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CHAPTER 6

Assessment of Model Adequacy

6.1 INTRODUCTION

Model-based inferences depend completely on the fitted statistical
model. For these inferences to be “valid” in any sense of the word, the
fitted model must provide an adequate summary of the data upon which
it is based. A complete and thorough examination of a model’s fit and
adherence to model assumptions is just as important as careful model
development.

The goal of statistical model development is to obtain the model
which best describes the “middle” of the data. The specific definition
of “middle” depends on the particular type of statistical model, but the
idea is basically the same for all statistical models. In the normal errors
linear regression model setting, we can describe the relationship between
the observed outcome variable and one of the covariates with a scatter-
plot. This plot of points for two or more covariates is often described as
the “cloud” of data. In model development we find the regression line,
plane or hyperplane that best fits/splits the cloud. The notion of “best”
in this setting means that we have equal distances from observed points
to fitted points above and below the surface. A “generic” main effects
model with some nominal covariates, which treats continuous covariates
as linear, may not have enough tilts, bends or turns to fit/split the cloud.
Each step in the model development process is designed to tailor the
regression surface to the observed cloud of data.

In most, if not all, applied settings the results of the fitted model will
be summarized for publication using point and interval estimates of
clinically interpretable measures. Examples of summary measures in-
clude the mean difference in linear regression, the odds ratio in logistic
regression and the hazard ratio for the proportional hazards regression
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model. Since any summary measure is only as good as the model it is
based on, it is vital that onc evaluate how well the fitted regression sur-
face describes the data cloud. This process is generally referred to as
assessing the adequacy of the model; like model development, it in-
volves a number of steps. Performing these in a thorough and consci-
entious manner will assure that the inferential conclusions based on the
fitted model are the best and most valid possible.

The methods for assessment of a fitted proportional hazards model
are essentially the same as for other regression models, and we assume
some experience with these, particularly with logistic regression [see
Hosmer and Lemeshow (1989, Chapter 5)]. Requirements for model
assessment are: (1) methods for testing the assumption of proportional
hazards, (2) subject-specific diagnostic statistics that extend the notions
of leverage and influence to the proportional hazards model and (3)
overall summary measures of goodness-of-fit.

6.2 RESIDUALS

Central to the evaluation of model adequacy in any setting is an appro-
priate definition of a residual. As we discussed in Chapter 1, the fact
that the outcome variable is time to some event and the observed values
may be incomplete or censored is what sets a regression analysis of sur-
vival time apart from other regression models. In earlier chapters we
suggested that the semiparametric proportional hazards model is a use-
ful model for data of this type and we described why and how it may be
fit using the partial likelihood. This combination of data, model and
likelihood make definition of a residual much more difficult in model-
ing survival time than is the case with other statistical models.

Consider a logistic regression analysis of a binary outcome variable.
In this setting, values of the outcome variable are “present” (y=1) or
“absent” (y=0) for all subjects. The fitted model provides estimates
of the probability that the outcome is present (i.e., the mean of Y).
Thus, a natural definition of the residual is the difference between the
observed valle of the outcome variable and that predicted by the model.
This form of the residual also follows as a natural consequence of char-
acterizing the observed value of the outcome as the sum of a systematic
component and an error component. The two key assumptions in this
definition of a residual are: (1) the value of the outcome is known and
(2) the fitted model provides an estimate of the “mean of the dependent
variable” or systematic component of the model. Since assumption 2


James Hanley
Applied Survival Analysis

Hosmer & lemeshow

1999


198 ‘ ASSESSMENT OF MODEI ADEQUACY

and, more than likely, assumption 1 are not true when using the partial
likelihood to fit the proportional hazards model to censored survival
data, there is no obvious analog to the usual “observed minus pre-
dicted” residual used with other regression models.

The absence of an obvious residual has lead to the development of
several different residuals, each of which plays an important role in ex-
amining some aspect of the fit of the proportional hazards model. Most
software packages provide access to at least one of these residuals. Only
two packages, SAS and S-PLUS, have full residual analysis capabilities
at this time. This situation is likely to change as other packages update
and modify their proportional hazards routines.

