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fairly narrow range. Rather, the point in time is the time of observation for each
child. The fact that each child’s disease status was observed only as of one point
in time, not monitored over a period of time, is the key feature. The calendar
time period and age range over which the examinations were done are relevant as
descriptors, along with place and other population-defining characteristics, to put
the prevalence estimate in its proper context. Prevalence can be compared across
time periods or age groups, just as other disease frequency measures can.

In some studies, the observation times on individuals may indeed be syn-
chronized in calendar time, by age, or on another time scale. Then prevalence also
pertains to a specific time point on that time scale.

Example: A study of Crohn’s disease and ulcerative colitis in Manitoba, Canada,
used administrative data from the province’s only health insurer to identify persons
who had received care for one of these chronic gastrointestinal diseases (Bernstein
et al., 1999). Prevalent cases as of December 31, 1994, were those who had made
the requisite number of medical visits for the condition during the preceding two
years and who had not died or emigrated from. Manitoba before the end of 1994.
The resulting prevalence estimate pertained to what can be considered a point in
calendar time—December 31, 1994.

Example: The prevalence of HIV infection among inmates entering U.S. correc-
tional facilities was estimated from HIV-1 antibody tests on routine blood samples
obtained upon entry to jail or prison (Vlahov et al., 1991). These intake examina-
tions occurred on various calendar dates, but they pertained to the same point on
the time scale that chronicled each inmate’s incarceration,

INCIDENCE

Incidence measures how frequently susceptible individuals become disease cases
as they are observed over time. It is based on disease events, each of which repre-
sents a transition from being at risk to being diseased.

Counts

An incident case occurs when an individual changes from being susceptible to
being diseased, by the study’s case definition. The count of incident cases is the
number of such events that occur in a defined population during a specified time
period. Recurrences of disease in the same person may or may not qualify as
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incident cases, depending on the study’s operational definition of disease, as dis-
cussed in Chapter 2. . ' E B

Simple counts of incident cases can sometimes be suf_ﬁc_:}e_nt to gUId'e he,.alth
planning. For example, knowing the number of lower-extremity amputations per
year in a certain health plan could be used to project the number qf.hmb prostheses
likely to be needed. . s

Counts may also be adequate for comparing incidence across p_opula,uo_n§ that
can safely be assumed to be of similar size.

Example: Phillips and colleagues (1999) found that, over 'a 16-year period, 1 13.8
deaths due to substance abuse occurred in the U.S. during thé first week of t}.xe month
for every 100 such deaths in the last week of the month. Th_ey hyp_oﬂleslz,er'l -_tk?a,t
the excess may be related to receipt of government benefit payments from Social
Security, welfare, or military benefits at the beg@nning of e?ch . month. B:c_cg_lrlisl_e
the population at risk would be nearly the same size across defe.r.,e_n,t weeks pf e
month, the study could be based simply on the number of deaths in each one-week

period.

Example: In 2000, 702,093 new cases of genijtal Chlamydia trac-hon.mt,is ?nfgc-
tion were reported to the U.S. Centers for Di;ease Controll ar;_d -'Pre\f.entlon (CD )
compared with 358,995 new cases of gonorrhea (Centers for l?lsease Co,ntr.,ol
and Prevention, 2001b). Assuming similar completeness of reporting f_,or. bo:th dis-
eases, these counts by themselves should .acg;uxatcl_y reflect differences 1n incidence
between these two sexually transmitted diseases: This is- bec;au.se the sizes of the
populations at risk for each disease should be about the same (or neaﬂy 80, after
subtracting prevalent cases). ~

Cumulative Incidence | .
Cumulative incidence is the proportion of initially susceptible individuals in a

closed population who become incident cases during a specified time period:

Number of incident cases .
Number of persons initially at isk

Cumulative incidence =

Cumulative incidence is also sometimes called the incidence proportion or
attack rate. It is the simplest measure of incidence to account explicitly fo,r the
size of the population at risk. :

Er-oog;,
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Example: A jumbo jet full of tourists bound from Tokyo to Copenhagen stopped
at Anchorage, Alaska, for refueling and reprovisioning. Upon reaching cruis-
ing altitude again, passengers were served breakfast. Somewhere over the po-
lar ice cap, an illness characterized by cramps, vomiting, and diarrhea swept
through the plane, and by the time they reached Copenhagen, 196/344 = 57%
of passengers had become ill. Epidemiologists who investigated the outbreak
used interview data and food service records to calculate the cumulative inci-
dence of illness among those who did and those who did not eat various food
iterns. Eating ham proved to be strongly associated with becoming ill. Among
those who ate ham that had been prepared by a particular cook, 86% got sick,
compared with none of those who ate ham prepared by a different cook. Mi-
crobjological tests found heavy staphylococcal contamination of the suspected
ham, which was eventually found to have resulted from improper food handling
(Eisenberg et al., 1975).

The time period cumulative incidence refers to is usually fixed, specified, and
the same for all members of the study population. For example, the proportion
of patients undergoing a surgical procedure who develop deep venous thrombosis
during the two weeks after surgery could be termed the “two-week cumulative
incidence” of that complication.

In some situations, the time period that cumulative incidence refers to may
not be stated and may, in fact, vary among individuals. For example, the cumu-
lative incidence of death before discharge among hospitalized patients is some-
times used as a measure of disease severity or outcome. Because of differences in
length of hospital stay, however, the amount of time at risk for death varies among
patients.

Cumulative incidence is easy to calculate and to interpret, but unfortunately
it can only be measured directly in closed populations (as defined in Chapter 2). In
particular, the population cannot gain or lose members during the period of follow-
up, except for losses that occur after disease occurs. The reason is that cumulative
incidence is designed to estimate the proportion of persons initially at risk who
develop disease during follow-up. If gains or losses in the study population took
place, the essential correspondence between. the case count in the numerator, and
the defined population at risk in the denominator, would be broken. For example,
if a new member were to join the population partway through follow-up and then
become a case, he or she would be added to the numerator, even though she or
he had not been counted as a member of the denominator population at risk. If
an original member of the denominator population were lost to follow-up, he or
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she might actually go on to become a case during the study period who would go -
undetected. ‘
Chapter 4 describes how ‘cumulative incidence can be estImated 1nd1rect1y
under certain assumptions, even when follow-up data on some original population
members are incomplete. It also describes methods for obtaining confidence lirmits.

Incidence Rate

The incidence rate is the count of 1n01dent cases divided by the amount of at-fisk
experience from which they arose. Its denommator is usually measured in‘umits of .
person-time. : c

Number of incident cases
Amount of at-risk experience

Incidence rate =

Whether disease recurrences are counted in the numerator depends on the study s -
case definition, as discussed in Chapter 2. . :

The incidence rate also goes by several other names, 1nc1udmg mczdence
density (a term originally suggested by Miettinen,’ 1976), person-time mczdence
rate, or sometimes simply incidence. :

Example: Gardper et al. (1999) studjed on-the-job back sprams and slxams among
31,076 material handlers employed by alarge retail merchandise chain. Payrolldata -
for a21-month period during 1994-1995 were linked-with JOb injury clalms which
provided data on the timing of each injury, body part mjured and mechanism of
injury. A total of 767 qualifying back i mjunes occurred during 54,845,247 -working
hours, yielding an incidence rate of 1.40 back injories per 100 000 workeér-hours. \
Higher incidence was found among males and among employees whose work was
more physically demanding. : _
The work force in this example compnsed an open, defined populauon Thou- .
sands of workers joined or left the company durlng the study period. Only on-the-
job back injuries were of interest, so each’ worker’s at-risk experience consisted
of many discontinuous time periods at work, separated by periods. away from -
work. These features of the research situation made an incidence-rate approach to
measuring disease frequency atttactive and a good match to the available-data.

The basic rationale bebind the incidence rate is strai ghtforward. Other things
being equal, the number of new cases of disease should-be proporuonal to (1) the
size of the population at risk and (2) the amount of time over which susceptlble
individuals are observed. The denommator simply. combmes these two elements.

.
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The number of cases and the number of persons at risk are unitless counts, while
the time component of the denominator has units, so an incidence rate has units
of time !,

Incidence rates can be used across a wide range of epidemiologic research
situations. They can be applied to both closed and open populations, with or without
detailed information on the time at risk for each individual, and for both recurrent
and non-recurrent disease events—circumstances in which cumulative incidence
may be impossible to apply.

Estimating incidence rate with detailed data on individual times at risk

In many epidemiologic studies, detailed information is available on the amount
of time at risk for each individual and the timing of each disease event. In the
Gardner back-injury study, for example, payroll records furnished each worker’s
time on the job right down to the hour, and injury claims contained data on the
timing of each back injury.

To see how a person-time denominator is calculated from detailed individual
data, consider the small population shown in Figure 3-3. It deliberately involves
several features that would make cumulative incidence impossible to apply but that
can be accommodated easily under an incidence-rate approach. Four cases occur
among six individuals during a 30-day period. Some people enter late in the study
period, some are observed only intermittently, some drop out early, one (person
no. 4) is not at risk for part of the time, and one (person no. 5) has two separate
disease events.

Depending on the study purpose, recurrent disease events in the same person
might or might not be relevant and qualify for inclusion. In this instance, that
decision affects the contributions of several individuals to both the numerator and
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Figure 3-3. Hypothetical Populafion to lllustrate incidence Rate Estimation with Detailed Data
on Individual Times ot Risk.
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Table 3-1. Example of Incidence Rate Calculation, Keyed to-Figure 3-3

¥ Only First Cases Qualify

If All Cases Qualify
CONTRIBUTION  ~  .DAYS . CONTRIBUTION . 'DAYS |

PERSON TO NO. OF CASES . .' AT RISK TO NO. OF CASES AT RISK.

1 1 22 1. 175

2 0 21 .0 21

3 0 25 o - " 25

4 1 ‘115 R T 115

5 2 18:5 1 15

6 0 - 30 0 30
Total cases 4 - - 3 o
Total person-days ) © 128 . . .106.5

Incidence rate—per 3.13 ] . S - 2.82
100 person-days | -

the denominator of the incidence rate estxmate Table 3-1 shows the calculatlons
both ways.

« If recurrent events quahfy, then both of the disease, events in person no. 5
are added to the numerator. In addmon, anyone who becomes a case may
continue thereafter to contribute person-time at risk to the denominator,
because he or she remains at risk for recurrence. :

* If recurrent events do not qualify, then person no. 5 contnbutes only one
event to the numerator. In addition, anyone who becomes a case coritributes
no further person-time to the denominator thereafter, because he ot she is
no longer at risk for a first event. :

Estimating incidence rate without detailed data on individual times at risk

Often detailed information about each population member’s _time at risk is
unknown and not feasibly obtainable. This problem often arises, for exanaple, when
the defined population of interest consists of residents of a geograph1c area over
some time period. The number of incident cases may be readily avaxlable but the :
challenge is to estimate the total amount of person-time at risk fgo.m whrch _thosf:.
cases arose.

Figure 3—4 provides a graphlcal example. It shows gradual growth in the size
of a true population at risk over.an observation period that extends from Time A
to Time E. Total person-time at risk corresponds to the area of the shaded regron
which could be calculated exactly if moment-by “moment details about the size
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Size of population
at risk

A B C D E

F—— Observation period ——~[

Figure 3-4. Estimating Average Size of the Population at Risk.

of the population at risk were known. Otherwise, the area must be estimated by
sampling the size of the population at risk at one or more time points, averaging
these population-size estimates, and multiplying by the duration of the observation
period. Variations of this approach include:

1. Using estimated population size at mid-period (here, Time C) as an esti-
mate of the average. This method might be suitable when a single popu-
lation count is made at or near the middle of the observation period. This
ccould apply, for example, to a county or state observed over the four-year
period from 1998 to 2001, because 2000 was a census year.

2. Averaging the estimated population size at the start and at the end of the
observation period (here, Times A and E). This method might be suitable
if, for example, the observation period spans a 10-year period between
two decennial censuses. '

3. Averaging several population size estimates made periodically during the
observation period. For example, government planning agencies in many
areas publish year-by-year estimates of population size and composition
for geopolitical areas. Average population size over a four-year observation
period could then be estimated by averaging four annual estimates.

