.1 3.5 
Other 3.4 2.5 

types 11.3 7.0 

The overall incidence of homicide was higher in Seattle, and the difference in 

rates for firearms accounted for most of the excess. The incidence of homi- 
cide carried out with knives was slightly higher in Vancouver, but the inci- 

dence of murder involving other weapons was actually higher in Seattle than 

in Vancouver. 
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DISEASE FREQUENCY: ADVANCED 

Chapter 3 offered an overview of ways to measure disease frequency in populations. 
In this chapter we return to take a closer look at several of the main techniques, 
highlighting properties and relationships among them that may not be apparent on 
a first encounter. 

People embark on the study of epidemiology from varying backgrounds and 
with varying amounts of statistical training. Readers without much prior statistical 
training may find parts of this chapter challenging but are encouraged to try to 
follow the basic reasoning and conclusions without getting too bogged down in 
mathematical details. Those with more statistical experience should find a few 
helpful connections between new terminology and familiar concepts. 

PREVALENCE 

Prevalence and Length-Biased Sampling 

Not all cases of a disease necessarily have an equal chance of being included 
in a set of prevalent cases, which are counted in the numerator of a prevalence 
estimate. The reason is that the time course of many diseases is quite variable 
from person to person, and an individual's chance of being a case at the time of 
a prevalence survey depends on how much time he or she spends in the diseased 
state. 

Coronary heart disease, for example, can take several forms, including chronic 
cardiac chest pain (angina pectoris), acute myocardial infarction, or sudden car- 
diac death. Figure 4-1 shows the time course of coronary heart disease for three 
hypothetical cases in a workforce population of middle-aged men during a one- 
year period. At mid-year, case no. 1 develops chronic angina pectoris, which lasts 
through the end of the year and beyond. Case no. 2 experiences a myocardial 
infarction early in the year and dies a week later. Case no. 3 remains disease-free 
until late in the year, when he suddenly collapses with ventricular fibrillation and 
soon dies of sudden cardiac death. 

. . 
Time 0 , . ' 1 year 

. . 
Figure 4-1. Three Hypothetical Cases of Coronary Heart Disease. . . , . , . 

. . .  . . . 
. . 

Now suppose that an employee heal* survey seeks to-&asjze the @evalenc.e: 
of coronary heart disease by enumerating all cases & the workforce. For 

simplicity, say that aquestionnaire is,sent to all emc1~)'ees ~imuItaneous1~ a d  that . 
all eligible cases are identified. This protAcol is t-ount to +awing a vertical 
line somewhere in Figure. 4-1, at a horizontal position reflecting the date of the 
survey, and counting all active cas,es crossed by that line. If a date is chbsen 

at random, case no. 1 has about a 50% chance of being .included as'a p&alent 
case. Case no. 2 has aboyt a 1/52 chance of being includ&, 6ecau.se.only a few: 
potential survey dates would fall withe the week when he is'an actiive case. Cas.e 
no. 3 has an infinitesimal chance of being ihclu.&ed-the s&ey would have to 
reach him between the onset of ventricular fibrillation . . and. when he dies. . a few . 

minutes later. 
Other things being equal, aperson's probability of being captured as.a preva- 

lent case is proportional to the duration of his or her disease:A set of cases 

thus tends to be skewed toward cases with more c h r o ~ c  forms of the disease. This 
principle has important implications for the design of somekinds of epid&iologic 
research-particularly case-control ?tudies; to be discusscd.in Chapter 15. For ex- 
ample, a set of prevalent cases may not be ideal for use in a eke-control, study of 
etiologic risk factors, because the frequency of any risk factor that is &o associ- 
ated with c'hronicity of the disease may distorted~amo~i~~uch cas.es (Wang et al.,, 
1999). The same principle arises in evaluating the effects of disease scregning p~o- '  
grams: screening is like a prevalenc.e survey, and cases detected by scfeeni.ng tend. 
to be skewed toward more slowly progressiveforms of pre-.symptomat.$:dis.ea~e 
(Momson, 1992). . . 

. . 
Confidence Limits 

. . 

Prevalence i~ a proportion. ~ e t h b d s  of obtaining confidinc~ . h i t s  for an estimate 
of a proportion based on a simple ~ d w  sample are described in App-endix 44.' 

,, . 
Example: In the Newburgh, New York, dental-decay Survey described.in Chap- 
ter 3,116 first-graders were foun'd tomeet the'case. defhitioi for dental d.kcay, qut 
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of 184 first-graders examined. The estimated prevalence was 116/184 = .63. The 
95% confidence limits for this estimate may be calculated as follows. 

c = number of cases = 116 

n = number of examinees = 184 

6 = point estimate of prevalence 

= c/n = .63 

se($) = standard error of j3 

Z, = standard normal deviate for desired confidence level 

= 1.96 (for 95% confidence limits) 

The desired 95% confidence limits for prevalence are: 

When an observed prevalence is based on a complete enumeration of all cases 
in the population, an argument can be made that no sampling error is involved and 
that confidence limits are unnecessary. Even in this situation, however, an observed 
prevalence is ordinarily treated as an estimate of the true prevalence in a larger 
source population from which the study population has been sampled at random. 
The study sample may also be regarded as a random sample in time. 

CUMULATIVE INCIDENCE 

Estimating Cumulative Incidence in the Presence of Censoring 

Sometimes we would like to estimate cumulative incidence but cannot do so di- 
rectly because some persons drop out during the observation period, even though 
they had not become a case before dropping out. Disease occurrence informa- 
tion on such subjects is termed censored. Censoring can occur for many reasons, 
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including voluntary withdrawal, departure from the disease-s&eillance system's 
coverage area, death from some unrelated disease, or the schedued end of study + 

data collection. Survival analysis encompasses a family of biostatistical meth- 
ods that can allow the epidemologist to estimate cumulative incidence in the 
presence of censoring, under certain assumptions (Kalbfleisch and Prentice, 1980; 
Hosmer and Lemeshow, 1999; Kleinbaum, 1996). A simple and widely used 
method that requires relatively few assumptions is descfibed here: the Kaplan- 
Meier or product-limit method (Kaplan and Meier, 1958). 

To see how the method works, a specific context will be heliful. An abdomnal 
aortic aneurysm is a balloon-hke expansion of the abdominal aorta caused by 
weakemng of the aortic wall. Theory predicts that the larger tbe.aneurysm grows, 
the weaker the vessel wall becomes and'the greater the charice of still furthe1 
expansion and potentially catastrophic rupture. But surgical repair of an unruptured 
aneurysm involves sigruficant risk, pain, and cost in its own right. To help decide 
between early surgery and watchful waiting, doctors and patients need to know 
the risk of rupture and how it varies over time. 

As a "thought experiment," we could imagine m~ni torhg a group of newly 
diagnosed aneurysm patients over time, without censoring. The cumulative inci- 
dence of rupture would rise over time. How high and'how quickly the risk rises 
would help detemne the urgency of elective surgery. 

In practice, however, aneurysm patients would be diagnosed on widely vary- 
ing calendar dates, and it would be almost impossible to follow them all untd 
rupture occurred. Censoring could happen due to death from other causes, elective 
surgical repair, or the scheduled end of data collection, 

Example: A study by Nevitt and colleagues (1989) involved traclung the expe- 
rience of 176 residents of Rochester, Minnesota, who were h t  diagnosed with 
an uruuptured abdomnal aortic aneurysm between 1951 and 1984. Among them, 
11 ruptures were idenhfied within eight years after diagnosis. However, even by 
five years after diagnosis, only 76 of the original'patients were actually still at 
risk for rupture and being followed. Had all 176 patients been tracked for a full 
eight years without censoring, the cumulative incidence of rupture no doubt would 
have exceeded 1 1 / 176, possibly by a large amount. 

Figure 4-2 portrays five hypothetical patients who are diagnosed with an 
aneurysm at different hmes during a five-year study period. In' the top panel, each 
patient's experience is shown as a horizontal line that begins at diagnosis and termi- 
nates either with rupture (a bold vertical bar) or with censbring (a vanishing line). 