We assume, for the time being, that there are p covariates and that
the n independent observations of time, covariates and censoring indi-
cator are denoted by the triplet (z,X,,¢;), i=12,...,n, where ¢, =1 for
uncensored observations and is zero otherwise. Schoenfeld (1982) pro-
posed the first set of residuals for use with a fitted proportional hazards
model and packages providing them refer to them as the “Schoenfeld
residuals.” These are based on the individual contributions to the de-
rivative of the log partial likelihood. This derivative for the kth covari-
ate is shown in (3.21) and is repeated here as
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The estimator of the Schoenfeld residual for the ith subject on the kth
covariate is obtained from (6.1) by substituting the partial likelihood

estimator of the coefficient, B, and is

Ty = C,-(x,.k —fcw‘vk), (6.3)
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where
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is the estimator of the risk set conditional mean of the covariate. Since
the partial likelihood estimator of the coefficient, ﬁ, is the solution to
the equations obtained by setting (6.1) equal to zero, the sum of the
Schoenfeld residuals is zero. Software packages set the value of the es-
timate of the Schoenfeld residual to missing for subjects whose observed
survival time is censored.

Grambsch and Therneau (1994) suggest that scaling the Schoenfeld
residuals by an estimator of its variance yields a residual with greater
diagnostic power than the unscaled residuals. Let the vector of p
Schoenfeld residuals for the ith subject be denoted as

-

£/ =(Fanfianee s Bp)

where 7, is the estimator in (6.3), with the convention that 7, = missing

if ¢; =0. Let the estimator of the p X p covariance matrix of the vector

of residuals for the ith subject, as reported in Grambsch and Therneau
A . o

(1994), be denoted by Var(K;), and the estimator is missing if ¢, =0.

The vector of scaled Schoenfeld residuals is the product of the inverse
of the covariance matrix times the vector of residuals, namely

i =[Var®)] s . (6.4)

. . . o ~ .
The elements in the covariance matrix Var(ri) are, in the current set-

ting, a weighted version of the usual sum-of-squares matrix computed
using the dath in the risk set. For the ith subject, the diagonal elements
in this matrix are

1>
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and the off-diagonal elements are
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Grambsch and Therneau (1994) suggest use of an easily computed ap-
proximation for the scaled Schoenfeld residuals. This suggestion is
based on their experience that the matrix, V'a\lr(f,.), tends to be fairly
constant over time. If this matrix is constant, its inverse may be ap-
proximated by multiplying the estimator of the covariance matrix of the
estimated coefficients by the number of events (i.e., the observed num-
ber of uncensored survival times m),

[V/z;r (f‘,)]_1 =mVar (ﬁ) .

The approximate scaled Schoenfeld residuals are the ones computed by
software packages, namely

i = mvﬁr(ﬁ)f,,. (6.5)

Subsequent references to the scaled Schoenfeld residuals, f':, will mean
the approximation in (6.5), not the true scaled residual in (6.4).

The counting process approach is an extremely useful and powerful
tool for studying the proportional hazards model. Most descriptions of
it, however, including those in statistical software manuals, are difficult
to understand without knowledge of calculus. In this section and those
that follow we try to present the counting process results in an intuitive
and easily understood manner. An expanded introduction to the
counting process approach is presented in Appendix 2. A complete
development of the theory as well as applications to other settings may
be found in Fleming and Harrington (1991) and Andersen, Borgan, Gill
and Keiding (1993).

Assume that we follow a single subject with covariates denoted by x
from time “zero” and that the event of interest is death. We could use
as the outcome any other event that can occur only once or the first oc-
currence of an event such as drug use. The counting process represen-
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tation of the proportional hazards model is a linear-like model that
“counts” whether the event occurs (e.g., the subject dies) at time ¢. The
basic model is

N(1) = A(t,x,B)+ M(1) , (6.6)

where the function N(r) is the “count” that represents the observed
part of the model, the function A(t,x,B) is the “systematic component”
of the model, and the function M(t) is the “error component.”