Example: Some 702,093 new cases of genital Chlamydia trachomatis infection
were reported in the U.S. in 2000 (Centers for Disease Control and Prevention,
2001b). The U.S. Census Bureau estimates that the population of the U.S. on
July 1, 2000 was about 282.1 million. Under method no. 1 above, 282,100,000 can
be treated as an estimate of the average size of the population at risk during the
one-year period from January 1, 2000, through December 31, 2000, yielding an
estimated 282,100,000 person-years at risk. The estimated incidence rate of geni-
tal Chlamydia trachomatis infection would therefore be 702,093 /282,100,000 =
.00249 = 2.49 cases per 1000 person-years at risk.
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By similar logic, it is sometimes possiblé to calculate an incidence rate frorm a
published paper even if the résults are not reported as such. If a cohort of N persons
is described as having been followed for an average of T years, then they experi-
enced NT person-years in all. If, all of this person- -time can be considered at-fisk
time, and if ¢ incident cases occur, then ¢/N T is an estimate of the incidence rate.

For some diseases, the prevalence of dis¢ase may be h1gh enough, or a net=at-
risk state common enough, that the discrepancy between total population size
and size of the true population at risk is too large to be ignored.‘ Corrections

may then need to be based on the estimated prevalence of disease or the estimated .
proportion of the population that is not at risk. For example, the estimated incidence
of dementia in the elderly has been found to increase considerably after prevalent -

cases of dementia were subtracted from the denominator (Rocea et al., 1998). For
uterine cancer, higher and almost certainly more accurate incidence estimates have

been obtained when the estimated number of women with a prior hysterectomy :

were subtracted from the denommator (Marrett 1980)

Denominators other than person-time

In some areas of epidemiologic research, such as the study of injurfes, metncs o

other than person-time are often used to qua.ntlfy the amount of at-risk:éxperience
from which a set of mmdent cases arose. For example, the mc1dence of motor-
vehicle collision injuries can be expressed as injuries per 100 000 person-years,

as injuries per 100,000 licensed-driver-years, or as mJunes per million vehicle- -
miles traveled. The extent to which older adults are a high-risk group for motor-

vehicle collision injuries has been shown to depend strongly on which measure

of incidence is used (Massie et al., 1995) Relative to younger adults, a smaller .

percentage of older adults have a valid driver’s license, and even those who. .do
have a driver’s license drive fewer miles per year than younger drivers. Hénce the

increase in incidence by age is more marked when the denommator is vehlcle-mﬂes -
-traveled. :

Comparison of Cumulative Incidence and Incidence Rate:

The distinction between cumulative incidence and mc1dence rate was apprec1- :
ated by early epidemiologists and health statisticians (Vandenbroucke 1985) The

differences are both conceptual .and statistical (Morgenstern et al., 1980; Elandt-

Johnson, 1975). Table 3~2 'summarizes and contrasts several propemes of these

two measures of incidence.

Despite the differences, the generic term mczdence is widely apphed to

both cumulative incidence @nd incidence rate throughout the epidemiologic lit-
erature. The specific kind of incidence being discussed must ofien be inferred

from the context. To accustom readers to this widespread practice, and for.brevity,



50 Epidemiologic Methods: Studying the Occurrence of Iliness

Table 3-2. Comparison of Cumulative Incidence and Incidence Rate

CHARACTERISTIC CUMULATIVE INCIDENCE INCIDENCE RATE

Units None Time™!

Range 0-1 O-infinity

Directly calculable by: Observing a closed Observing a closed or open

population over time population over time with

detailed data on individual
times at tisk

Indirectly calculable by: Survival-analysis Estimating total person-time

methods in presence

as (average size of '

of censoring® population at risk) x
(duration of observation
period)
Individual-level Risk (probability) Hazard rate®
counterpart
“Discussed in Chapter 4.

this book often simply uses the generic term incidence when its meaning seems
unambiguous.

Chapter 4 describes how confidence limits for incidence rates can be obtained;
how cumulative incidence and the incidence rate are related mathematically and,
under certain assumptions, computable from each other; and how 1nc1dence rates
in a population relate to individual-level hazard rates.

Variants of Incidence

Incidence can actually be thought of as a family of disease-frequency measures.
Some members of this family traditionally go by names of their own, but in reality
they are just special types of incidence.

Mortality

Mortality is the incidence of fatal cases of a disease in the population at risk
for dying of the disease. The denominator includes both prevalent cases of the
disease as well as persons who are at risk for developing the disease. Subtypes
are cumulative mortality and mortality rate. Mortality density and death rate are
essentially synonyms for the mortality rate.

Example: Some 8,911 deaths due to AIDS were recorded in the U.S. in 2000
{Centers for Disease Control and Prevention, 2001a). Essentially the entire U.S.
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population is considered to be at non-zero risk for dying of AIDS, although.the
level of risk clearly varies greatly from person to person. Hence the denominator -
for the mortality rate is (estimated average size of ‘the U. S. population during
2000) x (length of observation period) = 282 100, OOO x 1 year. The mortality
rate for AIDS in 2000 was thus 8,911/282, 100 000 = 3 16 deaths _per 100,000 ~
person-years. . :

Fatality

Fatality refers to the 1nc1dence of death from a dlsease among persons who
develop the disease. The difference between fatality and mortality is in their denom- -
inators. Fatality reflects the prognosis of the disease among cases, while mortality
reflects the burden of deaths from the disease in the population as a whole.

In principle, cumulative fatality and fatality rate can be defined as special
types of cumulative incidence and incidence rate, respectively, with apprppriate
restrictions on who counts toward the nurhg:rator and denominator, In practice,
these terms are rarely used,, although the underlying theory. still applies.

Instead, case fatality is a commonly used measure of fatality. Tt is:

Number of fatal cases _
Total number of cases- N

Case fatality = (3_,.1')
Case fatality can be viewed as the cumulative inciderice of death due to the disease -
among those who develop it. As with attack rate, a fixed time period after disease
onset may or may not be explicitly specified and must often be inferred from the
context. As a variant of cumulative incidence, case fatality is most readily applied
for diseases of relatively short duration, in which there are few losses to follow-up
or deaths from other causes. :

Example: The National Highway Traffic S:z;fety Administration (2001) reported
that 4,739 deaths occurred in the U.S: durihg 2000 when a ﬁcdesm'an was struck
and killed by a motor vehicle. They ;sﬁm_ate that 78,000 pedestrians were in-
jured in pedestrian/motor-vehicle collisions during that year. .Based on these
data, the case fatality of pedestnan/motor—vehlcle colhsmn m)ury in 2000 was
4,739/78,000 = 6.1%. _ .

Proxy Measures of Incidence

Sometimes good denominator data for the desired measure of 1n<:1dence can-
not feasibly be obtained. Yet case counts alone are hkely 16 be 1nadequate for '
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comparing incidence between populations that differ in size or other key charac-
teristics. Under those circumstances, a proxy denominator may be better than none
at all.

Proportional mortality

The proportional mortality for a disease is:

Deaths from the disease

Proportional mortality =
roportional mortality = — =0 =~

As its name indicates, it is simply the proportion of all deaths that are due to
a particular cause for a specified population and time period of interest. This
proportion can provide useful descriptive information in its own right: for example,
the statement that heart disease accounted for 30% of all deaths among Americans
in 1999 refers to proportional mortality (National Center for Health Statistics,
2001).

. For comparing disease frequency between populations, the main advantage
of proportional mortality is that its denominator—total number of deaths—can
usually. be ascertained from the same source that furnishes its numerator. The
count of all deaths serves as a proxy for person-time at risk under the assumption
that, other things being equal, one would expect total deaths to vary in proportion
to population size and in proportion to the duration of the monitoring period.

A potential limitation of comparing proportional mortality between popula-
tions or subpopulations can be illustrated by an example:

Example: Berkel and de Waard (1983) studied mortality among Seventh-day
Adventists (SDA) in the Netherlands -over a ten-year period. The church pro-
scribes its members from using tobacco or alcoholic beverages and recommends
a vegetarian diet. These policies led the investigators to expect a reduced death
rate among SDA from cancer (particularly lung cancer, which is strongly related
to smoking) and heart disease.

The second column of Table 33 shows the observed number of deaths among
SDA, and the third column shows the percentage of those deaths due to each cause.
For comparison, the fourth column shows the percentage of deaths by cause in a
similarly aged sample of the full population of the Netherlands during the same
ten years. Based on a comparison of proportional mortality (columns 3 and 4),
there seems to be no evidence of a reduced occurrence of death due to lung cancer
and only a slight reduction in mortality due to cardiovascular disease.

But in this instance, the investigators also had detailed year-by-year data on
the size of the SDA population, from which they could determine the number
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Table 3-3. Proportional Morté_]ity and Mortality Rate Apalyses of Deaths among Al')utch.
Seventh-Day Adventists (SDA)

Expected Deaths’

: . _in SDA, Based on: -
OBSERVED Proportional NETHERLANDS NETHERLANDS

CAUSE OF DEATHS Mortality _ pROPORFIONAL - MORTALITY.
DEATH WNSDA  "SDA  NETHERLANDS ~ MORTALITY “RATES
Lung cancer 12 2.5% 2.5% 12 . . 27
Other cancer 103 | 213% - 18.9%. 9L 204
Cardiovascular 227 471% . 508% ' 245- - 5_'4.7 .
Other causes 130 - 27.0% 27.1% 134 _ 299
All causes 482 100.0%  100.0% 482, ° 1077

[Source: Based on Berkel and de Waard (198_3).]

of person-years at risk contributed by SDA during the study period, by age and
gender. They obtained the age- and sex- _specific. mortality rates for the Netherlands.
as a whole from published sources By applying these pubhshed Dutch mortality
rates to the SDA denominator’ data they were able to estimate how many deaths .
would have been expected among the SDA if they had experienced the mortahty :
rates in effect for all Dutch-people of similar age and gender. -

The rightmost column of Table 3-3 shows these results and they lead to.guife
a different conclusion. The observed numbers of lung cancer and cardiovascular
disease deaths in SDA were in fact sharply lower than the number of such deaths
expected based on rates for all Dutch people of similar age and-gender. But deaths
from other causes were also substantially lower than expected among SDA. Hence
the proportions of SDA deaths from 1ung cancer and hea:t ‘disease differed very.
little from those in the Netherlands in geueral In this example we would have
been led astray if only a proportional mortality analysis had been _poss1b1e. The
total number of deaths was actually a poor proxy forpopulation size because of a
major difference in all-causes mortality between populations. :

Other proxies for incidence are based on the saine basic-idea, apphed to non-
fatal events. For example, hospltal adlmssmns for diabetes-cah be expressed asa
proportion of all hospital admissions if no good data are available on the size of
the true population at risk for hospitalization. Similarly, incident cases of colon
cancer can be expressed as a proportion of all.incident cancer cases. The same :
potential pitfall applies, however: comparisons could be misleading:if the _o'vera.ll
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hospitalization rate or the overall cancer incidence rate were to differ between
populations being compared. Contrasts based on proxy measures must therefore

be cautiously interpreted.
Fetal death ratio

In perinatal epidemiology, the frequency of fetal death in a certain population
over a specified time period is quantified as:

Number of fetal deaths
Number of live births

Fetal death ratio =

The denominator for a cumnlative-incidence measure of fetal death would be the
total number of pregnancies. But some pregnant women may undergo spontaneous
or elective abortions that can be difficult to ascertain and count. Hence the number
of live births is used as a proxy for the total number of pregnancies.

In contrast to proportional mortality, the fetal death ratio and other analogues
that do not include the numerator as part of the denominator are not proportions.

OTHER MEASURES OF DISEASE FREQUENCY

Period Prevalence

Earlier, prevalence was described as reflecting the frequency of the diseased state
at a specified point in time. Especiaily when prevalence refers to a point in calen-
dar time, the term point prevalence is often used (Last, 2000). In contrast,-period
prevalence is a hybrid of prevalence and cumulative incidence. Like cumulative
incidence, it refers to a period of time, rather than a point in time. Cases counted
in its numerator, however, include both (1) cases that are extant when the obser-
vation period begins, and (2) new cases that occur during the period. Referring to
Figure 35, persons no. 1, no. 3, no. 4, and no. 5 would all count as cases. The
denominator includes both (1) extant cases when the period starts and (2) persons

Person
L BW N

Figure 3-5. lllustration of Period Prevalence.
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at risk when the period starts. For Flgure 3-5, the penod prevalence w0uld ‘thus
be 4/5 =0.8. .