In the second panel, the time scale is changed to "time sincadlagnosis," which 
bears more directly on the research question at hand. To make this conversion, the 
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Figure 4-2. Application of Kaplan-Meier Method to Estimate Cumulative Incidence for Five 
Hypothetical Subjects. 

line for each person is moved leftward to align its start with the vertical axis, 
keeping its length and manner of termination unchanged. 

The third panel is the Kaplan-Meier survival curve derived from these data. 
(Such "curves" normally have a stakstep shape like this one.) Although we are 
mainly interested in cumulative incidence, it is mathematically more convenient 
to focus &st on "survival"--here, the probability of not having had a rupture. To 
construct the curve, we proceed from left to right. By definition, all patients with a 
newly discovered untuptured aneurysm are free of rupture at diagnosis (Time 0), 
so the survival curve begins at height 1.0. Here, no ruptures occurred until halfway 
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. . 
. . 

through the first year. Of the five patients ,hen under s&veill@c.e,'fo.ur r&n&n.ed. f rupture-free immediately after patient no., .3's rupture. Hence the c&e;drops: at 
that point to 1.0 x (415) = 0.8. The next rupture (patieit no. 4) occurred two 

6 
years after diagnosis. At that time, one of'thetwo.patients still at risk &d under 
surveillance remained rupture-free aft& patient nd, 4's rupture. Hence thecu.we 
drops to 0.8 x (112) = 0.4 at that time. Between the two ruptures, patients no. 1 
and no. 5 dropped out due to censoring. Those losses haveno effect on the height 
of the survival curve at the times they o,ccurred, b~it  they increase the s e e  of the 
drop at the time of patient no. 4's later rupture. After patient no. 4's rupture, no 
further ruptures occurred through year 4, when the last person under surveillance 
dropped out. . . . . 

The bottom panel of Figure 4-2 shows the desire$ plot of cumulati"e inci- ' 
dence over time, obtained by calculating cumulative incidence ,= 1 (proportion:, 

still free of rupture) at each follow-up *. In effect, it is the' thirp p i e l  turned' 
upside-down. Note that the estimated c.um.ulative incidence of rupture at four $ears 
is 0.6, not 215 = 0.4, as might have been guessed ndively without accounting for, 
censoring. A more generic description of the Kaplan-Meier method. and related' 
methods can be found in references on survival analysis (Kaplan and Meier, 1958; 
Kalbfleisch and Prentice, 1980; Kleinbaum, 1996). , ' 

When there is no censoring, the Kaplan-Meier method yields the'same cu- 
mulative incidence estimate as the simplir'direct method de&rib.ed.earlier. When. 
censoring is present, the method uses the eiperience of thoie remaining i t  Ask and 
under follow-up to estimate the shape of the curve. The validity of the. rgsulting . 
curve and cumulative incidence estimate? depends on an~a~suin~t iob that censoring 
is unrelated to risk. In other words, it is,asSumed that,,had they be.en.observed.to 
completion, the survival curve for persons' with censored data.would look the same" 
as the curve for everyone else, aside from &.ampling variability. This .assump~on 
is usually not empirically testable, but a judgment about its-pl+sibility c m  often 
be made by considering the reasons for c&s.oring. In ~ u r . ; & ~ ~ y s . m  ex&ple, cen- 
soring due to the arbitrary end of t .  study period might well be umelatkd to  risk 
and create no bias. But censoring due to surgical rep.& might be triggered by the 
onset of symptoms or by evidence of,rapid inkurysm growth; so that thesurgeon's 
hand may have been forced by an impending rupture. To.the extent that censbring. 
for that reason is common, we might suspect that the cumulative incidence of rup- 
ture without surgical intervention could be underestimated.by the Kap1a.i-Meier 
method. . . 

Survival analysis includes several 0 t h  conceptually similar but computation- 
ally more complex methods for estimati4g~cumulative.~cid.~nc~ when adj,ustment 
must be made for subject chara.&riiti&.s (covariates) that h a y  differ acioss com- 
parison groups (Kalbfleisch and Prentice, , . 1980; Hosmei and'~em.esh?sv,'1999; . . 

Kleinbaum, 1996). . . . .. . . 
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Confidence Limits 

Cumulative incidence, like prevalence, is a proportion. When it is estimated directly 
from data on a closed population, methods described in Appendix 4A can be 
used to obtain confidence limits. When the estimate is obtained by the Kaplan- 
Meier method, confidence limits must be obtained by more complex techniques, 
as described in several statistical texts (Kalbfleisch and Prentice, 1980; Hosmer 
and Lemeshow, 1999; Kleinbaum, 1996; Rosner, 1995). 

INCIDENCE RATE 

Population-Level and Individual-level Perspectives 

Measures of disease frequency in populations have a dual interpretation. First, they 
estimate the burden of disease on a population as a whole. This perspective bears 
directly on such public health activities as detection and tracking of epidemics, 
health planning and resource allocation, and evaluation of policies and programs, 
which focus on the population as a unit. 

Second, disease frequency in a population is also used to estimate disease 
risk in individuals. From this perspective, the population is viewed as a collection 
of individuals who have certain characteristics in common. The population is a 
set of replicate observations. Viewed this way, data on diseasefrequency in the 
population provide input for inductive reasoning: predictions about the likely fate 
of one individual can be based on the observed experience of others. 

For example, the percentage of newborn babies weighing less than 2500 grams 
at birth has been found to be higher among babies of mothers who smoked cigarettes 
during pregnancy than among babies of non-smoking mothers. For any particular 
mother, there is no way to know for sure whether she will or will not have a 
low-birth-weight baby. Yet based on the experience of other mothers, we infer 
that the risk or probability that she will have a low-birth-weight baby is greater 
if she smokes than if she does not. This view of a population as a set of replicate 
observations also underlies statistical theory for obtaimg confidence limits for 
measures of disease frequency. 

Duality of perspectives applies to many disease-frequency measures, not just 
incidence rates, and epidemiologists are used to moving freely between them. But 
there are situations in which population-level disease frequency does not neces- 
sarily translate directly into individual-Ievel risk estimates, and then it becomes 
important to distinguish between the perspectives. This issue has special relevance 
to incidence rates. 

. .  
. ~ .. . 
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' .  . .. 
Incidence Rate and Hazard Rate ' , . .  

. . . . 

A key feature of the person-time incidence rate is that'its deno&atq is a "lump . 

sum." Person-time is regarded as a freely interchangeable commodity, a d  all that ' 

matters in the final calcuiatiori is the total amount. observing one sui~.ep.fible 
person for 12 years, 12 people for one ye.&, or 144 people'for a month all'result 
in adding 12 person-years,tb the deno,-itor.,This property+was as.s.me.d in the 
calculations shown in Table 3-1. 

This feature of the incidence rate can be both a strength kd a limitat&. The 
examples in Figure 3-3 and Table 3-1 illustrated that the ability to combine &son- 
time across people and over time makes the incidence rate a much more'broadly 
applicable measure of incidence than cumuli.tive incidence. .Butto appreciati the 
implications of this pooling, it is helpful'to consider a model that breaks down the 
population's disease experience into smaller building b1o.cks.. 

Looking again at Figure 3-3,-the v~rfic.al.lines divide the total obseivation . 
period into 30 one-day periods. Taken one day at a time, mimy of the original com- 
plicating factors that interfered with direct calculation of cumulative . . incidence- . 
censoring, recurrent cases, periods not at risk, multipk observation periods per 
person-become less problematic. On'any given day, recurrent events in the same 
person and gains and lossei to the populatiofi at risk are raie or non-esstent. , 

Furthermore, we can imagine that if we had detailed da@].on 'the tiniing of . 
events, we could extend this divide-and-conquer strategy still further, splitting dais 
into hours, hours into minutes, and.so on, rather like viewing a movie one.fr&e 
at a time. No two disease events occur in the same person at kxacgy the same time 
on a sufficiently fine time scale, so in principle it is alwayd possible to choose a ' 

time increment short enough that the.chance . . . of multiple cases . , occurring within . 
the same increment is negkgibld. 