The function N(r) is defined to be equal to zero until the exact time
the event occurs and is equal to one thereafter. If the total length of
follow-up is one year, and our subject dies on day 200, then

0 for ¢ < 200,
1 for ¢t 2 200.

O

If the subject does not die during the one year of follow-up, then the

count is always zero, N(r)=0. Hence, the maximum value of the count

function occurs at the end of follow-up of the subject and is equal to the
value of the censoring indicator varijable.

The systematic component of the model is, as we show in Appendix

2, equal to the cumulative hazard at time ¢ under the proportional haz-
ards model,

A(t,x,B)= H(t,x,B),

until follow-up ends on the subject and it is equal to zero thereafter.
Thus, the value of the function for a subject who either dies or is cen-
sored on day 200 is

ePH (1) for 1 < 200,
e*PH,(200)  for £ > 200.

A@xm={

13

where Hy(t) is the cumulative baseline hazard function. It follows that
the maximum value for the systematic component also occurs at the end
of follow-up, regardless of whether the event occurred. The function
M(¢) in (6.6) is, under suitable mathematical assumptions, called a
martingale and plays the role of the error component. It has many of
the same properties that error components in other models have, in par-
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ticular its mean is zero under the correct model. If we rearrange (6.6),
M(t) may be expressed in the form of a “residual” as

M(t) = N(t)— A(t,x.B). 6.7

The quantity in (6.7) is called the martingale residual. In theory it has
a value at each time f, but the most useful choice of time at which to
compute the residual is the end of follow-up, yielding a value for the ith
subject of

M(z,)= N(t,) - H(1,x.B)
=c,— H(t,x.B). (6.8)

since A(t,,x,B) = H(z,,x,B). For ease of notation, let M, = M(t;). The
estimator obtained by substituting the value of the partial likelihood es-
timator of the coefficients, B, is

M =c,— ﬁ(t,.,x,ﬁ). (6.9)

The estimator ﬁ(t,-,x,ﬁ) is defined in (3.41). We used this residual,

(6.9), in Chapter 5 for the graphical methods to assess the scale of a
continuous covariate.

The residual in (6.9) has also been called the Cox—Snell or modified
Cox-Snell residual, see Cox and Snell (1968) and Collett (1994). This
terminology is due to the work of Cox and Snell, who showed that the

values of ﬁ(ti,x, ﬁ) may be thought of as observations from a censored

sample with an exponential distribution and parameter equal to 1.0.
Unfortunately, this distribution theory has not proven to be as useful for
model evaluation as the theory derived from the counting process ap-
proach.

Using the counting process approach, the expressions in (6.7) and
(6.8) are a completely natural way to define a residual. To see why it
also makes sense to consider (6.8) as a residual in the proportional haz-
ards regression model, assume for ease of notation that there are no ties
and that the value of the baseline hazard at time ¢; may be expressed as
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and the expression for the cumulative baseline hazard is

Ho(t)= 3 holt)). 6.11)

1<t

The Breslow estimator of the cumulative baseline hazard is obtained
from (6.11) by substituting the value of the partial likelihood estimator

of the coefficients, §. Under these assumptions, the derivative in (6.1)
may be expressed as

dL z

The expression in (6.12) is similar to the equations obtained for other
models, such as linear and logistic regression, in that it expresses the
partial derivative as a sum of the value of the covariate times an
“observed minus expected” residual.

The p equations obtained by setting (6.1) equal to zero for each
covariate are called the score equations and some authors, for example,
Collett (1994), call the Schoenfeld residual in (6.3) the score residual.
However, an entirely different residual of the same name is the one cur-
rently calculated by software packages. This residual is obtained by
expressing the martingale residual representation shown in (6.12) in a
slightly different form. The score equation for the kth covariate may be
expressed as

aL,(B) <
—L—=)TL,. .
%, 21 " (6.13)
&

The expression for L, is somewhat complex. Readers who are willing
to accept without further elaboration that the estimator of I, is the
score process residual provided by software packages may skip the next
paragraph where we describe L, in more detail.