Period prevalence is essentrally umnterpretable except in a closed population,
for the same reasons that apply to cumulative incidence. For a closed population,
if P = point prevalence when the observation peridd starts, and CI.= cumulative
incidence among individuals at risk at that time, then penod prevalence .can be ,
seen to be: : :

Period prevalence = 'P +Q - P) '- CI

For Figure 3-5, this would be 1/5 + (l - 1/5) x3/4 = 0 8

The main limitation of period prevalence is that point prevalence and ¢umula-
tive incidence convey very different kinds of information about disease frequency :
Those distinctions are lost when they are combmed in this way, which limits
the usefulness of period prevalence as a summary measure. When possible, point
prevalence and cumulative incidence are generally better kept separate as two rore
interpretable components. . : '

Yet sometimes this separation cannot be made from the data avmlable For
example, the U.S. Centers. for Disease Control (1998) reported that 25.3 per 1000
U.S. women who delivered a live-born infant dunng 1993-1995 had diabetes
during the pregnancy, according to data on the baby’ §.birth certificate.-Some of
these mothers had diabetes before becoming pregnant, while others developed
diabetes during pregnancy. In any event, all reportedly had- diabetes sometime -
during the period of pregnancy, so 25.3/1000 is probably best regarded asa penod
prevalence.

Years of Potential Life Lost

As noted earlier, case counts alone can be used to compare the frequency of two’
or more diseases within the same population. For example, the purpose may be

to help guide aflocation of resources among different programs aimed at specific

diseases. Because of the special importance often attached to fatal cases, and

because mortality data are often readily- available, such comparisons are often_
based on the number of deaths from each disease.

Implicitly, these comparisons welght all. deaths equally. It has been argued
however, that “premature” deaths—those occurring at younger ages—have greater
social and economic impact than do deaths in old age, and that age at death should
be considered when comparing diseases (Centers for Disease-Control and Preven-
tion, 1986). One measure designed to do-this is years of potential life lost (YPLL)
(Gardner and Sanborn, 1990). One version, used in reporting of national health
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Table 3—4. Top Ten Causes of Death by Years of Potential Life Lost Before Age 75 Years
and by Total Deaths: United States, 1998

By Number of Deaths
By Years of Potential Life Lost NUMBER
RANK DISEASE CATEGORY YPLLys ¢ DISEASE CATEGORY OF DEATHS

1 Cancer 1716 Heart disease 724,915
2 Heart disease 1343 Cancer 549,787
3 Unintentional injuries 1052 Stroke 167,340
4 Suicide 365 COPD*® 124,153
5 Homicide 301 Unintentional injuries 97,298
6 Stroke 233 Diabetes mellitus 68,379
7 COPD? 186 Pneumonia and influenza 63,686
8 HIV infection 177 Alzheimer’s disease 44,507
9 Diabetes mellitus 174 Chronic renal disease 35,524
10 Chronic liver disease 159 Septicemia 30,670

“Years of potential life lost to age 75 years, per 100 000 persons age <75 years
bCOPD = Chronic obstructive pulmonary disease

{Source: National Center for Health Statistics (2001).]

statistics for the U.S,, is:

X
YPLL = ) " du(X —a)

a=1

where 4 denotes age at death (in years), 4, denotes number of deaths at age @, and
X denotes a particular cutoff age, often 65 or 75 years. Essentially, YPLL weights
each death by the number of years before age X at which the death occurs. Deaths
ininfancy get the most weight; deaths ator after age X years get zero weight. YPLL
can also be expressed per 1000 population (say), but this is not really necessary if
all comparisons are made within the same population.

The impact of this weighting by age at death is shown in Table 3—4. For the
U.S. in 1998, it shows the top ten disease categories as ranked by YPLL with
X =75 and the top ten as ranked by number of deaths. Disease categories such
as injuries, which tend to kill people at younger ages, rise higher in the ranking by
YPLL.

Criticisms of YPLL include the fact that the choice of a cutoff age X is
somewhat arbitrary; rankings by YPLL depend on the age distribution of the
population at risk, which also affects comparability of YPLL between populations
or over time; and the implicit assumption that persons who died of a certain disease
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before age X years would otherwise have tived to age X or beyond-(Garduer and:
Sanborn, 1990; Lai and Hardy, 1999). Nonetheless, YPLL 1s incfeasingly reported
as a measure of disease impact on a p,opulatlon and eonveys information that other
such measures may not re_ac_lily captfure. . - )

EXERCISES

1. Atrial fibrillation (AF) is a heart thythri abnormality that can be either chronic
or “paroxysmal” (occurring in repeated episodes): AF i'n_ore,ases the risk of
stroke, but the excess risk can be reduced by taking anticoagulants.

To estimate the prévalence of AF among older adults in a certain region of .
England, 4843 persons were sarnpled‘ at-random fromi a list of all persons aged
65 years or older who were registered with a National Health Service primary
care physician. Of the 3678 who part1c1pated and had an electrocardlogram
207 were found to have AF. :

To check for participation bias, medical records were also revrewed for
a sample of participants and for a sample of nonparticipants. A dlagnosrs of
AF was found somewhere in the medical record for 139/ 141 3inthe part1c1pant
sample and for 40/382 in nonparti¢ipants.

(a) Based on these results, what is your best estimate of the prevalence of AF
among older adults in the region?

(b) Do the results from medical record rev1ew for a subsample of pammpants‘
and nonparticipants suggest that persons with AF were any more or less
likely to be surveyed? : : : :

(¢) Why do you think the percentage of patients with AFin the medical record
substudy was so much higher than the percentage found to have AF in the
survey? _

2. The so-called “sex ratio” is usually calculated as the number of male cases of

a condition divided by the number of female cases. . : _ .

(a) You are studying patterns of disease occurrence in your community using.
data on hospital discharges. The sex ratio in 80 cases of pyloric stenosis,
which is almost always dlagnosed during thé first yedr of life, is found to be
3:1. (Duplicate hosp1tahzat10ns by the same pat1ents have been eliminated.)
Does this finding suggest that male babies.are at h.lgher risk for pyloric
stenosis than are female babies in your community? Why or w:hy not?

(b) Below age 75, the sex ratio for myocardial i.nfarction is found to be 2:1.
Above age 75, it is about 1.2, Does this imply that men in the area are more
prone to heart attacks below age 75 but that women are more prone after
that age? Why or why not?
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3. Lenaway et:al. (1992) described-epidermiolagic.characteristics-ofischool-related
injuries among 5,518 studerits in nine schools in the Boulder, Colorado, area
during a particular school year. During this period, 509 injuries were reported,
which occurred at the following times:

TIME- PERCENT
Before school 2%
Morning 41%
Lunch 27%
Afternoon 16%
After school 14%
Total 100%

From this information, can you conclude that the risk of injuries was highest
during the morning hours? Why or why not?

- If a hen and a half lay an egg and a half in a day and a half, how many eggs
would one hen lay in three days?

. Vancouver, British Columbia, and Seattle, Washington, are geographically near
each other and are quite similar with regard to population size and several
measures of socioeconomic status. Over a seven-year period, the following data

were obtained from the respective police departments concerning homicides,
according to the weapon used.

Percentage of Homicides Committed Using Each

Weapon Type
TYPE OF WEAPON SEATTLE VANCOUVER
Firearm 42.5% 14.3%
Knife 27.4% 50.0%
Other O 304% 357%

A newspaper reporter is sitting beside you when these data are shown at a
press conference. He voices his conclusion that a Seattle resident may be more
likely than a Vancouver resident to be shot to death by someone else, but that
Seattleites can at least take comfort in knowing that they are less likely to be
stabbed to death or killed by other weapons than are Vancouver residents. Do
you agree? Why or why not?
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ANSWERS

1. (a) Prevalence = 207/3678 = 056

(b) AF was found for 139/1413 = 9.8% of partrapants and 40/382 = 10 5%
of nonparticipants, suggesting little participation bias. . ’

{¢) Thekind of prevalence measured in the community survey was poznt preva-
lence as of the time the electrocardiogram was taken for each parumpant )
The kind of prevalence measured in the medical record review ‘is better
considered period prevalence. It referred nat to the proportlon of patients
who had AF at a particular point in time, but over the pertod of time during
which patients had received care from the clinic whosé medrcal record was
reviewed.

. (a) In this instance, yés. At leastin most societies, 1t would -be safe to assume'

that there are about equal numbers of male and ferale babies at risk dur-.
ing the first year of life, even though the exact numbers at nsk may be
unknown. :

(b) Not necessarily. The shift in the sex ratio with advancmg age xmght be.
largely due to differences in the gender compasition of the populatlon
at risk, with women outnumbetlng men at the older ages because they-
generally live longer.

. No. We can convert the percentages | back to the number of cases that occurred_

during each time period to get a set of numerators for some kind of incidence
measure. We could also probably assume. that the number of students at risk-

during each of the time periods shown was about the same. But the duration
of each time period, while not specified, undoubtedly differed among ‘the time
periods. The lunch period, for example, probably lasted ‘only an hour or less,
while morning could have spanned three or four houts. Clearly, the longer the
time period, the more m]unes we would expect to see in the period, even if the .
intrinsic risk to students pér unit of time were the same. . :

A good incidence measure here would be the incidence rate, computed'
using a person-time denominator. We cannot calculate 1t from the data given
for lack of the time component of, the denominator.

. This familiar riddle is actually an incidence-rate problem. The number of eggs

laid should be proportional te the numiber of hens and to the amount of time spent-
waiting for eggs. The “incidence rate”-of egg- laymg is 1.5 eggs/(1. 5 hens x-
1.5 days) = 2/3 eggs/hen-day One hen on the job for three days amounts té
3 hen-days, so we would expect 3 x 2/ 3 =2eggs.

. The table concerns only “numerator data” on the dlstnbutron of honncrdes by.

weapon type. It does not show whether the incidence of homicides, overall or
of any type, is higher in one crty than in the other ’
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Here are the actual homicide incidence rates from the two cities during
1980-1986 (Sloan et al., 1988):

Incidence of Homicide per 100,000 Person-Years by Weapon Type

TYPE OF WEAPON SEATTLE VANCOUVER
Firearm 4.8 1.0
Kanife 3.1 35
Other 34 2.5
All types 11.3 7.0

The overall incidence of homicide was higher in Seattle, and the difference in
rates for firearms accounted for most of the excess. The incidence of homi-
cide carried out with knives was slightly higher in Vancouver, but the inci-

dence of murder involving other weapons was actually higher in Seattle than
in Vancouver.
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DISEASE FREQUENCY: ADVANCED ’

Chapter 3 offered an overview of ways to measure disease frequency in populations.
In this chapter we return to take a closer look at several of the main techniques,
highlighting properties and relationships among them that may not be apparent on
a first encounter. .

People embark on the study of epidemiology from varying backgrounds and
with varying amounts of statistical training. Readers without much prior statistical
training may find parts of this chapter challenging but are encouraged to try to
follow the basic reasoning and conclusions without getting too bogged down in
mathematical details. Those with more statistical experience should find a few
belpful connections between new terminology and familiar concepts.

PREVALENCE

Prevalence and Length-Biased Sampling

Not all cases of a disease necessarily have an equal chance of being included
in a set of prevalent cases, which are counted in the numerator of a prevalence
estimate. The reason is that the time course of many diseases is quite variable
from person to person, and an individual’s chance of being a case at the time of
a prevalence survey depends on how much time he or she spends in the diseased
state.

Coronary heart disease, for example, can take several forms, including chronic
cardiac chest pain (angina pectoris), acute myocardial infarction, or sudden car-
diac death. Figure 4-1 shows the time course of coronary heart disease for three
hypothetical cases in a workforce population of middle-aged men during a one-
year period. At mid-year, case no. 1 develops chronic angina pectoris, which lasts
Fhrough the end of the year and beyond. Case no. 2 experiences a myocardial
infarction early in the year and dies a week later. Case no. 3 remains disease-free
until late in the year, when he suddenly collapses with ventricular fibrillation and
soon dies of sudden cardiac death.