In addition, there is a fixed number of'instances when some population mem- 
ber joined or left the population, or moved into or out of the'susceptible state. But 
again, there is no limit on how shop a timehcrement we could select. Herice. 'the : 
proportion of intervals involving censoGg of this so@ can be made as small as we 
wish, and ultimately rare enough to'be negligible. 

So suppose that we specify a cerfain short time ine~ment ,  such as a minute 
or a second-short enough to eliminate. recurrent ca.s.{s within.a single +two1 
and short enough to allow &ens.oring and susceptibility changes to be ignored. Call 
this increment At. The entire study of interest ii then split ,into a .s.efies ' 

of intervals, each of duration A,t. The popula6on's disease experince oyer time 
could now be represented 'as a very largematrix, as illustrated in Figure 4-3. 
Each row refers to a different individual who belongs, t6'the population for at 
least part of the study period. Consectitive columns refer to coasecutive shofi time 
intervals throughout the observation' period., Each ceIl corresponds to, a'tiny . .. piece ' 
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1 2  ... ... ... M - I M  
Time interval j 

d = 1  if person becomes a case in the interval, else = 0 
s = 1  if person is at risk at start of the interval; else = 0 

Figure 4-3. Matrix Representation of Population Disease Experience. 

of person-time. Rows (individuals) are numbered 1 through N, while columns 
(time intervals) are numbered 1 through M. Any particular cell can be referred to 
by its row number ( i  ) and column number (denoted j). 

This matrix can be thought of as a "digitized" version of the kind of population 
line diagram shown in Figure 3-3. Each row of the line diagram in Figure 3-3 
maps to a row of the matrix in Figure 4 3 .  The horizontal resolution is adjustable 
by the choice of At, with smaller values of At yielding finer resolution. . 

Each cell in Figure 4 3  contains two numbers. The upper left number in cell i j 
is 1 if the person in row i became a case during time interval j; otherwise it% 0. 
In other words, this number is the value of a disease indicator, d,, . The lower right 
number in that cell is 1 if person i was at risk and under observation at the start of 
time interval j; otherwise it is 0. It is the value of a susceptibility indicator, st]. 

Cells for which s = 0 are of little interest, corresponding to persons who 
were non-susceptible, not under observation, or already ill at the time. We know in 
advance that d = 0 for those cells-there is no uncertainty, and the observed value 
of d provides no real information. But every cell for which s = 1 corresponds to a 
brief "experiment of nature," or binomial trial, as considered earlier for cumulative 
incidence. "Chance" (as a euphemism for our incomplete knowledge about disease 
causes) determines whether d is 1 or 0. Each of these trial-ceh captures the 
experience of a single at-risk individual over a short, fixed time period: person i 
either develops disease during time interval j or does not. 

Associated with each trial is an underlying probability p,, that person i would 
become a case during interval j. Because At was already made short enough to let 
us ignore the possibility of recurrent disease events within one interval, plj can also 
be interpreted as the expected number of disease events in that trial-cell. The true 
values of these pis are not observable. A trial-cell, however, contains either 011 or 

. . 
. . 
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111, either of which can be read as the observed cumulative incidence in a certain 
one-person populabon over a certain brief time interval. It is a crude estimate-the 
crudest possible estimate, in fact-of the corresponding p. Symbolically, & = 
dll/sll = dl,, because the denominator is always 1 for all trial-cells. 

The total number of trial-cells, and the probability that a case occurs in 
one of them, clearly depend on the choice of At. The binomial-trial model fits 
better and better as At gets shorter, so it is worth considering what happens 
as At approaches 0. The smaller At is, the more trial-cells there are, and the 
less likely it is that any glven one of them contams a case. Moreover, as At gets 
near enough to 0, p,, becomes proportional to At. This is because a fixed num- 
ber of cases is being spread ovei an increasingly large number of cells. Over a 
short enough period, p remains essentially constant for the same pers& from 
one instant to the next. Dividlng p expected cases among, say, k still shorter 
sub-intervals puts p / k  expected cases into each sub-interval of duration At/  k. 
The k's cancel out, and the ratzo of expected events to interval durahon remains 
unchanged. 

This ratio is variously termed the hazard or hazard rate (our preferred terms), 
event rate, probability rate, force of morbidity, or instantaneous probability. It is 
usually denoted with the Greek lambda (A): 

Pij A , . -  - . . 
- At , . . .  

For a given individual, a value of h can be associated with each point in time by 
taking the limiting value of h as At -+ 0 for the interval that includes that time . 
point. . . 

The hazard rate merits some cqntemplation. It is. the expected number of : 

disease events per unit of time for a certain person at a certain moment (which 
explains why event rate is one of its aliases). Computed as"the ratio of a unitless ' 

probability to an amount of time, the ha&d has units of time:', just as does the 
incidence rate. But we must remember that. incidence is an.obs.ervable population . 

measure of disease occurrence over a period of time,; while. the h=ad:rate is 
an unobservable individual meisdre of disease risk per'tim& u&, evaluated at a , 

moment in time. 
We can now re-aggregate the data in the.many trial-ells back toward'ivhat 

we as epidemiologists observe at the level. 'The, obgerved number of 

cases, c,  is the total number of trial-cells for which d = 1 ,  summed over'all rows 
and columns: 



72 Epidemiologic Methods: Studying the Occurrence of Illness 

The total time at risk (call it T with no subscript), summed for all population 
members, is the number of trials for which s = 1, times the duration of each trial: 

The total number of trials is: 

Finally, the mean hazard rare across all persons and time intervals at risk is: 

We noted earlier that pi, is interpretable as the expected number of cases in 
cell i j ,  so the numerator of the last expression is the total expected number of cases 
for the population. The expected total number of cases is not directly observable, 
but in a particular set of data, the observed number of cases c, is an estimate df it. 
Hence: 

C 
Incidence rate (R) = - estimates % 

T 

In words, the incidence rate is an estimate of the mean hazard rate over all 
person-time at risk contributed by population members during the study period. 
This interpretation holds true regardless of how variable the hazard rate may be 
within individuals and over time. It also does not require that the pij beindependent 
of one another. 

Incidence rate as a weighted average 

As noted earlier, one of the main uses of incidence data in a population is to 
infer disease risk in individual population members. Later in this chapter, we will 
examine a "weighted-average rule," showing that the rate for a population is always 
a weighted average of rates for the population's component parts, which are usually 
subgroups of the population. The weight for each subgroup is its size-here, how 
much person-time it contributes. In the present context, the weighted-average rule 
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says that the overall incidence rate will be most heavily id,uenced by hazard rates 
that apply over the largest amounts of person-time. . . 

. I .  _ 
Suppose the hazard rate .is constant for all individuals a d  over &e. Then 
the incidence rate estimates a weighted average . . of t h ~ s  . .  . constant, wbich'is ' 

. . . . . . 
just the constant itself. . 

Suppose each individual has fiis or her own posiibly.unique hazard rate., . 
hi, which remains constant dver time. Then the kciden?& rate estimates a ' 

weighted average of the.&. The weight for each.hi 'is the p ~ ~ F ~ r t i & ' ~ f  the 
total person-time i t  'risk contributed by person i .  Hazard rates .that' apply. 
to persons who are at risk and und& oljservation longer ,are thus weighted 
more heavily. This can be i m p o h t  if Censoring is more or less .common 
among individuals with relatively high hazard.ratei. The incid&@.rate.will 
tend to be skewed toward hazard rates among those persons who ate least 
subject to censoiing. , 

Suppose the hazard rate changes over time but is s M a r  for all at-risk 
individuals who are under observation at a giventhe.. This shation might . 
apply, for example, in a cohort of smla r  i~~dividuils who are t i a w d  for :. 
occurrence of new.'cases over a loG.time. As cohor;t members age, their , 

hazard rates may change. Conc.urrently, members of.thc cohod may b.e losl . 
to attrition, so that more pers<n-time comes fromearlier &the study period 
than from later. The incidence rate will be skewed toward hazard rates in . 
effect during early parts of the obsefvation period, when more people . . Wivere 
being observed. ' 

. . . . 
. . . . 