The score process residual for the ith subject on the kth covariate in
(6.13) may be expressed as
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L= (2 = e ) aMi(t;). (0.14)

j=1

The mean in the expression, X, ,,is the value of (6.2) computed at ¢;.
J

The quantity dMi(tj) is the change in the martingale residual for ith

subject at time #;and is
dMi(tj)=dNi(tj)——Yi(tj)e":ﬂho(tj). (6.15)

The first part of (6.15), dN,.(tj), is the change in the count function for
the ith subject at time ¢;. This will be always equal to zero for censored

subjects. For noncensored subjects, it will be equal to zero except at the
actual observed survival time, when it will be equal to one. That is,
dN,(t;)=1 for noncensored subjects. In the second part of (6.15), the

function Y,.(t j)is called the at risk process and is defined as follows:
Lifr, 2t
() =30l
N Oifr, <1

and hO(tj) is the value of (6.10) evaluated at #;. An expanded compu-

tational formula yields the estimator

L, =c x(xik —XA‘W‘_,‘)— Xy X I:I(t,l,x,ﬁ)+e";ﬁ sz,k o (6.16)

xip

leR;
Let the vector of p score process residuals for the ith subject be denoted
as
L =(Ly Ly L), (6.17)
Before moving on, we provide a brief summary of residuals. The
martingale residual, M,. in (6.9) has the form typically expected of a
residual in that it resembles the difference between an observed outcome

and a predicted outcome. The other three residuals (score process,
Schoenfeld and scaled Schoenfeld) are covariate-specific. Every subject
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has a value of the score process residual for the kth covariate, [, in
(6.16), but the Schoenfeld residual in (6.3) and the scaled Schoenfeld
residual in (6.5) are defined only at the observed survival times. Thus,
there will be m subjects with values for these residuals. Each of these
residuals provides a useful tool for examining one or more aspects of
model adequacy. [Barlow and Prentice (1988) consider variations in
the martingale residual obtained by including other functions of time in
(6.8). As of this time, none of their generalized residuals have been
added to software packages.]

We now consider methods for verifying the proportional hazards
assumption.

6.3 METHODS FOR ASSESSING THE PROPORTIONAL
HAZARDS ASSUMPTION

The proportional hazards assumption is vital to the interpretation and
use of a fitted proportional hazards model, as discussed in detail in
Chapter 4. Specifically, the proportional hazards model has a log-haz-
ard function of the form

In[A(t,x,B)] = In[hy(1)] + x'B. (6.18)

This function has two parts, the log of the baseline hazard function,
ln[ho(t)], and the linear predictor, x’B. Methods for building the linear
predictor part of the model are discussed in detail in Chapter 5. The
proportional hazards assumption characterizes the model as a function
of time, not of the covariates per se. Assume for the moment that the
model contains a single dichotomous covariate. A graph of the log-
hazard, (6.18), over time would produce two curves, one for x=0,
Inf#(#)], and one for x =1, In[hy(1)]+B. Regardless of how simple or
complicated the baseline hazard function is, the vertical distance be-
tween these two curves at any point in time is 8. This fact is the reason
that the hazard ratio, exp(ﬁ), has such a simple and useful interpreta-
tion.

As a second example, suppose age is the only covariate in the model
and that it is scaled linearly. Consider the graphs of the log-hazard
function for age a and age a+10. If the coefficient, B3, is positive, the
upper to lower vertical distance between the two curves will be 108 at
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every point in time. Assessing the proportional hazards assumption is
an examination of the extent to which the two curves are cquidistant
over time.

There are, effectively, an infinite number of ways the model in
(6.18) can be changed to yield non-proportional hazard functions or
log-hazard functions that are not equidistant. As a result, a large num-
ber of tests and procedures have been proposed. However, recent de-
velopmental work by Grambsch and Therneau (1994) and simulation
comparisons by Ng’andu (1997) have shown that one easily performed
test and an associated graph yield a powerful and effective method for
examining this critical assumption.