62
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Figure 4-1. Three Hypothetical Cases of Cororidry Heart Disease. S

Now suppose that an employee health survey seeks o’ measure the prevalence
of coronary heart disease by enmimerating atl prevalent cases in the workforce. For
simplicity, say that a questionnaire is sent to all employees s1mu1taneous1y and that )
all eligible cases are identified. This protocol is tapgtatount to drawing a vertical
line somewhere in Figure 4-1, at a horizontal position reflecting the date of the
survey, and counting all active cases crossed by thatline. If a survey date is chosen
at random, case no. 1 has about a 50% chance of being -included as ‘a prevalent
case. Case no. 2 has about a 1/52 chance of being mcluded because only a few"
potential survey dates would fall within the week when he is'an active case. Case
no. 3 has an infinitesimal chance of being included—the survey would have to
reach him between the onset of ventncula_r fibrillation and_when he dies a few
minutes later. ’ o

Other things being equal, a person’s probabxhty of bemg captured asa preva-

lent case is proportional to the duration of his or her disease. A set of prevalent cases
thus tends to be skewed toward cases with more chronic forms of thé diséase. This
principle has important implications for the design of some kinds of epldermologlc
research—particularly case-control studles to be dlSCllSSGd in Chapter 15. For ex-
ample, a set of prevalent cases may not be ideal for use in a case-control study of
etiologic risk factors, because the frequency of any risk factor that is also associ-
ated with chronicity of the disease may be distorted-amorig $uch cases (Wang et al.,
1999). The same principl€ arises in evaluatmg the effects of disease screening pro—'
grams: screening is like a prevalence survey, and cases detected by screening tend.
to be skewed toward more slowly progressive forms of pre- symptomatlc diseage
(Morrison, 1992). . .

Confidence Limits

Prevalence is a proportion. Methods of obtainin g confidence limits for an estimate
of a proportion based on a sirple r_apdom sample are _d_escn'b.ed in Appe.ndix 4A.'

Example: In the Newburgh, New York dental- decay survey descnbed in Chap—
ter 3, 116 first-graders were found to meet the’ case. deﬁmtwn for dental decay, out
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of 184 first-graders examined. The estimated preValence was 116/184 = .63. The
95% confidence limits for this estimate may be calculated as follows.

¢ = number of cases = 116

n = number of examinees = 184

P = point estimate of prevalence
=cC / n=.63

se(p) = standard error of D

_ [B0=P)
n

.63(1 — .63)
184
= .0356

Z, = standard normal deviate for desired confidence level

= 1.96 (for 95% confidence limits)

The desired 95% confidence limits for prevalence are:

P Zo x se(P) = .63 £ 1.96 x .0356
= (.56 t0 .70)

- When an observed prevalence is based on a complete enumeration of all cases
in the population, an argument can be made that no sampling error is involved and
that confidence limits are unnecessary. Even in this situation, however, an observed
prevalence is ordinarily treated as an estimate of the true prevalence in a larger
source population from which the study population has been sampled at random.
The study sample may also be regarded as a random sample in time.

CUMULATIVE INCIDENCE

Estimating Cumulative Incidence in the Presence of Censoring

Sometimes we would like to estimate cumulative incidence but cannot do so di-
rectly because some persons drop out during the observation period, even though
they had not become a case before dropping out. Disease occurrence informa-
tion on such subjects is termed censored. Censoring can occur for many reasons,
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including voluntary w1thdrawa1 deparrure from the dlsease-surveﬂlance system s
coverage area, death from some unrelated disease, or the scheduled end of study .
data collection. Survival analysis encompasses a family" of biostatistical - meth-
ods that can allow the epidemiologist. to estimate cumulative mc1dence in-the .
presence of censoring, under certain assumptions (Kalbfigisch and Prentice, 1980;
Hosmer and Lemeshow, 1999; Kleinbaum, 1996). A simple- and widely used )
method that requires relatlvely few. assumpt.tons is desctibed here: the Kaplan-:
Meier or product-limit method (Kaplan and Meier, 1958). - :

To see how the method works, a spemﬁc context will be helpful Anabdominal .
aortic aneurysm is a balloon-like expansion of the abdominal aorta caused by
weakening of the aortic wall. Theory predicts that the la'r'ggr-.the. aneurysm grows,
the weaker the vessel wall becomes ai:lgl't_;he greater the charice of still further
expansion and potentially catastrophic rupture. But surgical répair of an unruptured
aneurysm involves significant risk, pain, and cost in its own right. To help decide-
between early surgery and watchful waiting, doctors and patlents need to know
the risk of rupture and how it varies over time. - .

As a “thought experiment,” we could.imagine momtormg a group of newly
diagnosed aneurysm patients over time, w1thout censormg The cumulative ingi-
dence of rupture would rise over time. How high and how qmckly the tisk rises
would help determine the urgency of elective surgery. - . :

In practice, however, aneurysm patjents would be dlagnosed on w1dely vary-
ing calendar dates, and it would be almost impossible to follow them all until
rupture occurred. Censoring could happen due to death from other causes, elecuve
surgical repair, or the scheduled end of data collecuon '

Example: A study by Nevitt and colleaigliés (1989) involved tracking the expe-’
rience of 176 residents of Rochester, Minnesota, who were first diagnosed with
an unruptured abdominal aortic aneurysm between 1951 and 1984. Among them,
11 ruptures were identified within eight years after dlagn051s However, even by
five years after diagnosis, only 76 of the original patients were actually still at
risk for rupture and being followed: Had- all 176 patients been tracked for a full
eight years without censoring, the cumulative 1n01dence of rupture no doubt woilld
have exceeded 11/176, possibly by a large. amount, -

Figure 4-2 portrays five hypothetical patienis who. are diagnosed with an
aneurysm at different times during.a five-year study period. In the top panel, each.
patient’s experience is shown as a horizontal line that begins at d1agnos1s and termi-
nates ejther with rupture (a bold vertical bar) or with censbnng (a vanishing hnc) .

In the second panel, the time scale is chaniged to ¢ tlme since diagnosis,” which-
bears more directly on the research quest.\on at hand. To make this conversion, the
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line for each person is moved leftward to align its start with the vertical axis
keeping its length and manner of termination unchanged. .,
The third panel is the Kaplan-Meier survival curve derived from these data
(Su.ch “curves” normally have a stair-step shape like this one.) Although we are.
mainly interested in cumulative incidence, it is mathematically more convenient
to focus first on “survival”—here, the probability of 7ot having had a rupture. To
construcft the curve, we proceed from left to right. By definition, all patients wi'th a
newly dlsc.overed unruptured aneurysm are free of rupture at diagnosis (Time 0)
s0 the survival curve begins at height 1.0. Here, no ruptures occurred unti] halfwa);
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through the first year. Of the five patients then under surveillance, four remained -
rupture-free immediately after patient no, 3’s rupture. Hence the cufve"drops: at
that point to 1.0 x (4/5) = 0.8. The next rupture (patient no. 4) occured two
years after diagnosis. At that time, one of ‘the: two.patients still ‘at risk and under
surveillance remained rupture-free after patient no, 4’s rupture. Hence the curve
drops to 0.8 x (1/2) = 0.4 at that time. Between the two rui)tures,-patients no. 1
and no. 5 dropped out due to censoring. Those losses have no effect on the height
of the survival curve at the times they dcciirred, but they increase the size of the
drop at the time of patient no. 4’s later rupture. After patient no. 4’s rupture, no
further ruptures occurred through year 4, when the Jast person under surveillance
dropped out. ; o B
The bottom panel of Figure 4-2 shows the desired plot of cumulative inci-
dence over time, obtained by calculating cumulative incidence = 1'— (propertion:
still free of rupture) at each follow-up time. In effect, it is the third panel turned
upside-down. Note that the estimated cumulative incidence of rupture at four years
is 0.6, not 2/5 = 0.4, as might have been guessed naively without accounting for,
censoring. A more generic description of the. Kaplan-Meier method and related
methods can be found in references on survival analysis (Kaplan and Meier, 1958;
Kalbfleisch and Prentice, 1980; Kleinbaum, 1996). o .
When there is no censoring, the Kaplan-Meier method. yields the same cu-
mulative incidence estimate as the simpler direct method described earlier. When.
censoring is present, the method uses the cf(pelicncev of those remaining at risk and
under follow-up to estimate the shape of the curve. The vValidity of the resulting .
curve and cumulative incidence estimates depends on an assumption that censoring
is unrelated to risk. In otlier words, it is assumed that,-had they been observed.to
completion, the survival curve for persons with censored data.would laok I;he same
as the curve for everyone else, aside from s_amphng variability. This assumption
is usually not empirically testable, but a judgment about its plausibility can often
be made by considering the reasons for censoring. In our.aneurysm example, cen-
soring due to the arbitrary end of the study period might well be unrelated to risk
and create no bias. But censoring due to surgical repair might be triggered by the
onset of symptoms or by evidence of rapid aneurysm growth; so that the shrgeon’s
hand may have been forced by an impending rupture. To the extent that ccnsbring‘
for that reason is common, we might suspect that the cumulative incidence of rup-
ture without surgical intervention could be un_dercstimate&_-by the Kaplan-Meier
method. : . , : : -
Survival analysis includes several other conceptually similar but computation-
ally more complex methods for estimating.cumulative incidence when adjustment
must be made for subject characteristics (covariates) that ‘may differ across com-
parison groups (Kalbfleisch and Prentice, 1980; Hosmet and'Lémeshqw,'IQQQ;
Kleinbaum, 1996). ' o _— R
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Confidence Limits

Cumulative incidence, like prevalence, is a proportion. When it is estimated directly
from data on a closed population, methods described in Appendix 4A can be
used to obtain confidence limits. When the estimate is obtained by the Kaplan-
Meier method, confidence limits must be obtained by more complex techniques,
as described in several statistical texts (Kalbfleisch and Prentice, 1980; Hosmer
and Lemeshow, 1999; Kleinbaum, 1996; Rosner, 1995).

INCIDENCE RATE

Population-Level and Individual-Level Perspectives

Measures of disease frequency in populations have a dual interpretation. First, they
estimate the burden of disease on a population as a whole. This perspective bears
directly on such public health activities as detection and tracking of epidemics,
health planning and resource allocation, and evaluation of policies and programs,
which focus on the population as a unit.

Second, disease frequency in a population is also used to estimate disease
risk in individuals. From this perspective, the population is viewed as a collection
of individuals who have certain characteristics in common. The population is a
set of replicate observations. Viewed this way, data on disease frequency in the
population provide input for inductive reasoning: predictions about the likely fate
of one individual can be based on the observed experience of others.

For example, the percentage of newborn babies weighing less than 2500 grams
atbirth has been found to be higher among babies of mothers who smoked ci garettes
during pregnancy than among babies of non-smoking mothers. For any particular
mother, there is no way to know for sure whether she will or will not have a.
low-birth-weight baby. Yet based on the experience of other mothers, we infer
that the risk or probability that she will have a low- -birth-weight baby is greater
if she smokes than if she does not. This view of a population as a set of replichte
observations also underlies statistical theory for obtaining confidence limits for
measures of disease frequency.

o Duality of perspectives applies to many disease-frequency measures, not just
incidence rates, and epidemiologists are used to moving freely between them. But
ttlete are situations in which population-level disease frequency does not neces-
sarjly translate directly into individual-level risk estimates, and then it becomes

unho.rtant to distinguish between the perspectives. This issue has special relevance
to incidence rates.
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Incidence Rate and Hazard Rate

A key feature of the person-time incidence rate is that its denommator is a “lump -
sum.” Person-time is regarded as a freely interchangeable commodity, and all that '
matters in the final calculation is the total amount. Observmg one susceptlble
person for 12 years, 12 people for one year, or 144 people for a month all result
in adding 12 person-years to the denommator ThlS propexty was assumed in the
calculations shown in Table 3-1. .
This feature of the incidence rate can be both a strength and a hmltatlon The
examples in Figure 3-3 and Table 3—1 illustrated that the ablhty to combine ) person-
time across people and over time makes the incidence rate a much more broadly
applicable measure of incidence than cumulative mc1dence But to apprec1ate the
implications of this pooling, it i helpfu] to consider a model that breaks down the
population’s disease experience into smaler building blocks. . :
Looking again at Figure 3-3; the verucal lines divide the total observatlon .
period into 30 one-day periods. Taken one day at a time, many of the original com-
plicating factors that interfered with direct calculation of cumulative incidence— -
censoring, recurrent cases, periods not at risk, multiple observation penods per
person—become less problematlc On'any given day, recurrent events in the same
person and gains and losses to the populatlon at risk are rare or non-existent.
Furthermore, we can imagine that if we had detailed data on the timing of .
events, we could extend this divide-and-conquer strategy: stﬂl further, splitting days

. into hours, hours into minutes, and.so on, rather like viewing a movie one- -frame

at a time. No two disease events occur in the same person at éxactly the same time '
on a sufficiently fine time scale, so in principle it is always possible to choose a
time increment short enough that the’ chance of multlple cases occurrmg within .
the same increment is negligible. . :

In addition, there is a fixed number of instances when some populatlon mem-
ber joined or left the population, or moved into or out of the susceptible state. But
again, there is no limit on how short a time ‘increment we could select. Henge. the :
proportion of intervals involving censormg of this sort can be made as small as we
wish, and ultimately rare enough tobe neghglble .