. . 
Confidence Limits 

As noted earlier, few assumptions are needed in order to interpet the incidence rate 
as an estimate of the mean hazardrate. To obtain confidence limits for ag incidence ' 
rate estimate, however, additional assumptions must be made.Thre.e models are 
discussed here and some research situations to which each . might . .  corresp~ond. 

Constant hazard ' . % .  

The simplest and probably most &elyused assumption is that the ha&d rate 
is constant across individuals and ?ver-the. Under this assumption, all pers&-time ' 

within the observation period is freely interchangeable. An d o g y  fr& physics 
is decay of a radioactive element: the, h&ird rate of f issioog in a cert.$n .atom , 

at a certain moment is thought.to be constant across' all atoms'of the same isotope 
. .  . and over time (Armitage &d Berry, 1994). , 

' 

In the human health arena, there +re probably not a . ~ y  exact counterparts- 
perhaps the hazard of being stnick by a giant meteor from outerspace-butsome . 

. . 
. . .  
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situations come closer than others. The constant-hazard assumption is most plau- 
sible for a relatively homogeneous population observed over a relatively short time 
period. "Relatively homogeneous" and "relatively short" need to be interpreted in 
the context of the disease in question. In occupational epidemiology, for example, 
cases and person-time at risk are routinely partitioned into categories defined by 
job title, age range, gender, and calendar year, with incidence being estimated 
separately for each of the resulting categories (Checkoway et al., 1989). 

When this constant-hazard assumption is met, methods based on the Poisson 
distribution can be used to obtain confidence limits for an incidence rate estimate 
(Mendenhall et al., 1986; Armitage and Berry, 1994; Breslow and Day, 1987). 
Specifically, say that c cases are observed in T person-time. T is considered a 
fixed quantity, not subject to sampling error, and confidence limits for the rate are 
based on confidence limits for c alone. If c > 100, the following expression (based 
on the normal approximation to the Poisson distribution) is reasonably accurate 
(Armitage and Berry, 1994, p. 142): 

Confidence limits = c * z a  .1/F 
T 

where Z, is the standard normal deviate for the desired confidence level (Z, = 
1.96 for two-sided 95% confidence limits). The second term in the numerator is 
subtracted to get the lower confidence limit and added to get the upper limit. 

If c 5 100, more accurate confidence limits can be obtained by basing them 
directly on the Poisson distribution. Table 4-3 in Appendix 4B can be used to 
obtain a lower and an upper multiplier for c, the observed case count. Multiplying 
each of these by the observed point estimate of incidence yields the desired lower 
and upper confidence limits. 

Example: In the study of back injuries by Gardner et al. (1999) described in 
Chapter 3, nine back injuries were reported in 322,193 working hours by female 
department managers who had been employed for less than eight months, for a 
rate of 2.79 cases per 100,000 worker-hours. Using the table in Appendix 4B, the 
upper and lower multipliers needed to obtain Poisson 95% confidence limits for 
an incidence rate that is based on nine cases are 0.457 and 1.898. The desired 
confidence limits therefore extend from 2.79 x 0.457 = 1.28 to 2.79 x 1.898 = 
5.30 cases per 100,000 worker-hours. 

Hazard varying randomly among individuals 

In some situations, theory or available data suggest that the hazard rate varies 
among individuals, even after accounting for measured differences in exposure 
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to nsk factors and other personal characterisfics. This variation could arise, for 
example, from differences in genetic susceptibihty, differences in exposure to 
unmeasured risk factors, or just biological variation. In the biostatistical literature, 
random inter-inhvidual differences in hazard rates are called differences infrailty 
(Aalen, 1994; Clayton, 1994). 

This model seems particularly applicable to studies of recurrent illness (Glynn 
et al., 1993; Glynn and Buring, 1996; Gumming et al , 1990). Under the constant- 
hazard assumption considered earlier, someone who has had one disease event is 
no more or less likely than anyone else to have another event in the future. But for 
many diseases, evidence suggests that future risk is often elevated among persons 
who have already experienced an initlal event. For example, victims of assault 
have been found to be at greatly increased risk of being assaulted agdn (Dowd 
et al., 1996). Children treated for an unintentional Injury are more likely than are 
other children to experience a future unintentional injury (Johnston et al., 2000). 
Postmenopausal women who experience a vertebral fracture are at high risk of 
having an additional fracture wlthin the next year (Lindsay et al., 2001). Possible 
mechanisms include continued exposure to a hazardous environment, existence of 
a chronic underlying health condition that predisposes to recurrent comptica'tions, 
or effects of the initial illness event ~tself, as might occur if an assault victim 
confronted his or her attacker. Whatever the reason, an initial event may serve as a 
marker for a subpopulation with a systematically hlgher hazard rate. Statistically, 
the problem is known as extra-Poissorr variation. When it is pres$nt,.cddence 
limits based on the Poisson distribution, which assumes cotlstant hazard, are too 
narrow (Glynn and Buring, 1996; Clayton, 1994). 

Several statistical approaches have been proposed to dek with this problem 
' 

(Glynn and Buring, 1996; Clayton, 1994; Stunner et al., 2000). One involves com- 
puting an individual event rate for each population member based on his or her 
observed number of events and person-time at risk, and basing confidence limits 
for the overall incidence rate on the observed variance in those event rates across 
persons (Glynn and Buring, 1996). When follow-up times are unequal among In- 
d~viduals, the individual rates can be weighted by amount of time at risk (Stukel 
et al., 1994). More complex mulhvariate methods include logistic regression using 
generalized estimating equations, Poisson regression with correction for overdis- 
persion, or adaptations of proportional-hazards survlval analysis (Sturrner e! al., 
2000). 

Variation in hazard rates among individuals can have another effect in the 
context of non-recurrent disease in closed populations. It can affect the degree to 
which changes in incidence rates m the population over time reflect corresponding 
changes in individual nsk (Aalen, 1994, 1988). For example, suppose that apop- 
ulation under surveillance initially consists of a 5050 mixture of a high-risk sub- 
group and a low-risk subgroup. The earliest cases anse mainly from the highrrisk 
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subgroup. But as those early cases occur, they also preferentially deplete the high- 
risk subgroup. Over time, the original 5050 mixture thus shifts toward an increas- 
ing predominance of low-risk individuals, which in turn yields a decline over time 
in incidence for the population as a whole. The observed decline in incidence could 
be misinterpreted as implying a decline in risk to individual population members, 
either as they age or as calendar time passes, when in fact the decline yould be 
due at least in part to changes in the composition of the population at risk. 

Hazard varying over time 

As noted earlier, the simple and common model of constant hazard rates can 
be expected to hold best over relatively short observation periods. As time passes, 
changes in such factors as exposure to environmental causes, diagnostic methods, 
and disease classification commonly occur and can affect disease frequency. Closed 
populations also age. To reduce variation in hazard over time in the face of these 
factors, a long period of observation is often subdivided into shorter sub-periods 
or "time bands" for analysis. Other analytic strategies include modeling the effects 
of time itself on incidence--for example, by including time as a predictor in the 
kinds of multivariate models to be described later (Chapter 1 I). 

Often, however, changes in hazard rates over time are not of main interest 
and are instead just a potential source of bias when making comparisons among 
subgroups or populations. This viewpoint has helped make the proportional- 
hazards model popular in epidemiology (Cox, 1972; Kalbfleisch and Prentice, 
1980; Kleinbaum, 1996). Briefly, under this model, the "baseline" hazard may 
change over time in an arbitrary way, and these changes are assumed to apply to 
all individuals. But at any given moment, an individual's hazard relative to that of 
other individuals then at risk is assumed to depend on his or her measured personal 
characteristics, at least one of which is exposure to a potential risk factor of main 
interest. 