Grambsch and Themneau (1994) consider an alternative to the
model in (6.18), originally proposed by Schoenfeld (1982), that has the
following specific form of time-varying coefficient:

Bi(t)=B; +7,8,(t), (6.19)

where gj(t) is a specified function of time. The rationale behind this

model is that the effect of a covariate may change over the period of
follow-up. For example, the baseline value of a specific test may lose its
relevance over time. The opposite could also occur, where a baseline
measure is more predictive of survival later in follow-up. Under this
model, Grambsch and Therneau show that the scaled Schoenfeld residu-
als in (6.4), and their approximation in (6.5), have, for the jth covariate,
a mean at time ¢ of approximately

E[r; (1)) = 7,8;(0). (6.20)

The result in (6.20) suggests that a plot of the scaled Schoenfelq residq-
als over time may be used to visually assess whether the coefficient y; is

equal to zero and, if not, what the nature of the time dependence, gj(t),

may be. Grambsch and Therneau derive a generalized least squares es-
timator of the coefficients and a score test of the hypothesis that they
are equal to zero, given specific choices for the functions gj(t). In ad-
dition, they show that specific choices for the function yield previously
proposed tests. For example, use of g(z)=In(r) yields a model first
suggested by Cox (1972) and a test by Gill and Schumacher (1987_)
discussed by Chappell (1992). With this function, the model in (6.19) is
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Bi()=B; +7,In(s),

and the linear predictor portion of the model in (6.19) is
Bjx; +v,x;In(t). (6.21)

The form of the linear predictor in (6.21) suggests that another way to
test the hypothesis that y; =0 is via the partial likelihood ratio test, score

test or Wald test obtained when the interaction x;In(r) is added to the

proportional hazards model. The advantage of this approach over the
generalized least squares score test proposed by Grambsch and
Therneau is that it may be done using the model fitting software in
many statistical software packages. One should note that when the in-
teraction term, x; In(z), is included in the model the partial likelihood

becomes much more complicated. Since the interaction is a function of
time, its value must be recomputed for each term in the risk set at each
observed survival time. The interaction term is not simply the product
of the covariate and the subject’s observed value of time.

Other functions of time have been suggested. Quantin, et al. (1996)
propose using g(t):ln[Ho(t)]. Based on simulations reported in their

paper, this test appears to have good power, but it is not as easy to com-
pute as the test based on g(r)=In(r). This is because the Breslow esti-
mator of H,(r) must be computed and must be accessible at each ob-
served survival time. Based on the simulations in Quantin et al. (1996)
and Ng’andu (1997), the test with g(f)=In(r) has power nearly as high
as or higher than all other commonly used tests to detect reasonable al-
ternatives to proportional hazards. For this reason, we consider only the
model in (6.21). These same simulations show that the performance of
the partial likelihood score test and the Grambsch and Therneau gener-
alized least squares score test are essentially the same. Thus, we will use
the more easily computed model-based forms of the test.

Before evaluating the fitted models from the UIS developed in
Chapter 5 for proportional hazards, we consider the methods in some
simpler models. In the case of models containing nominal scale covari-
ates, a purely graphical bivariate assessment may be obtained from the
plots of the “log-negative-log™” of the within-group Kaplan-Meier es-
timator of the survivorship functions versus log-time. If the hazard
functions are proportional, this plot should have parallel lines and the
vertical distance between each line and that of the reference group
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should be approximately equal to the coefficients from the I‘i} of the
proportional hazards model. One disadvantage of this graphical ap-
proach is that it is a univariate method that may b? used only fnr nomi-
nal scale covariates or grouped continuous covariates. .In Zl(j{dl(.l(?ﬂ it is
difficult to visually assess whether the plotted lines deviate significantly
from being parallel, particularly when sample sizes are.small. o

As an example of a multivariable model, we cqnsnder a situation 1n
which the model contains one dichotomous covarlatcf denotgd d, and
one continuous covariate, denoted x. This data setting 1svused in several
examples. In each example, two models were fit: the.mam thfects model
containing d and x and a second model obtained by including the 1n.ter-
actions of each covariate with time, dIn(r) and xIn(z). For numerical
reasons it is preferable to center log-time about its mean .ar.ld gse
[1n(t)—ﬁ1(t)] in the interaction. As noted above, n.loc‘lels containing in-
teractions with log-time are easily fit in many statistical software pack-
ages. . .