So suppose that we spe01fy a certain short time inCrement, such as a minufe
or a second—short enough to eliminate recurrent cases w1th1n a single interval
and short enough to allow censoring and susceptibility chan ges to be 1gnored Call
this increment Az. The entire study period of interest is then split into a 'series '

of intervals, each of duration Ar. The populatlon s disease experience over time
could now be represented as a very large ‘matrix, as illustrated in Figure 4-3.
Each row refers to a different individual who belongs to the population for at
least part of the study period. Consecutive columns refer-to corisecutive short time
intervals throughout the observation perlod Each cell corresponds toa tmy piece '
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’ d = 1if person becomes a case in the interval; else = 0
s = 1if person is at risk at start of the interval; else = 0

Figure 4-3. Matrix Representation of Population Disease Experience.

of person-time. Rows (individuals) are numbered 1 through N, while columns
(time intervals) are numbered 1 through M. Any particular cell can be referred to
by its row number (i) and column number (denoted )

This matrix can be thought of as a “digitized” version of the kind of population
line diagram shown in Figure 3-3. Each row of the line diagram in Figure 3-3
maps to a row of the matrix in Figure 4-3. The horizontal resolution is adjustable
by the choice of Az, with smaller values of A¢ yielding finer resolution.

Each cell in Figure 4-3 contains two numbers. The upper left number in cell i j
is 1 if the person in row i became a case during time interval 7 otherwise if1s 0.
In other words, this number is the value of a disease indicator, d; ;. The lower right
number in that cell is 1 if person i was at risk and under observation at the start of
time interval j; otherwise itis 0. It is the value of a susceptibility indicator, s;;.

Cells for which s = 0 are of little interest, corresponding to persons who
were non-susceptible, not under observation, or already ill at the time. We know in
advance that d = 0 for those cells—there is no uncertainty, and the observed value
of d provides no real information. But every cell for which s = 1 corresponds to a
brief “experiment of nature,” or binomial trial, as considered earlier for cumulative
incidence. “Chance” (as a euphemism for our incomplete knowledge about disease
causes) determines whether d is 1 or 0. Each of these trial-cells captures the
experience of a single at-risk individual over a short, fixed time period: person i
either develops disease during time interval j or daes not.

Associated with each trial is an underlying probability p; j that person i would
become a case during interval j, Because Ar was already made short enough to let
us ignore the possibility of recurrent disease events within one interval, Dij canalso
be interpreted as the expected number of disease events in that trial-cell. The true
values of these p’s are not observable. A trial-cell, however, contains either 0/1 or
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1/1, either of which can be read as the observed cumu]atlve incidence ina certain

one-person population over a certain brief time interval. Itisa crude’ esumate—th_e .

crudest possible estimate, in fact—of the corresponding. p. Symbolically, 7;; p, j =
d;j/sij = dy;, because the denominator is always 1 for all trial-cells.

The total number of trial-cells, and the probability that.a case accurs'in
one of them, clearly depend on the choice of Az. The b1nom1a1 trial model. fits :
better and better as Az gets shorter, so it is ‘worth con31dermg what happens
as At approaches 0. The smaller At is, the moré trial- cells ‘there are, and the -
less likely it is that any given one of them:contains a case. Moreover, as At gets
near enough to 0, p;; becomes proportional to At. This i is because a-fixed num-
ber of cases is being spread over an.increasingly large number. of cells 0ver a
short enough period, p remains essentJa].ly constant for the same pcrson from
one instant to the nexi. Dividing p expected cases among; say, k still’shorter
sub-intervals puts p/k expected cases into each sub-interval of duration At/k.
The k’s cancel out, and I’.he ratio of -expected events to mterval durat10n rernams
unchanged. : :

This ratio is variously termed the hazard or hazard rate (our preferred terms),
event rate, probability rate, force of morbidity, or instantaneous probablhty It i
usually denoted with the Greek lambda ;.

For a given individual, a value of A can be.associated with edch point in.time by
taking the limiting value of A as At —> 0 for the interval that mcludes that time -
point. : : :

The hazard rate merits some corrtemplatmn It is: the expected number of .
disease events per unit of time for a certain person at a certain moment (which .
explains why event rate is one of its aliases). Computed as ‘the ratio of 4 unitless
probability to an amount of time, the hazard rate has units of tlme"1 ,just as does the
incidence rate. But we must remember that incidence is an observable populahon :
measure of disease occurrence over a period of time,’ wh11e the hazard rate is
an unobservable individual measure of disease risk per ‘time unit, evaluated ata
moment in time. :

We can now re- aggregate the data in the many trial- cells back toward ‘what
we as epidemiologists observe at the populatron level. The observed number of -
cases, ¢, is the total number of trial-cells for which d = 1, summed over ‘all rows
and columns: :
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The total time at risk (call it 7 with no subscript), summed for all population
members, is the number of trials for which s = 1, times the duration of each trial:

T =ZZSU - At
i

The total number of trials is:

N =T/Ar

Finally, the mean hazard rate across all persons and time intervals at risk is:

20V ¥

>
Il

Z Z] At
T/At
_ b EjPij
- T

We noted earlier that p;; is interpretable as the expected number of cases in
cell ij, so the numerator of the last expression is the total expected number of cases
for the population. The expected total number of cases is not directly observable,

but in a particular set of data, the observed number of cases c, is an estimate of it.
Hence:

Incidence rate (IR) = % estimates A

In words, the incidence rate is an estimate of the mean hazard rate over all
persoh-tlme at risk contributed by population members during the study period.
This interpretation holds true regardless of how variable the hazard rate may be

within individuals and over time. It also does not require that the pij beindependent
of one another.

Incidence rate as a weighted average

As noted earlier, one of the main uses of incidence data in a population is to
infer disease risk in individual population members. Later in this chapter, we will
examine a “weighted-average rule,” showing that the rate for a population is always
aweighted average of rates for the population’s component parts, which are usually
subgroups of the population. The weight for each subgroup is its size—here, how
much person-time it contributes. In the present context, the wei ghted-average rule
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says that the overall incidence rate will be most heavily inﬂuer‘ic_ed by hazard rates
that apply over the largest amounts of person-time. ‘

+ Suppose the hazard rate is constant for all individuals and over time. Then
the incidence rate estimates a welghted average of thls constant whlch is
just the constant itself. . .

. Suppose each 1nd1v1dual has hlS or her own possxbly umque hazard rate,

' welghted average of the- ;. The welght for eachi-A; is the propomon of the

total person-time 4t risk centributed by person . Hazard rates ‘that apply.
to persons who are at risk and under observatxon longer are thus weighted
more heavily. This can be important if censoring is moré or less ‘common -
among individuals with relatively high hazard-rates. The incitien'qera_te will
tend to be skewed toward hazard rates among those persons who are least
subject to censoring. '

Suppose the hazard rate changes over t1me but is sumlar for a]l at-risk
individuals who are under observation at a given time, This situation might -
apply, for example, in a cohort of similar individuals who are tracked fer -
occurrence of new cases over a long time. As cohort members age, their
hazard rates may change. Concurrently, members of the cohort may be lost -
to attrition, so that more persen-time comes from-earlier in the study period
than from later. The incidence rate will be skewed toward hazard rates in .
effect during early parts of the observation period, when more people were
being observed.

Confidence Limits

As noted earlier, few assumptions are needed in order to interpret the incidence rate
as an estimate of the mean hazard rate. To obtain confidence limits for an incidence |
rate estimate, however, additional assumptions must be made.- Three models are
discussed here and some research situations to which éach might corréspond.

Constant hazard

The simplest and probably most w1dely used assumptlon is thatthe hazard rate
is constant across individuals and over- timhe. Under this assumptlon, all person- -time
within the observation period i is freely interchangeable. An analogy from physics
is decay of a radioactive element: the hazard rate of fissioning in a certain atom
at a certain moment is thought to be constant across all atoms ‘of the same 1sotope
and over time (Armitage and Berry, 1994).. R : '

In the human health arena, there are probably not fpany exact counterparts—
pethaps the hazard of being struck by a giant meteor from outer space—but some *
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s?tuations come closer than others. The constant-hazard assumption is most plau-
51b1<c for a relatively homogeneous population observed over a relatively éhén time
period. “Relatively homogeneous” and “relatively short” need to be interpreted in
the context of the disease in question. In occupational epidemiology, for example
f;ases and person-time at risk are routinely partitioned into categories defined b)z
job title, age range, gender, and calendar year, with incidence being estimated
separately for each of the resulting categories (Checkoway et al., 1989).

. 'When this constant-hazard assumption is met, methods-based on the Poisson
distribution can be used to obtain confidence limits for an incidence rate estimate
(Mendenhall et al., 1986; Armitage and Berry, 1994; Breslow and Day, 1987).
Specifically, say that c cases are observed in T person-time. T is considered a
fixed quantity, not subject to sampling error, and confidence limits for the rate are
based on confidence limits for ¢ alone. If ¢ > 100, the following expression (based

on-the normal approximation to the Poisson distribution) is reasonably accurate -

(Armitage and Berry, 1994, p. 142):

Confidence limits = @

where Z, is the standard normal deviate for the desired confidence level (Z, =
1.96 for two-sided 95% confidence limits). The second term in the numerator is
subtracted to get the lower confidence limit and added to get the upper limit.

‘ If ¢ < 100, more accurate confidence limits can be obtained by basing them
dlrec.tly on the Poisson distribution. Table 4-3 in Appendix 4B can be used to
obtain a lower and an upper multiplier for c, the observed case count. Multiplying

each of these by the observed point estimate of incidence yields the desired lower
and upper confidence limits.

Example: In the study of back injuries by Gardner et al. (1999) described in
Chapter 3, nine back injuries were reported in 322,193 working hours by female
department managers who had been employed for less than eight months, for a
rate of 2.79 cases per 100,000 worker-hours. Using the table in Appendix 4,B the
upRer and Jower multipliers needed to obtain Poisson 95% confidence limits, for
an incidence rate that is based on nine cases are 0.457 and 1.898. The desired
confidence limits therefore extend from 2.79 x 0.457 = 1.28 to 2.79 x 1.898 =
5.30 cases per 100,000 worker-hours. . -

Hazard varying randomly among individuals

In §0n?e situations, theory or available data suggest that the hazard rate varies
among individuals, even after accounting for measured differences in exposure
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to risk factors and other personal cha:aéterist_ics. This vaﬁaﬁon could arise; for -
example, from differences in genetic susceptibility, differences in exposure to -
unmeasured risk factors, or just biological variation. In the biostatistical lit_efau;re, :
random inter-individual differences in hazard rates are called differences in frailty
(Aalen, 1994; Clayton, 1994). o . Lo
This model seems particularly apbii_c_able to studies of recurrent illness (Glynn
et al., 1993:; Glynn and Buring, 1996; Cumming ¢t al., 1990). Undet the constant-
hazard assumption considered earlier, someone who has had oné disease event is
no more or less likely than anyone else to have another event in the future. But for
many diseases, evidence suggests that future risk is often élevated among pérs_Qns ;
who have already experienced an ‘initial event. For example, Victims of assault -
have been found to be at greatly incredsed risk of be:ing‘assa_u_l,tcd again (Dowd
et al., 1996). Children treated for an unintentional injury are more likely than are
other children to experience a future unintentional injury (Johnston et al., 2000). -
Postmenopausal women who experience a- vertebral fracture are at high risk of
having an additional fracture within the next year (Lindsay et al., 2001). Possible -
mechanisms include continued exposure to-a H_azardou_s environment, existence of ’
a chronic underlying health condition that predisposes to recurrent complications,
or effects of the initial illness event itself, as might occur if an assault \{i(':tim .
confronted his or her attacker., Whatever the reason, an initial jeve'nt may serveasa’
marker for a subpopulation with a systematicaﬂy higher hazard rate. Statistically,

. the problem is known as extra-Poisson variation. When it is present,-confidence -

limits based on the Poisson distribution, which assumes constant hazard, are too"
narrow (Glynn and Buring, 1996; Clayton, 1994). AN R
Several statistical approaches have been proposed to- deal with this problem
(Glynn and Buring, 1996; Clayton, 1994; Sturmer et al., 2000). One involves.com-
puting an individual event rate for each pdp.ulaﬁon member based on his or her
observed number of events and person-time at risk, and basing confidence limits .
for the overall incidence rate-on the observed variance-in‘those event rates across
persons (Glynn and Buring, 1996). When follow-up tines are inequal among in-
dividuals, the individual rate$ can be wéight,ed by amount of time at risk (Stukel
‘et al., 1994). More complex multivariate methods include logistie regression.using .
generalized estimating equations, Poisson regression with- correction for overdis-
persion, or adaptations of proportional-hazards survival analysis (Sturmer ef al.,
2000). : , : e
Variation in hazard rates among individuals can have another effect in the

context of non-recurrent disease in closed populations. It can affect the degree to .

which changes in incidence rates in the population over time fefléct corresponding
changes in individual risk (Aalen, 1994, 1988). For example, suppose that a pop-
ulation under surveillance initially consists of a.50:50 mixture of a high-risk sub-
group and a low-risk subgroup. The earliest qaseé arise méjnly from the high-risk
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subgroup. But as those early cases occur, they also preferentially deplete the high-
risk subgroup. Over time, the original 50:50 mixture thus shifts toward an increas-
ing predominance of low-risk individuals, which in turn yields a decline over time
in incidence for the population as a whole. The observed decline in incidence could
be misinterpreted as implying a decline in risk to individual population members,
either as they age or as calendar time passes, when in fact the decline would be
due at least in part to changes in the composition of the population at risk.