Incidence Rate and Mean Time to Disease Onset 

The incidence rate has units of time-'. Under somewhat idealized circumstances, 
the reciprocal of incidence, which is in units of time, can be interpreted as the 
mean time to disease onset. Although this odd fact is perhaps of more theoretical 
than practical importance in epidemiology, its basis is explained here. It will soon 
play a role in linking prevalence, incidence, and disease duration. 

Consider a hypothetical population of N susceptible individuals who are fol- 
lowed indefinitely for development of a non-recurrent disease. Say that incidence 
rate remains constant at some value IR throughout the follow-up period. If there 
are no competing risks, and if the population is followed long enough, then every- 
one in it must eventually develop the disease. Before becoming a case, person i 

contributes a certain amount of person-time at risk, z. Total person-time;.T = . 

xi c, stops increasing when'the last case occurs. At that ' b e ,  N 'cas.k.s wo-uld 
' 

have occurred in T person-time. By definition;,the incidenie . .  . ;ate was constant 
' 

throughout follow-up, so IR = N / T .  . . ' 

Now suppose we are interested in how niuch time gdes Gy, OQ average,'until . 

a susceptible person becomes a case. This would be xi z/N = TIN = 1 /I& In . . 

other words, the reciprocal of the incidence rate estimates the mew time to .$sease. 
' 

onset under the circumstances described; Although a proof is beyond the scope of 
this text, this property also holds.for recurrent di'seases. ; 

Example: Say that upper respiratory infictions occur at the (veryhigh) hcidepce of 
three per person-year in a population. The average time to the neit upper respkatory ' 

infection for a person at 6sk would be 1/(3 year-'), or 4 months. 
. ' ~ . ' . . 

. . 
For lower-incidence diseases, the requirid assumption of no competing ,@s ' 

will rarely be satisfied, in which case the resulting namerich estimate of mean . ' 

time to disease onset may not be very meaningful'. But the dgebraic'mle itslf . . will . 

prove useful below. . . 

RELATIONSHIPS AMONG MEASURES OF DISEASE FREQUENCY 

. . Populations and Their Subpopulations ', 

. . 

Many commonly used measures of disease freq+ency take the f@n of fractions. 
The numerator is usually a case count, and the denominator is ameasure of popula- 
tion size or of the amount of person-time in which those cases occurred. Prevalence, ., 
cumulative incidence, person-tim& incidence rate, moqality'rate,. case fatality: and 

' , 

various other measures all fit this description. It will be convenient to call dl such 
measures "rates" for now, recognizing that "rate" has a,n&ower mea.-g.in,o&er 
contexts. . . . . .  

A simple and very useful algebraic relationshipconnects the value pf any 
' 

such rate in the whole population to. it.s value-in subpopula~oris formed fram the 
whole. . . . . 

Suppose that, for a certain study popula60n, an overall rate of dkease,'r, is 
' 

calculated by dividing the total number of cases, c, by an appr?pnate denomhator, . : . 
n, so that r = cln.  The population can be divided h vairious ways into a set 
of mutually exclusive and rollectively exhaltstive subgroups-for example, by .. 

gender, by age category, or by exposure to some environmental factor. A sepxa.te 
"local" rate can then be calculated for.each s.ubgroup,.simply by res.tricting b-0th 
the numerator and the denominator'to members of that subgroup ': 

. . . . 

. . 
. . 

. . 
. . . ,  ' . . 
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Imagine that the population is separated into males and females, and that the 
gender-specific rates are r, = c,/n, for males and rf = c In  for females. The 
rate in the full population is: 

Some algebra shows that: 

cm r = --- Cf +- 
n, + n f  n, + n f  

where w, = n,/(n,,, + nf)  is the proportion of the overall denominator con- 
tributed by males, and wf is the proportion contributed by females. Note also 
that w, + wf = 1. The w's can be interpreted as weights for the corresponding 
gender-specific rates. 

Example: In a population of 700 women and 300 men, there are 35 prevalent 
cases of diabetes among the women and 30 cases among the men. The overall 
prevalence of diabetes is thus (35 + 30)/(700 + 300) = 65/1000 = 6.5%, while 
the gender-specific prevalences are 351700 = 5.0% in women and 301300 = 10% 
in men. The overall prevalence is a 700:300 weighted average of 5% and 10%: 
6.5% = (5%)(0.7) + (10%)(0.3). 

The algebra above can be extended to cover any number of mutually exclusive 
and collectively exhaustive subgroups. The general rule is: 

The overall disease rate in a population is a weighted average of the rates in its 
subpopulations. The weight for each subpopulation rate is the proportion of the overall 
rate's denominator contributed by that subpopulation. 

This property applies to all disease-frequency measures that are fractions. Among 
other uses, the rule underlies direct and indirect standardization of rates (discussed 
in Chapter 11)-techniques that enable valid comparison of rates across popula- 
tions that differ with regard to sociodemographic or other characteristics. 

Cumulative lncidence and Incidence Rate 

A useful relationship between the two main measures of incidence can be de- 
veloped for non-recurrent diseases. Consider again what would happen over time 
in a closed, susceptible population in which the incidence rate of a certain 

. . ' Disease Fequency: Advanced '9 
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~ i m e '  . . .  

Figure 4-4. Cumulative lncidence over Time When ' l n~ idenc~  Rate t s  Constant. . . 

non-recurrent disease remains constant. As new cases occu*,. thiy are 8"b.tiacted 
from the population at risk. It can be shown with calculus that the population~at risk 
declines exponentially over time-a process analogous to the exponential decay . , 

of a radioactive element. . . . . 

Say that No is the number of persons originally at,risk;  is is the n{mb.er 
remaining at risk at time t ,  ZR is the incidencb rate (assumed to b'e constant),. and. 
e is the base of natural logarithms, approximately 2.71828. Then: . . 

Because of the steadily..declidng population at iisk, ,a  smaller and.sqaller . 
number of new cases occurs per unit of.titime. Cumulative incid~nce (CI) con@ues . . . 

to rise, but with decreasing slope: . specifically:, . 

. . 
CI=l,-exp(-IR.t)  :. . . (4.2) 

. . .  

Figure 4 4  illustrates this relationship. : : . . . . 
Relation (4.2) can be handy, for exhpie;  when comparing results. from two 

or more studies that used different incidence .measures:As we have seen, tbe 
incidence rate applies to a broader rauge:,of populations and dise.ase types, whde 
cumulative incidence is moreeasily interp&tap!e in terms of disease probability or 
risk. Relation (4.2) provides one way to use incidence rate data. to address "What 
i f . .  .?" questions involving cumulative incidence. . . .  . 

.. . . . .. ~- . 

Example: Table 4-1 is based on results from a study. by M&& &d colleagues 
(1953) of coronary heart diskase incidence ainong &don bus drivers and'con- 
ductors. It was among the first studies to sqggest a l i e  btitweeo'regular physical 
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Table 4-1. Using Incidence Rate to Project Cumulative Incidence of Coronary Heart 
Disease in London Bus Drivers and Conductors 

Projected Experiexxe of 
1000 Hypothetical Workers 

Results from Moms Smdy 
CUMULATNE 

PERSON- INCIDENCE STILL INCIDENCE 
JOBIAGE CASES YEARS RATE' AGE AT RISK SINCE AGE 35b 

Dnvers 
35-44 8 12,360 0.6 35 1000 - 
45-54 29 11,698 2.5 45 994 0.6% 
55-64 43 6668 6.4 55 969 3.1% 

65 909 9.1% 

Conductors 
35-44 0 9622 0.0 35 1000 - 
45-54 11 5522 2.0 45 1000 0.0% 
55-64 20 4022 5.0 55 980 2.0% 

65 933 6.7% 

'Per 1000 person-years 
the absence of competing risks 

[Source: based on Mo~~is et al. (1953).] 

activity and lower heart disease risk. The conductors moved around the bus all 
day collecting fares, climbing up and down stairs. Meanwhile, drivers remained 
relatively sedentary while seated driving the bus. Because the work force was an 
open population, the results were reported as coronary heart disease cases per 1000 
worker-years for each job type and for each of three 10-year age categories. 