The data for the first example illustrate a model in which the hazard
is proportional in both covariates. The rf,sults of_ fitting the main effects
model and the model with interactions with log-time are shown in Table
6.1. The main effects model in Table 6.1 shows tt'xaF both covarlfitcs are
highly significant. The p-values for the Wa}d statistics for both interac-
tion coefficients are not significant, suggesting that the hazard f.uncgon
may be proportional in the two covariates. The v.alue of 'the pargal llk(?-
lihood ratio test for the addition of the two interaction vanablgs is
G =0.134 and, with 2 degrees-of-freedom, the p—valug is 0.94. Thl.s 18
confirmed by the graphs in Figure 6.1. The scaled residuals scatter in a

i i Errors
Table 6.1 Estimated Coefficients, Standard ,
z-Scores, Two-Tailed p-Values and 95% Confidence )
Intervals for Models with a Proportional Hazal:d Function
in Both Covariates (n = 100 with 30% Censoring)

Variable Coeff. Std. Err. Z P>lzl 95% CIE
d 0.579  0.249 2.33 0.020 0.092, 1.066
X 0.180 _ 0.032 5.66  <0.001 0.118, 0.243
d 0.573  0.253 2.27 0.023  0.078, 1.068
X 0.186  0.035 526 <0.001 0.116, 0.255
dxin(#) -0.002 0.163 0.01 0.988 -0.322, 0.317
xXIn(r) 0.007 _ 0.020 0.36 0.716 -0.032, 0.047
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"\ nonsystematic way about the zero line, and the polygon connecting the

\Qalues of the smoothed residuals has approximately a zero slope and
ctosses the zero line several times. The initial upward trend in the
smoothed residuals for the dichotomous covariate in Figure 6.1a is due
tola few large negative residuals among the shortest survival times. One
should also note that there are two bands of residuals for the dichoto-
mous covariate. The upper band corresponds to subjects with d =1 and
the bottom one to those with d =0. There are 70 points in the graph, as
this is the observed number of survival times.

In a second example, the model is nonproportional in the continu-
ous covariate. Table 6.2 presents the results of fitting the two models.
The main effects model in Table 6.2 shows that both covariates are
highly significant. The model with the interactions with log-time shows
that the model may be non-proportional in the continuous covariate, as
p = 0.024 for the Wald test for the x x In(¢) coefficient. The value of the

partial likelihood ratio test for the addition of the two interaction vari-
ables is G =15.424 and, with 2 degrees-of-freedom, the p-value is 0.066.
The interactions model shows some numeric instability, as the estimated
standard error for the 4 x In(z) term is quite large. Based on this, two
models (each containing only one of the log-time interactions) were fit,
and the results supported the observation of non-proportionality in x
but not d.  Graphs of the scaled Schoenfeld residuals are shown in Fig-
ure 6.2.

Under the time-varying coefficient model in (6.21), if the covariate
has a proportional hazard, the plot of the scaled Schoenfeld residuals
and its smooth should show no trend over time. This is observed in
Figure 6.2a, where it can be seen that the smoothed residuals have es-
sentially a slope of zero. The apparent initial positive slope is due to
one or two large negative residuals. On the other hand, the polygon
based on the smoothed scaled residuals for the continuous covariate,
shown in Figure 6.2b, displays a consistent positive slope, suggesting
that the importance of the covariate increases over time and thus has a
nonproportional hazard.

As a third example, data were created such that the hazard function
was nonproportional for the dichotomous covariate and was propor-
tional in the continuous covariate. Table 6.3 presents the results of fit-
ting the main effects and log-time interactions models. Graphs of the
scaled Schoenfeld residuals are presented in Figure 6.3.

The results in Table 6.3 show evidence of nonproportional hazards
in the dichotomous covariate, as p = 0.001 for the Wald test of the coef-