Hazard varying over time

As noted earlier, the simple and common model of constant hazard rates can
be expected to hold best over relatively short observation periods. As time passes,
changes in such factors as exposure to environmental causes, diagnostic methods,
and disease classification commonly occur and can affect disease frequency. Closed
populations also age. To reduce variation in hazard over time in the face of these
factors, a long period of observation is often subdivided into shorter sub-periods
or “time bands” for analysis. Other analytic strategies include modeling the effects
of time itself on incidence—for example, by including time as a predictor in the
kinds of multivariate models to be described later (Chapter 11).

Often, however, changes in hazard rates over time are not of main interest
and are instead just a potential source of bias when making comparisons among
subgroups or populations. This viewpoint has helped make the proportional-

hazards model popular in epidemiology (Cox, 1972; Kalbfleisch and Prentice, -

1980; Kleinbaum, 1996). Briefly, under this model, the “baseline” hazard may
change over time in an arbitrary way, and these changes are assumed to apply to
all individuals. But at any given moment, an individual’s hazard relative to that of
other individuals then at risk is assumed to depend on his or her measured personal
characteristics, at least one of which is exposure to a potential risk factor of main
interest.

Incidence Rate and Mean Time to Disease Onset

The incidence rate has units of time™!. Under somewhat idealized circumstances,
the reciprocal of incidence, which is in units of time, can be interpreted as the
mean time to disease onset. Although this odd fact is perhaps of more theoretical
than practical importance in epidemiology, its basis is explained here. It will soon
play arole in linking prevalence, incidence, and disease duration.

Consider a hypothetical population of N susceptible individuals who are fol-
lowed indefinitely for development of a non-recurrent disease. Say that incidence
rate remains constant at some value /R throughout the follow-up period. If there
are no competing risks, and if the population is followed long enough, then every-
one in it must eventually develop the disease. Before becoming a case, person i
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contributes a certain amount of pers'on—time at risk, ;. Total person-time; T =
>~; T;, stops increasing when ‘the last case occurs. At that tlme N cases would
have occurred in T person-time. By definition; the mc1dence rate was constant

thronghout follow-up, so IR= N/T.
Now suppose we are mt.erested in how much time goes by, on average, until

a susceptible person becomes a case. This would be >, T;/N. = T/N = 1/IR.In . -

other words, the reciprocal of the incidence rate estimates the mean time to disease-
onset under the circumstances described. Although a proof is beyond the scope of
this text, this property also holds for recurrent diseases. . .

Example: Say that upper respiratory infections occur at the (very high) incidence of _
three per person-yearina population. The average time to the next upper. resplratory
infection for a person at risk would be 1/(3 year™!), or 4 months

For lower-incidence diseases, the requlred assumption of no competmg nsks '.
will rarely be satisfied, in which case the resulting numerical estimate of mean
time to disease onset may not be very meamngful But the algebralc rule 1tse1f will
prove useful below. : .

RELATIONSHIPS AMONG MEASURES OF DISEASE FREQUENCY

Populations and Their Subpopulations

Many commonly used measures of disease frequency talre the form of fractions.
The numerator is usually a case count, and the denominator is a measure of popula-
tion size or of the amount of person-time in which those cases occurred. Prevalence,
cumulative incidence, person-time incidence rate, mortality rate, case fatahty and

various other measures all fit this description. It will be convenient to call all such
measures “rates” for now, recognizing that “rate” has a narrower meanjrxg in other
contexts. : . : o
A simple and very useful algebrmc relationship comnects the value of any
such rate in the whole population to.its value i in subpopulations formed fmm the
whole.

Suppose that, for a certain study populat.lon, an overall rate of d;sease r, is
calculated by dividing the total number of cases, ¢, by an appropfiate denommator, s
n, so that r = ¢/n. The population can be divided in various ways into a set
of mumally exclusive and collectively exhaustive subgroups—for example, by .
gender, by age category, or by exposure to some environmental factor. A separate
“local” rate can then be calculated for.each subgroup,.simply by restuclmg both
the numerator and the denominator to members of that subgroup
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' Imagine that the population is separated into males and females, and that the
gender-specific rates are 7, = ¢y /1y, for males and rr = ¢y /ny for females. The
rate in the full population is:

_ Cm +C f
- Ny +nf
Some algebra shows that:
Cm 4 Cr
Py +Rf Ry tng

r =

Cm Ny cf ng

Nm Ny +Af ng Rptnf

=Vm Wy +Fp- Wy

where wyp, = np/(nm +ny) is the proportion of the overall denominator con-
tributed by males, and wy is the proportion contributed by females. Note also
that w,, + ws = 1. The w’s can be interpreted as weights for the corresponding
gender-specific rates.

Example: In a population of 700 women and 300 men, there are 35 prevalent
cases of diabetes among the women and 30 cases among the men. The overall
prevalence of diabetes is thus (35 + 30)/(700 + 300) = 65/1000 = 6.5%, while
the gender-specific prevalences are 35/700 = 5.0% in women and 30/300 = 10%
in men. The overall prevalence is a 700:300 weighted average of 5% and 10%:
6.5% = (5%)(0.7) + (10%)(0.3).

The algebra above can be extended to cover any number of mutually exclusive
and collectively exhaustive subgroups. The general rule is:

The overall disease rate in a population is a weighted average of the rates in its
subpopulations. The weight for each subpopulation rate is the proportion of the overall
rate’s denominator contributed by that subpopulation.
This property applies to all disease-frequency measures that are fractions. Among
other uses, the rule underlies direct and indirect standardization of rates (discussed
in Chapter 11)—techniques that enable valid comparison of rates across popula-
tions that differ with regard to sociodemographic or other characteristics.

Cumulative Incidence and Incidence Rate

A useful relationship between the two main measures of incidence can be de-
veloped for non-recurrent diseases. Consider again what would happen over time
in a closed, susceptible population in which the incidence rate of a certain
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Cl=1-exp(-IR-1)

Cumulative incidence

Time .

Figure 4-4. Cumulative Incidence over Time When Incidence Rate ts Constant.

non-recurrent disease remains constant. As new cases occur, théy are sibtracted
from the population at risk. It can be shown with calculus that the population atrisk
declines exponentially over time—a process analogous to the exponentxal deca'y
of a radioactive element. . .

Say that Ny is the number of persons originally at- nsk N, is the. number :
remaining at risk at time £, IR is the incidencé rate (assumed to be constant) and.
e is the base of natural logarithms, approximately 2.71828. Then: -

Ny = No-e™® = No-exp(—IR-1), ~ - @D

Because of the steadily: déclining population at tisk, a smaller and ‘smaller
number of new cases occurs per unit of time. Cumulative incidence (CI) contmues
to rise, but with decreasing slope. Spec1ﬁcally

CI:,l—exp(—IR-t) e

Figure 44 illustrates this relatlonsmp . .

Relation (4.2) can be handy, for cxample when companng results from two
or more studies that used different incidence ‘measures.- As we have seen, the
incidence rate applies to a broader range: of populations and disease types, while
cumulative incidence is more easily interpretable in terms of disease probability or
risk. Relation (4.2) provides one way to use incidence rate data to address “What
if .. .77 questions involving cumulative 1nc1dence R

Example: Table 4-1 is based on results from a study- by Morris and collca}gufc,s
(1953) of coronary heart disease incidence arnong London bus dfivers and con-
ductors. It was among the first studies to suggest a link between regular physical
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Table 4-1. Using Incidence Rate to Project Cumulative Incidence of Coronary Heart
Disease in London Bus Drivers and Conductors

Projected Experience of
1000 Hypothetical Workers
Results from Morris Study CUMULATIVE
PERSON- INCIDENCE STILL INCIDENCE
JOB/AGE CASES YEARS RATE? AGE AT RISK SINCE AGE 35”
Drivers
3544 8 12,360 0.6 35 1000 —
45-54 29 11,698 25 45 994 0.6%
55-64 43 6668 6.4 55 969 3.1%
65 909 9.1%
Conductors
3544 (4] 9622 0.0 35 1000 —
45-54 11 5522 20 45 1000 0.0%
55-64 20 4022 5.0 55 980 2.0%
65 933 6.7%

“Per 1000 person-years
®Tn the absence of competing risks
[Source: based on Morris et al. (1953).]

activity and lower heart disease risk. The conductors moved around the bus all
day collecting fares, climbing up and down stairs. Meanwhile, drivers remained
relatively sedentary while seated driving the bus. Because the work force was an
open population, the results were reported as coronary heart disease cases per 1000
worker-years for each job type and for each of three 10-year age categories.

In each age group, the incidence rate of heart disease was higher in drivers
than in conductors, consistent with the hypothesis that physical activity lowers
the risk of heart disease. The implications of these results in terms of individual
risk can be clarified by using the incidence rate data to estimate the cumulative
incidence of coronary heart disease in two hypothetical cohorts of 1000 drivers
and 1000 conductors from age 35 to 65 years.

On the right side of Table 41, relation (4.1) was applied to each age decade
in turn. The number of cohort members still at risk for incident coronary heart
disease was estimated for the end of each decade, based on how many were at risk
at the start of the decade and on the incidence rate for that decade from the Mormis
study. Cumulative incidence follows directly from the projected number still at
risk. For example, among 1000 bus drivers at risk starting at age 35, the number
expected not to develop coronary heart disease in the next decade would be:

1000 x exp(—.0006 - 10) = 994
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Thus, the projected cumulative incidence of coronary heart dlsease over the 35—44 .
age decade would be (1000 — 994)/1000 = 006 = 0.6%. For the 45—54 age |
decade, the same formula is applied again, substltutmg 994 for 1000 and’ .0025 for _
.0006, and so on down the table. We estimate that, in the abserice of competing -
risks, a man who began working as a London bus driver at age 35 would stand a
9.1% chance of developing coronary heart.disease within the next 30 years The -
corresponding 30-year risk in a conductor would be 6. 7%.

In many situations, the disease is rare enough and the observauon penod short
enough that very little reduction in the size of the population at nsk takes place- dur- _
ing observation. Expressed with like denominators, incidence rate and cumulative
incidence may thus appear to be numencally very close. For example, the I inci-
dence rate of coronary heart disease among London bus drivers aged 35-44 years
was 0.6 cases per 1000 person-years. Based on (4.2), the projected one-year cumu-
lative incidence among 1,000 such drivers would be l — exp(— —0. 6/ 1000 D=
0.0005998 = 0.5998 per 1000 drivers. '

Prevalence, Incidence, und Duruﬁon

Under certain cucumstances prevalencc and, mcxdence can be cas11y rclatcd to
each other. Consider a closed population in which a recurrent dlsease state occurs, .
such as urinary tract infection, the common cold, or depression. Assume that all B
individuals who do not have the disease are susceptible (’Fhot is, there is no third -
not-at-risk state) and that the incidence. rate is constant at some value IR among '.

back and forth between the states over time (Flg tFS)

The fiow along the disease-onset path, measured in thie number of everits per
unit of time, depends on (1) the size of the suscepublc pool and (2 2) the incidence
rate. Because the disease is recurrent, there is also a counter—ﬂow of individuals
from diseased back to susceptible, which- we may call recovery. The number of
recovery events per unit of time depends on (1) the size of the diseased pool, and'
(2) what we may call a recovery rate, which is just like the incidence rate but-
operates in the opposite direction. We shall further assume that this recovery rate
is constant over time and is the same for all-diseased mdxv;duals at sorme val.qe'RR

- Onset . —T -~
Susceptible |- ﬂl Diseased I
Recovery -
Figure 4-5. Two-State Model t lllustrate the Relononshlp Among Prevolence, lnC|dence ond
Duration.
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As demonstrated earlier, 1/IR can be interpreted as the mean time to disease
onset among susceptibles. By similar logic, 1/RR can be interpreted as mean time
to recovery among diseased individuals. In other words, 1/RR is the mean duration
of disease, which it will be convenient to call d.