In each age group, the incidence rate of heart disease was higher in drivers 
than in conductors, consistent with the hypothesis that physical activity lowers 
the risk of heart disease. The implications of these results in terms of individual 
risk can be clarified by using the incidence rate data to estimate the cumulative 
incidence of coronary heart disease in two hypothetical cohorts of 1000 drivers 
and 1000 conductors from age 35 to 65 years. 

On the right side of Table 4-1, relation (4.1) was applied to each age decade 
in turn. The number of cohort members still at risk for incident coronary heart 
disease was estimated for the end of each decade, based on how many were at risk 
at the start of the decade and on the incidence rate for that decade from the Morris 
study. Cumulative incidence follows directly from the projected number still at 
risk. For example, among 1000 bus drivers at risk starting at age 35, the number 
expected not to develop coronary heart disease i n  the next decade would be: 

. . 

. . .' . ... . .  . 
. . 
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i Thus, the projected cumulative incidence of c~ronary heart disease over the 35-44 
age decade would be (1000 - 994):/1000 = ,006 = 0:6%. For the 44-54, age , ' 

decade, the same formula is applied again, substituting 994 for.1000 and..@i5 for 
,0006, and so on down the table. We estimate that, in the- abs.4fic.k of c.omp.e.ting ' .  

risks, a man who began working as a ~ o ~ d ~ n ' b u s  driver at  age 35 would s t k d  a 
9.1% chance of developing coronary he.art.dis.ease within'the next: 3.0 year.s. m e  
corresponding 30-year risk in a conductor Wo.uld be 6:7%. . ' 

In many situations, the disease is rare enough and the observation p.erio.d.short 
enough that very little reduction in the size of the population at hsk takes place dur- 
ing observation. Expressed with like denominitors, incidenie rate and cu&ulativ.e 
incidence may thus appear to be riumerically vqry clbse. For example, the inci- 
dence rate of coronary heart disease among London bus drivers aged 35-44 years 
was 0.6 cases per 1000 person-years. ~as:e.d on (4.2),, the projated one-year cumu- 
lative incidence among 1,000 such drivers wohld be 1 - eip(-0.6/ 1000 1) = . ' 

0.0005998 = 0.5998 per 1000 drivers. , . ' ' 

. . . . . . 
. . 

Prevalence, Incidence, and Durati~n '. . .. . . 

Under certain circumstances,; prevalence and. incidence can 'be easily related to 
each other. Consider a closed population in which a recurrent dis<&e state occurs,. 
such as urinary tract infection, the common cold, or depression.:Assume that all 
individuals who do not have the disease are s*sceptible (that is; there is n.0 third ':, 

not-at-risk state), and that the incidence.rate is c o n s k t  at some value ZB among . ' . 

all susceptibles and over time. Under this simple two-state model, peoe!.e m m  
back and forth between the states over b e  (Fig. 4-5). 

' , . . 

The flow along the disease-onset path, measured in the number of events per 
unit of time, depends on ( I )  the size of the susceptible pool k d  J2) the hicidence 
rate. Because the disease is recurrent, there is also a counter-BOG of individuals , 

from diseased back to susceptible,.whi6h. we may ca! re.co~ery.'The nuIllb6r of 
. 

recovery events per unit of time depends on ( I )  the size of the diseased pod, ,and 
(2) what we may call a recovery rate, which is just like the incidence . rate , but' . .  

operates in the opposite direction. We shall ft@her assume that'ws re.c.overy rate 
. 

is constant over time and is the same for alldiseased . . indiyiduals at Some valGe . . RR. 

Figure 4-5. Two-State Model t6 Illustrate thd ~elat ionshi~ Ambng ~r&ale.n~e, Inci.d.~.o.ce, ond 
' 

Duration. . . . . , .: 
~. 
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As demonstrated earlier, 1/IR can be interpreted as the mean time to disease 
onset among susceptibles. By similar logic, I/RR can be interpreted as mean time 
to recovery among diseased individuals. In other words, 1 /RR is the mean duration 
of disease, which it will be convenient to call 2. 

Now suppose we begin with all individuals in the susceptible state and imagine 
what happens over time. People start to develop the disease at a rate determined by 
IR. In the process, they start emptying the susceptible compartment and start filling 
the diseased compartment. As the diseased compartment accumulates prevalent 
cases, recoveries begin to occur. The more prevalent cases accumulate, the more 
recoveries occur, which tends to empty the diseased compartment and to refill 
the susceptible compartment. As long as the two opposing flows are unequal, one 
compartment will grow and the other shrink, which in turn will act to equalize the 
two flows. Eventually an equilibrium is reached, in which the flow of incident cases 
is exactly balanced by the flow of recoveries. Because the flows into and ouf of each 
compartment are equal at that point, both compartments maintain a stable size. 

More formally, suppose that the flows and compartment sizes at equilibrium 
are labelled as follows: 

S = number of susceptible persons 

D = number of diseased persons (prevalent cases) 

i = number of incident cases per time unit At 

r = number of recoveries per time unit At 

At equilibrium, 

Relation (4.3) says that, under the specified assumptions and at equilibrium, 
D/S is the product of incidence rate and mean duration of disease. D/S is not quite 
the prevalence, which would be D/(S + D). Rather, D/S is the prevalence odds, 
which expresses the relative frequency of the diseased state as an odds rather than 
as a proportion. For many realistic situations, however, the prevalence of disease 
is low, so that S >> D, and therefore D/S % D/(S + D). The final result is then: 

Prevalence % (Incidence rate) x (Mean disease duration) (4.4) 

Relation (4.4) links two key measures of disease frequency. It is a time- 
honored rule of thumb in epidemiology. Nonetheless, it is probably best regarded 
as a conceptual aid rather than as a,relation that can be expected to hold true consis- 
tently in real data. The main reason is that the assumptions behind the hypothetical 
model are often poorly or only approximately met under real-world conditions. 
For example, the incidence rate and recovery rate may not remain constant long 
enough for an equilibrium to be achieved, because of changes in environmental or 
behavioral exposures, disease-control activities,'diagnostic technologies, disease 
treatments, and so on. Also, the population of interest may not be closed, so that 
in- and out-migration of prevalent cases is possible. Nonetheless, relatiop (4.4) is 
quite useful for understanding the two main determinants of disease prevalence 
and for predicting how prevalence may change as a result of changes in inciknce 
or disease duration. 

Example: To illustrate how relation (4.4) works, imagine a population of married 
women aged 15-45 years in whom the incidence and prevalence of pregnancy are 
studied. Table 4-2 shows three scenarios. In the "base case," the.incidence rate 
of pregnancy is 8 per 100 woman-years. FulEtem pregnancies last 9 months, or 
0.75 years. If all pregnancies go to term, and if incidence has been stable long 
enough for equilibrium to be reached, then a prevalence survey would be expected 
to find about 8/ 100 x 0.75 = 6 /  100 of women pregnant On a random survey date. 

Now suppose that hghly effective oral contraceptives become available for 
the first time, and a random 50% of women choose to use them. No other changes 
in reproductive practices occur. use of the "pill" should reduce the incidence of 
pregnancy by half to 4 per 100 woman-years, but it should not affect the duration 
of pregnancies that do occur. Once a new equilibrium is acheved, we would expect 
another prevalence survey to find about 3/ 100 women pregnant on a random date 

TabIe 4-2. Incidence, Duration, and Prevalence of Pregnancy'ln a 
Hypothetical POpulahon of Women of Reproductive Age 

. .. 

Pregnancy . . 
. . .. , PREDICTED , : 

INCLDENCE ' DURAT~ON , .' . PREVALENCE 

BIRTH CONTROL USE RATE' . .  . . (YEARS) . (APPROX:) ,. : 

None 8 ' . 0.75. ' 6 % :  
50% use "pill" 4 ' 0.75 :. . 3%; , , '  

50% have abortion . 8  0.50 . .4%. .. 

at 3 months 

. . . . . , 
"Pregnancies per 100 woman-years . . . 
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Starting over from the "base case" without oral contraceptives, suppose in- 
stead that elective abortions become available. A random 50% of women who 
become pregnant decide to terminate the pregnancy at three months, while the 
rest cany the child to term. Abortion would have no effect on the rate at which 
women become pregnant, so incidence would remain at 8 per 100 woman-years. 
But abortions would reduce the average duration of a pregnancy from 9 months 
to (0.5)(3) $. (0.5)(9) = 6 months. Hence we would expect fewer women-about 
4/10&to be in the pregnant state on a random survey date. 

Mortality, Incidence, and Case Fatality 

The following relations follow directly from the definitions of mortality, incidence, 
and case fatality: 

Mortality rate " incidence rate x case fatality 

Cumulative mortality * cumulative incidence x case fatality 

Intuitively, we can think of the risk of dying of a disease as (the risk of getting 
the disease) x (the risk of dying of it if you get it). These relations are shown 
as approximations because (1) the denominators of mortality and incidence differ 
slightly with regard to inclusion of prevalent cases; and (2) some time must pass 
between disease onset and death from the disease. The incidence rate when disease- 
related deaths occur may differ from the rate in effect when those cases arose. 

For the pedestrianlmotor-vehicle collision injury example dLicribed in Chap- 
ter 3, neither of these caveats would be of serious concern. The United States' 
population in 2000 was about 282,100,000, so: 

4739 deaths 
Mortality rate % 

282,100,000 person-years 

R5 
78,000 cases 4739 deaths 

X 
282,100,000 person-years 78,000 cases 

% (incidence rate) x (case fatality) 

APPENDIX 4A 

Confidence Limits for a Proportion 

Several measures of disease frequency are proportions, including prevalence, cu- 
mulative incidence, and proportional mortality. Let c be the number of cases in 

. . 

. . 
Disease Frequency: ~dv&cid , 8.5 

b . . 
F .  
! the numerator and n the number of persons in thk denominator. If ,c .)_ 10 and 
", 

n - c 2 10, the normal approximation to $e binomial distribution gives reason- 

: ably accurate confidence limits (~nnipge and Beny, 1994, ~ . -  122) based on the 
estimated standard error (s.e.) of j :  , . . 

Confidence limits for p = 3 ?C Za x s.e.(2) 
. . 

where Z, is the standard normal deviate for thedesire'd confid&noe level::Z, = 1.96 
for two-sided 95% confidence limits. ', . . . ', 

If c < 10 or n - c < .lo, confidence limits for p are more'ac.c.urate if based 
directly on the binomial distribution and c.& be obtained, by.-+$ of thk following 
methods: 

1. Using standard statistical saftw&e that calculates exact binomial con-fi- 
dence limits. . . 

2. Calculating and summing tail prodabilities for the binomial distr ibuti~~, 
according to the algorithm described in Rosner, 1.995, pp. 176-7. 1 

3. Consulting published statistical tables or figures, as in.Ro.sner, 1995; or 
Ciba-Geigy, 1982. 

4. Using tables of thk F-distribution as f&ows (~rmitage &d Berry, 1994, 
p. 121): 

. . 
Set A = Fa/~,[~(n-r+~).zc] ' . : 

. . . .  
Set B = l/Fa/~,[~(c+1),2(n-c)] . . 

C ' .  . .  . . 
. . . . Calculate piowe, = c+(n-c+l)xd 

c+ 1 
Calculate Pvper = c,+l+(n-c)x* , ' 

. . 

Confidence limits for prop.ortions estimated from.co;i?plex probability sam- 
ples, such as those used in several national healasurveys, re&e special statis.$c.al 
methods beyond the scope of this text-see Levy and Qmeshow, 1991; Korn and 

. . 
Graubard, 1991,1999. . . 

. . . . 
APPENDIX 48  . . 

. . 

. . 
Poisson-Based ~onfiden;e Limits for Incidence Rate 'Estimates Based. . ' . ' .' 
on 100 or Fewer Cases . , 

Table 4 3  provides multipliers that can be used to estimate confidence limits f i r  an 
incidence rate, based on the Poissofl distribution. Select the row that coriesponds 



Table 4-3. Rate Multipliers to Obtain 95% Poisson Confidence Limits for an Incidence 
Rate That Is-Based on 100 or Fewer Cases 

Multipliers Multipliers Multipliers 
COUNT LOWER UPPER COUNT UlWER UPPER COUNT LOWER UPPER 
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to the number of cases counted in the numeiator of the rate.' Then multiply the 
observed rate by the "lower" multiplier to get the lower 95%.c,onfidence limit, then 
by the "upper" multiplier to get the upper 95% confidence liniit. Using Poisson- 
based confidence limits assumes constant hazard in the base . . of'exp.eneuc.e . . from 

which the cases arose. 
Confidence limits for incidence rate estimates derived from.rnulti%age sam- 

ples, such as those used in several national health surveys, rq&e special sbtistical 
methods (Levy and Lemeshow, 1 9 9 1 ; ~ o m  and Graubard, 1999'). 

' ''. 

EXERCISES 
. . . . 

1. Table 4-4 shows some fictitious data describing the 'frequency of hepatitis 
among high school students in a particular school district.'Which of the follow- 
ing explanations could be compatible with the time trends seen in these data? 
(There may be more than one.) 

(a) More aggressive treatment, resulting in earlier and m o i  frequent cures. 
(b) Adoption of a new treatment that, though it dimipishes the severity of 

hepatitis symptoms, suppresses the immune response and thereby prolongs 
the clinical course of the disease. 

(c) Success of efforts to prevent new cases of hepatitis. . 
(d)  A shift toward the occurrence of more aggressive disease, leading to earlier 

and more frequent deaths among afeicted students. 

Table 4 4 .  Hypothetical Data Showing Incidence and Prevalence 
of Hepatitis by Year in a Certain School District ' 

YEAR INCIDENCE'  PREVALENCE^ 

1985 24.5 41.8 
1986 24.9 41.2 
1987 23.8 40.9 
1988 24.6 40.1 
1989 24.1 38.4 
1990 24.7 . 37.9 
1991 24.2 35.3 
1992 23 9 33.2 
1993 25.1 ' 29.8 
1994 24.5 27.2 

'Cases per 100,000 person-years 

b ~ a s e s  per 100,000 persons 
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Table 4-5. Prevalence of Low Birth Weight, by Town 
and Mother's Race 

% of Babies Weighing 
<2500 Grams at Birth 

RACE TOWN 1 TOWN 2 

Black 12% 18% 
White 6% 9% 

All babies 8% 15% 

2. In the early years of the AIDS epidemic, it was generally accepted that AIDS 
was almost always fatal. According to the Centers for Disease Control, the 
incidence of AIDS in the U.S. in 1990 was 17.2 cases per 100,000 person- 
years, yet the mortality rate in that year was only 12.4 deaths per 100,000 
person-years. Can you reconcile these apparently conflicting data? 

3. The local health department where you work has received funding to set up 
one new prenatal clinic in some needy area of the county. You and your col- 
leagues decide that the birth prevalence of low birth weight will be used as the 
primary indicator of need. You are helping the department decide whether to 
put the clinic in Allenville or Bakertown. Allenville is predominantly Afncan 
American, while Bakertown is predominantly white, and neither community 
contains any significant number of residents of other races. At your request, a 
data technician has compiled some statistics from birth certificate data for babies 
born in each town over the last two years. Unfortunately, in his haste, he forgot 
to write down which town was which. He shows you the results in Table &5. 

He apologizes and is about to set off to re-do his analysis and identify 
the towns. Instead, you ponder the data carefully, then thank him for giving 
you all the information you need to determine that the needier community is 
Allenville. How did you reach that conclusion? 

4. You are a hospital epidemiologist working with intensive-care specialists to 
evaluate a new type of Indwelling urinary catheter. The clinical team needs to 
know how the cumulative incidence of urinary tract infection (UTI) increases 
in relation to how long the catheter has been in place. 