Now suppose we begin with all individuals in the susceptible state and imagine
what happens over time. People start to develop the disease at a rate determined by
IR. In the process, they start emptying the susceptible compartment and start filling
the diseased compartment. As the diseased compartment accumulates prevalent
cases, recoveries begin to occur. The more prevalent cases accumulate, the more
recoveries occur, which tends to empty the diseased compartment and to refill
the susceptible compartment. As long as the two opposing flows are unequal, one
compartment will grow and the other shrink, which in turn will act to equalize the
two flows. Eventually an equilibrium is reached, in which the flow of incident cases
is exactly balanced by the flow of recoveries. Because the flows into and out of each
compartment are equal at that point, both compartments maintain a stable size.

More formally, suppose that the flows and compartment sizes at equilibrium
are labelled as follows:

S = number of susceptible persons
D = number of diseased persons (prevalent cases)
i = number of incident cases per time unit A¢

r = number of recoveries per time unit As

At equilibrium,
i=r
IR-S=RR-D
D_g. L
S RR
=IR-d @.3)

Relation (4.3) says that, under the specified assumptions and at equilibrium,
D /S is the product of incidence rate and mean duration of disease. D/ is not quite
the prevalence, which would be D /(S + D). Rather, D /S is the prevalence odds,
which expresses the relative frequency of the diseased state as an odds rather than
as a proportion. For many realistic situations, however, the prevalence of disease
is low, so that § >> D, and therefore D/S ~ D/(S + D). The final result is then:

Prevalence ~ (Incidence rate) x (Mean disease duration) 4.4

¢
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Relation (4.4) links two key measures of disease _frequency. Itisa time-
honored rule of thumb in epidemiology. Nonetheless, it is probably best regarded
as a conceptual aid rather thanas a relation that can be expected to hold true consis-
tently in real data. The main reason is that the dssumptions behind the hypothetical
model are often poorly or only approximately met under real-world conditions.
For example, the incidence rate and recovery rate may not remain constant 1ong
enough for an equilibrium to be achieved, because of changes in environmental or
behavioral exposures, disease-control act1v1t1es dlagnostlc technologles, disease .
treatments, and so on. Also, the population of interest may not be closed, so that
in- and out-migration of prevalent cases is possible. Nonetheless, relation (4. 4)is
quite useful for understanding the two main determinants of. disease prevalence
and for predicting how prevalence may change as a result of. changes in mcldence
or disease duration. g

Example: To illustrate how relation (4.4) works, imagine a population of rna,mied _
women aged 15-45 years in whom the incidence and prevalence of pregnancy are
studied. Table 4-2 shows three scenarios. In the “base case,” the .i_ncidence rate
of pregnancy is 8 per 100 woman-years. Full-term pregnancies last 9 mon'ths,,_ or
0.75 years. If all pregnancies go to term, and if incidence has been stable long
enough for equilibrium to be reached, then a prevalence survey would be expected
to find about 8/100 x 0.75 = 6/100 of women pregnant on a random survey date.
Now suppose that highly effective oral contraceptives become available for

the first time, and a random 50% of women choose to use them. No other changes | -

in reproductive practices occur. Use of ‘the “pill” should reduce the incidence of
pregnancy by half to 4 per 100 woman-years, but it should not affect the duraticn :
of pregnancies that do occur. Once a new equilibrium is achieved, we would expect
another prevalence survey to find about 3/100 women pregnant on a random-date.

Table 4-2. Incidence, Duration, and Prevalence of Pregnancy in a
Hypothetical Population of Women of Reproductive Age

" Pregnancy .
KR ... PREDICIED -
INCIDENCE ' DURATION . PREVALENCE
‘BIRTH CONTROL USE RATE® (YEARS) ° (APPROX.)
None 8. - 07s. " 6%,
50% use “pill” 4 : ) 075 - | 3%
50% have abortion 8

050 . A%,
at 3 months )

“Pregnancies per 100 woman-yeérg
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Starting over from the “base case” without oral contraceptives, suppose in-
stead that elective abortions become available. A random 50% of women who
become pregnant decide to terminate the pregnancy at three months, while the
rest carry the child to term. Abortion would have no effect on the rate at which
women become pregnant, so incidence would remain at 8 per 100 woman-years.
But abortions would reduce the average duration of a pregnancy from 9 months
to (0.5)(3) + (0.5)(9) = 6 months. Hence we would expect fewer women—about
4/100—to be in the pregnant state on a random survey date.

Mortality, Incidence, and Case Fatality

The following relations follow directly from the definitions of mortality, incidence,
and case fatality: _

Mortality rate = incidence rate x case fatality

Cumulative mortality 2 cumulative incidence x case fatality

Intuitively, we can think of the risk of dying of a disease as (the risk of getting
the disease) x (the risk of dying of it if you get it). These relations are shown
as approximations because (1) the denominators of mortality and incidence differ
slightly with regard to inclusion of prevalent cases; and (2) some time must pass
between disease onset and death from the disease. The incidence rate when disease-
related deaths occur may differ from the rate in effect when those, cases arose.

For the pedestrian/motor-vehicle collision injury example described in Chap-
ter 3, neither of these caveats would be of serious concern. The United States’
population in 2000 was about 282,100,000, so:

4739 deaths
282,100,000 person-years

Mortality rate ~

- 78,000 cases « 4739 deaths
282,100,000 person-years 78,000 cases

~ (incidence rate) x (case fatality)

APPENDIX 4A

Confidence Limits for a Proportion

Several measures of disease frequency are proportions, including prevalence, cu-
mulative incidence, and proportional mortality. Let ¢ be the number of cases in
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the numerator and n the number of persons in the denommator If c> 10 and
n — ¢ > 10, the normal approximation to the binomial dlstnbutlon gives reason—
ably accurate confidence limits (Anmtage and Berry, 1994 p 122) based on the
estimated standard error (s.e.) of p:

s...e.(ﬁ) = p(—ni) _

Confidence limits for p = p + Za ?< s.e.( p)

where Z, is the standard normal dev1ate for the desired conﬁdence level Za =196
for two-sided 95% confidence limits. . S

Ifc < 10 or n — ¢ <10, confidence limits for p are more accurate if based
directly on the binomial distribution and can be obtained by-any of the following
methods: : ' ‘ ) ’

1. Using standard statistical software that calculates exact binomial C(')uﬁ-
dence limits.

2. Calculating and sumrrung tail probablhtles for the bmom1a1 d1str1but10u,
according to the algorithm described in Rosner, 1995, pp- 176-7.

3. Consulting published statistical tables or figures, as inRosper, 1995 or
Ciba-Geigy, 1982.

4. Using tables of the F-distribution as follows (Amntage and Ben'y, 1994
p- 121):
* Set A = Fosz20-ct1),2c1
¢ Set B = 1/Fap212(c41),260-0)]

* Calculate Piower = gmerDxA

e+l

 Calculate pypper = prs s vy

Confidence limits for proportions estimated from,compleu' probability sam-
ples, such as those used in several national health surveys, require special statistical
methods beyond the scope of this text—see Levy and Lemeshow 1991 Korn and
Graubard, 1991, 1999. . .

APPENDIX 4B

Poisson-Based Confldence Limits for Incidence Rate Eshmutes Based
on 100 or Fewer Cases -

Table 4-3 provides multipliers that can be used to estimate confidence limits for an
incidence rate, based on the Poissor dlsmbutlon Select the row that corresponds



Table 4--3. Rate Multipliers to Obtain 95% Poisson Confidence Limits for an Incidence
Rate That Is-Based on 100 or Fewer Cases

Multipliers Multipliers Multipliers
COUNT LOWER UPPER COUNT LOWER UPPER COUNT LOWER  UPPER
1 0.025 5572 35 0.697  1.391 68 0.777  1.268
2 0.121  3.611 36 0.701 1.384 69 0778  1.266
3 0206 2922 37 0704  1.378 70 0.780  1.263
4 0273 2.560 38 0.708 1.373 71 0.781 1.261
5 0325 2333 39 0.711 1.367 72 0.782  1.259
6 0.367 2176 40 0715 1362 73 0.784  1.257
7 0402  2.060 41 0718 1357 74 0.785  1.255
8 0432 1970 42 0.721 1.352 75 0787  1.254
9 0457 1898 . 43 0.724 1347 76 0.788  1.252
10 0480  1.839 44 0727 1342 77 0.789  1.250
11 0499~ 1.789 45 0730  1.338 78 0.790  1.248
12 0517 1747 © 46 0732  1.334 79 0792 1246
13 0.533 1.710 47 0735  1.330 80 0.793.  1.245
14 0.547  1.678 48 0737 1326 81 0.794  1.243
15 0.560  1.649 49 0740  1.322 82 0.795 1.241
16 0572 1.624 50 0742 1.318 83 0.796  1.240
17 0.583  1.601 51 0745 1315 84 0.798 1.238
18 0.593  1.580 52 0747 1311 85 0.799  1.237
19 0.602 1.562 53 0.749  1.308 86 0.800 1235
20 0.611 1.544 54 0.751 1.305 87 0.801  1.233
21 0.619 1529 55 0.753 1.302 88 0802 1.232
22 0.627 1514 56 0.755  1.299 89 0.803  1.231
23 0634  1.500 57 0757  1.296 90 0.804 1229
A4 0.641 1.488 58 0.759 . 1293 91 0.805 1.228
25 0.647 1476 59 0761 1290 92 0.806  1.226
26 0.653 1465 60 0.763 1.287 93 0.807 1225
27 0.659 1455 61 0.765 1.285 94 0.808  1.224
28 0.665 1.445 62 0767 1.282 95 0.809 1222
29 0.670 1436 63 0.768 1.279 96 0.810 1221 -
30 0.675  1.428 64 0770  1.277 97 0.811 1.220
31 0.680 1419 65 0772 1275 98 0812 1219
32 0.684 1412 66 0773 1272 99 0.813  1.217
33 0.689 1.404 67 0.775 1.270 100 0814 1216
34 0.693  1.397 ‘
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to the number of cases counted in the numerator of the rate. Then multiply the
observed rate by the “lower” multiplier to get the lower 95% confidence hrmt, then
by the “upper” multiplier to get the upper 95% confidence limit. Using Poisson-
based confidence limits assumes constant hazard in the base of expencnce from
which the cases arose. : :

Confidence limits for incidence rate estimates derived from mu]ti-stage sam-
ples, such as those used in several national health surveys, reqmre special statxsnca]
methods (Levy and Lemeshow, 1991; Korn and Graubard, 1999).

EXERCISES

1. Table 44 shows some fictitious data describing the 'fr:eqﬁency of hepatitis
among high school students in a particular school district. Which of the follow-
ing explanations could be compatible with the time trénds seen in these data?
(There may be more than one.) e
(@) More aggressive treatment, resulting in earlier and more frequent cures.
(b) Adoption of a new treatment that, though it diminishes the severity of
hepatitis symptoms, suppresses the immune response and thereby prolongs
the clinical course of the disease.

(c) Success of efforts to prevent new cases of hepatitis,

(d) A shift toward the occurrence of more aggressive disease, leadmg to earher
and more frequent deaths among afflicted students. :

Table 4-4. Hypothetical Data Showing Incidence and Prevalence
of Hepatitis by Year in a Certain School District

YEAR INCIDENCE® PREVALENCE?
1985 24.5 : 41.8
1986 249 S 412
1987 23.8 : 409
1988 24.6 40.1
1989 24.1 38.4
1990 24.7 : 379
1991 24.2 353
1992 239 33.2
1993 25.1 298
1994 ) 24.5 . 272

4Cases per 100,000 person-years
&Cases per 100,000 persons
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Table 4-5. Prevalence of Low Birth Weight, by Town
and Mother’s Race

% of Babies Weighing

<2500 Grams at Birth
RACE TOWN 1 TOWN 2
Black 12% 18%
White 6% 9%
All babies . 8% 15%

2. In the early years of the AIDS epidemic, it was generally accepted that AIDS
was almost always fatal. According to the Centers for Disease Control, the
incidence of AIDS in the U.S. in 1990 was 17.2 cases per 100,000 person-
years, yet the mortality rate in that year was only 12.4 deaths per 100,000
person-years. Can you reconcile these apparently conflicting data?

3. The local health department where you work has received funding to set up
one new prenatal clinic in some needy area of the county. You and your col-
leagues decide that the birth prevalence of low birth weight will be used as the
primary indicator of need. You are helping the department decide whether to
put the clinic in Allenville or Bakertown. Allenville is predominantly African
American, while Bakertown is predominantly white, and neither community
contains any significant number of residents of other races. At your request, a
data technician has compiled some statistics from birth certificate data for babies
born in each town over the last two years. Unfortunately, in his haste, he forgot
to write down which town was which. He shows you the results in Table 4-5.

He apologizes and is about to set off to re-do his analysis and identify
the towns. Instead, you ponder the data carefully, then thank him for giving
you all the information you need to determine that the needier community is
Allenville. How did you reach that conclusion?

4. You are a hospital epidemiologist working with intensive-care specialists to
evaluate a new type of indwelling urinary catheter. The clinical team needs to
know how the cumulative incidence of urinary tract infection (UTI) increases
in relation to how long the catheter has been in place.

During the month of September, 10 patients received the new catheter.
Daily wrine cultures were done on all patients. All patients were monitored
until they developed a UTT, no longer needed an indwelling urinary catheter,
were discharged from the intensive-care unit, or died, whichever came first.
Their experience is summarized in Table 4-6. Based on these early data, what
is your best estimate of the one-week cumulative incidence of UTI among
patients who receive the new catheter?
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Table 4-6. Use of New Urmary Ca'the_t,er,.Amdng Ten Patients on an Infenisive Care Unit -

CATHETER " LAST URINE . -
PATIENT NO. INSERTED ON ~ CULTURE.ON REASON FOR ENDING FOLLOW-UP
1 91 "9/g. Discharged :
2 9/2 9/5 . Developed UTI  ~
3 93 9/9 - Died .
4 9/5 ‘ 9/8 - Discharged
5 9/5 9/7.. Developed UTI
6 9/8 . 9/13° Catheter no longer needed
7 9/9 9Ny Developed-UTI
8 911 - 919 Died
9 9/13 . : 9/18 Catheter no longer needed
10 9/14 T 920 - Developed UTI
ANSWERS

1. Inspection of the data shows that the prevalence of. hepatms was dechmng,

while its incidence was stable. The approxmlate relation P =~ ID - d tells us-
that the decline in prevalence could bé accounted for by a decline in disease-
duration, however. Explanations (a } and (d) are compatible with this assertion,”
Explanation (b) is not, since it implies an increase in.duration of dlsease not a
decrease. Explanation (c) suggests that mc1derlce should have been droppmg,
which it was not. -

. In order for the approxrrnate relation (mortality) ~ (1nc1dence) x (case fatahty)

to hold true numerically, incidence and case- fatalrty rates must be stable over
a period of time so that a steady-state situation can. develop This reqmrement
is clearly not met for AIDS: in 1990, its incidence was still rising sharply»
Moreover, although AIDS was usually fatal at that time, death did not ocenr
immediately after diagnosis but occurred months or years later. Deaths oceur-
ring in 1990 might thus have consisted primarily of patients dlagnosed in, say,
1988. The rise in incidence over that period tells us that there were fewer new.
AIDS patients in 1988 than in 1990.

. You knew that the overall raté (here, the overall prevalence of welghmg under’

2500 grams at birth) in a population is always a weighted average, of subgroup-"
specific rates within that population, and that the weights are the proportion-of
the population in each subgroup. Because most of Allenville’s pregnant mothers
were African American, the prevalence for “All bables” in Allenv111e must he‘
closer to the prevalence for African American mothers than to the prevalence
for white mothers For Town no. 1, the: 0vera11 prevalence of 8% is closer 1o the
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Figure 4-6. Catheter Use by Day of Month in Patients on an Intensive Care Unit.

be Allenville; it must be Bakertown. For Town no. 2, the overall prevalence of
15% is closer to the 18% prevalence for African Americans than to the 9%
prevalence in whites, which makes sense if it is, in fact, Allenville.

Having identified which town is which, it is easy to decide which is needier.
The race-specific and overall prevalences of low birth weight are all higher in
Allenville, so it gets the clinic.

4. Four cases of UTI occurred among 10 patients. But most patients were under
observation for less than a full week. Discharge, death, and discontinuation of
the catheter were all forms of censoring. This is a job for the Kaplan-Meier
method. Diagrammatically, the experience of these 10 patients was as shown
in Figure 4-6.

The day of the month on which each patient entered and left the study
are mot really relevant, however. Instead, we are interested in the cumulative
incidence of UT in relation to time since catheter insertion. We can change the
time scale by aligning the leftmost end of each patient’s line along the vertical
axis in a new plot. Arithmetically, this is done by just calculating how many
days transpired between catheter insertion and the last urine culture for each
patient and letting this be the length of that patient’s line in the new figure,
shown in Figure 4-7,

From these data, we can estimate the proportion “surviving” (not having
developed a UTI) on each day since catheter insertion, as shown in Table 4—7.
The estimated seven-day cumulative incidence is (1 — .514) = .486. In other
words, our best estimate is that 48,6% of patients with the new catheter develop
a UTI within seven days after its insertion.
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Table 4-7. Proportion of Patients Remaining Free of Unnary Tract Im‘ecuon, by Days

Smce Catheter Insertion
DAYS SINCE NO. STILL UNDER .Nq', OF S R
INSERTION OBSERVATION _CASES . ' . PROPORTION SURVIVING
0 10 0 " 1000
1 10 - 0 1.000
2 10 1 1000x 9/10_ 900‘
3 9 1 900 x 8/9-= 800
4 7 1 800 x 6/7 = .686
5 6 0 686
6 4 1 .686 X 3/4= 514.
B S14
7 2 0 14
1k
'2
3
4
E s
g
s 6
7
"8
9 - — P
10

0 2 4. 6 -8

Figure 4-7. Duration of Catheter Use by Time Slnce Inserhon in Failents on an Intensive
Care Unit.

REFERENCES

1121-37.

Aalen OO. Heterogeneity in- surv1val analys15 Stat Med 1988 7.

Aalen O0. Effects of frailty in survival analysis. Stat Methods Med. Res 1994; 3: 227-—43

Ammitage P, Berry G. Statistical methods in medical research (3rd edition), London
Blackwell, 1994. .

Breslow NE, Day NE. Statistical methods in cancer research. Vol. H—The de51g11 and
analysis.of cohort studies. Lyon, France Internanonal Agency for Research on Cance:'
1987. u :

Checkoway H, Pearce NE, Crawford-Brown DJ. Research methods in occupatlon epl—
demiology. New York: Oxford, 1989. )

Ciba-Geigy. Geigy scientific tables. Vol. 2. Introduction to stansncs Stanstxcaltables Math- -
ematical formulae (8th ed.). Basel, Switzerland: Ciba-Geigy, .1982



92 Epidermiologic Methods: Studying the @courrence of Iiiness

Clayton D. Some approaches to the analysis of recurrent event data. Stat Methods Med Res
1994; 3:244-62.

Cox DR. Regression models and life tables (with discussion). J R Stat Soc B 1972;
34:187-220.

Cumming RG, Kelsey JL, Nevitt MC. Methodologic issues in the study of frequent and
recurrent health problems. Falls in the elderly. Ann Epidemiol 1990; 1:49-56,

Dowd MD, Langley J, Koepsell T, Soderberg R, Rivara FP. Hospitalizations for injury in
New Zealand: prior injury as a risk factor for assaultive injury. Am J Public Health 1996;
86:929-34.

Gardner LI, Landsittel DP, Nelson NA. Risk factors for back injury in 31,076 retail mer-
chandise store workers. Am J Epidemiol 1999; 150:825-33.

Glynn RJ, Buring JE. Ways of measuring rates of recurrent events. BMJ 1996; 312:364—67.

Glynn RJ, Stukel TA, Sharp SM, Bubolz TA, Freeman JL, Fisher ES. Estimating the variance
of standardized rates of recurrent events, with application to hospitalizations among the
elderly in New England. Am J Epidemiol 1993; 137:776-86. N

Hosmer DW Jr, Lemeshow S. Applied survival analysis: regression modeling of time to
event data. New York: Wiley and Sons, 1999.

Johnston BD, Grossman DC, Connell FA, Koepsell TD. High-risk periods for childhood
injury among siblings. Pediatrics 2000; 105:562-68.

Kalbfleisch JD, Prentice RL. The statistical analysis of failure time data. New York: Wiley
and Sons, 1980.

Kaplan EL, Mejer P. Nonparametric estimation from incomplete observations. J Am Stat
Assoc 1958; 53:457-81.

Kleinbaum DG. Survival analysis: a self-learning text. New York: Springer, 1996.

Korn EL, Graubard BI. Epidemiologic studies utilizing surveys: accounting for the sampling
design. Am J Public Health 1991; 81:1166-73.

Korn EL, Graubard BI. Analysis of health surveys. New York: Wiley, 1999.

Levy PS, Lemeshow S. Sampling of populations: methods and applications. New York:
Wiley and Sons, 1991.

Lindsay R, Stlverman SL, Cooper C, Hanley DA, Barton I, Broy SB, et al. Risk of new
vertebral fracture in the year following a fracture. JAMA 2001; 285:320-23.

Mendenhall W, Scheaffer RL, Wackerly DD. Mathematical statistics with applications
(31d edition). Boston: Duxbury Press, 1986.

Morris JN, Heady JA, Raffle PAB, Roberts CG, Parks JW. Coronary heart-disease and
physical activity of work. Lancet 1953; 2:1053-57. .

Morrison AS. Screening in chronic disease (2nd edition). New York: Oxford, 1992.

Nevitt MP, Ballard DJ, Hallett JW Jr. Prognosis of abdominal aortic aneurysms: a
population-based study. N Engl J Med 1989; 321:1009-14.

Rosner B. Fundamentals of biostatistics (4th edition). New York: Duxbury Press, 1995.

Stukel TA, Glynn RJ, Fisher ES, Sharp SM, Lu-Yao G, Wennberg JE. Standardized rates
of recurrent outcomes. Stat Med 1994; 13:1781-91.

Sturmer T, Glynn RJ, Kliebsch U, Brenner H. Analytic strategies for recurrent events in
epidemiologic studies: background and application to hospitalization risk in the elderly.
J Clin Epidemiol 2000; 53:57-64.

Wang HX, Fratiglioni L, Frisoni GB, Viitanen M, Winblad B. Smoking and the occurrence
of Alzheimer’s disease: cross-sectional and longitudinal data ina populauon-based study.
Am J Epidemiol 1999; 149:640-44.

OVERVIEW OF STUDY DESIGNS

We're all of us guinea pigs in the laboratory of God. _ : N
o s ’ - Tennessee Williams:

An epidemiologic study generally begins w1th aquestion. Once the research ques-
tion has been specified, the next step in trymg to answer it is to-choose a.- study
design. : :
A study design is a plan for selectmg study subjects and for obtmmng data
about them. Study subjects in epidemiology are typlcally individual people, but at
times they can be other kinds of observation units, such.as social groups, places,
time periods, or even published articles. Information on study subjects can come
from pre-existing sources or can be gathered anew by various methods; mcludmg
direct observation, interviews, examinatioris, or physiological measurements.

In principle, the number of possible study designs is infinite. Buf in praet_xce,
a few standard designs account for most epidemiologic researctl.' Collectively,
these standard designs offer enough flexibility to address a wide range of research
questions. Knowledge of their pros and cons can usually guide the investigator to-
a study design that is well matched to a parﬂcular research question. This chapter
seeks to provide a broad overview by introducing several standard designs and the
terms that are commonly used to describe them and dlstmgmsh them from each
other. Later chapters cover specific designs i m inore depth .

DESIGN TREE

Just as there are many possible study designs, there are many possible ways to

classify them, depending on which features are highlighted. Figure 5-1 is a'tree - -

diagram that organizes designs according to unportant d1$t1ngulshmg features
Major branches of this tree iriclude: :

¢ Descriptive studies ate undertaken without a specific hypothesis. They
are often among the earliest studies done on a new disease, m‘order to
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