During the month of September, 10 patients received the new catheter. 
Daily urine cultures were done on all patients. All patients were monitored 
until they developed a UTI, no longer needed an indwelling urinary catheter, 
were discharged from the intensive-care unit, or died, whichever came first. 
Their experience is summarized in Table 4-6. Based on these early data, what 
is your best estimate of the one-week cumulative incidence of UTI among 
patients who receive the new catheter? 

. . 
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. . 

Table 4-6. Use of New urinary ~athete~ '~mdng Ten Patients on an Intefisive Care Unit ' 

. .  . .  . . 
C A T H E ~ R  ' LAST URINE 

PATIENT NO. INSERTED ON ' CULTURE.ON REASON,FOR ETING FOLLOW-w 
. . . ... --- 

1 91 1 ' 9/8 . ' Discharged . 
2 912 9/5 . DevelopedIITI ' . . . : 
3 913 919 . Died . . 

4 915 918 .. Discharged . . .  

5 915 917.. ~ e v e l o ~ e d  UTI 
6 918 9/13 ' Catheter no longer need.ed 
7 919 9/13. DevelopedXJTI . ,: 

8 9/11 . 9/19 . Died ' . ' 

9 9/13. ' , 9/18 Catheter no longer needed ' : 

9/14 .9/20 Developed UTI . ' . 10 

. . 
. . 

. . 
ANSWERS . . . . . . . .  . 

. . . . . . 

1. Inspection of the data shows that the'prevalence of. hepatitis *as declining; 
while its incidence wi,s stable. The approximaterelation P = ZD . .a,tells us. 
that the decline in prevalence could be accounted for by a decline ,k disease. 
duration, however. ~xpilanations (a) a d  (d) are compatible With.& ass.e~o.n.' 
Explanation (b) is not, since it implies an increase in.durat'ion df d i s k ,  no1 a 
decrease. Explanation (c) suggests that incidedce shouldhave been . dropping,' . 
which it was not. , . . 

2. In order for the approximate relation (mortality) (inci'dence) k (case fatality): 

to hold true numerically, incidence and case-fatality rates must be s9bl.e. over 
a period of time so that a steady-stat& 'iituation' can.devel~~.  p.'Th&, re.q+ement' 
is clearly not met for AIDS: in 1990, its incidence was still rising sharply. 
Moreover, although AIDS was'usually fatal atthat ti&, death did no1 6cc-ur' 
immediately after diagnosis but occurred months or later, Deaths occur- 
ring in 1990 might thus have consiste.d,primarily of diagnosed in; say, 
1988. The rise in incidence over that period tells us . that . there were . . fewer . . new. 

AIDS patients in 1988 than in 1990. , . 

3. You knew that the overall rat6 (here, the overall prevalence of weighing under' 
2500 grams at birth) in a population is always a ~e~~hted-avera~eofsubgrou~- '  
specific rates within that arid that the weighti &e the proportionof 
the population in each subgroup. Because most of Allenville's pregnant inothers 
were African American, the prevgence'for "All babies!'.in @le~vi~e.mustl ie 
closer to the prevalenCe for African h e r i b a n  mothers t l y  to the prevale.n~.e' 
for white mothers.   or   own no. 1, the.overal1 prev,alence of 8% $ clbsex to the 
6% for whites than it is to 12% for ~fricztn Americans, So Town no.. 1 c-t 
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1 5 10 15 20 
Day of month 

Figure 4-6. Catheter Use by Day of Month in Patients on an Intensive Care Unit. 

be Allenville; it must be Bakertown. For Town no. 2, the overall prevalence of 
15% is closer to the 18% prevalence for African Americans than to the 9% 
prevalence in whites, which makes sense if it is, in fact, Allenville. 

Having identified which townis which, it is easy to decide whichis needier. 
The race-specific and overall prevalences of low birth weight are all higher in 
Allenville, so it gets the clinic. 

4. Four cases of UTI occurred among 10 patients. But most patients were under 
observation for less than a full week. Discharge, death, and discontinuation of 
the catheter were all forms of censoring. This is a job for the Kaplan-Meier 
method. Diagrammatically, the experience of these 10 patients was as shown 
in Figure 4-6. 

The day of the month on which each patient entered and left the study 
are not really relevant, however. Instead, we are interested in the cumulative 
incidence of UTI in relation to time since catheter insertion. We can change the 
time scale by aligning the leftmost end of each patient's line along the vertical 
axis in a new plot. Arithmetically, this is done by just calculating how many 
days transpired between catheter insertion and the last urine culture for each 
patient and letting this be the length of that patient's line in the new figure, 
shown in Figure 4-7. 

From these data, we can estimate the proportion "surviving" (not having 
developed a UTI) on each day since catheter insertion, as shown in Table 4-7. 
The estimated seven-day cumulative incidence is (1 - .5 14) = .486. In other 
words, o w  best estimate is that 48.6% of patients with the new catheter develop 
a UTI within seven days after its insertion. 

" Table 4-7. Proportion of Yatients ~ e m a i n k ~  Free of ~ r i &  T w t  h fecm,  by'mys 1 
' Since Catheter Insertion , , 

. . 
i:l . . . . 
g . . - 

;. DAYS SWCE NO. ST- UNDER , .NO,: OF 

INSERTION OBSERVATI'ON CASES . ' , . . P R O ~ R ~ O N  . " s i r d y ~ ~ ~ "  
. . . . 

0 10 
. . 

0 '.l.oop 
10 0 1 r; .oOo 

2 10 1 ' 1.000'x 9/10 = 900, 

3 9 .; . 1 '1 . :900 x 8/9:= ..SO0 . 

4 7 1 . . .. . . .BOO x 617 = ,686 . 
0 . . . ' .  ' 5 6 .: ,686 

6 4 1 . . .  -686 X' 3/4. = ..5.14. 
7 2 0 . .  . . 

. 514 ' 

. . ~. .~ . 

. . . . 
. . 

Figure 4-7. Duration of Catheter Use by Time Since Insertion in .Patie.nb on an Intenske 

Core Unit. 
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OVERVIEW OF STUDY DESIGNS ' . . . . . 
. . 

. . . . 
We're all of us guinea pigs in the 1aboratory.of G0.d. ' 

. .'Tennessee Williams 
. ., 

An epidemiologic study generally begins with a question. Once the research ques- 
. 

tion has been specified, the next step in trying to answer it is to choose a.study 
.' . . 

design. 
A study design is a plan for selecting- study subjects and Tor obtaining'data 

about them. Study subjects in epidemiology are typically in,dividud p a p l e , b u t  at 
times they can be other kinds of observation &its., suchas s&id groups,;places., 

' 

time periods, or even published articles. ~nformationon study subjects. can come , 
from pre-existing sources or can be anew by "arious methods; inc1ud.b.g 

direct observation, interviews, examinations, or physio1ogic.d measurements.' 
In principle, the number of possible study designs is infinite. Bui in practice, 

a few standard designs account for most ep$emiologid research.. Colle~tively, I 

these standard designs offer enough flexibility to address a wide range of research '. 
questions. Knowledge of their pros and cons can usually guide the investigator to . 

a study design that is well matched to a research quesuon. This chapter' ' 

seeks to provide a broad overview by intioducing seveFal standad designs and Ule ': 

terms that are commonly used to. describe them .and distinguish them b o a  ,each 
. 

other. Later chapters cover specific d.esigns,b inore depth. . , . .  ' ' . . . . . 
. . 

, . ,  
. . ,  

DESIGN TREE . . 

Just as there are many possible study designs, there are many, possible ways to 
classify them, depending on which features are highlighted. Fi&m 5-1 is a t ree  : . 

diagram that organizes designs according to important distingukhing . . fe.a.F.es. 

Major branches of this tree include: ,. 

. . 

Descriptive studies &e undertaken kifhout a 'specific hypothesis. They ' . 

are often among the earliest'stuaies done on a new disease, in order to . 

. . , . . . 


