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Introduction

Abbreviated
Outline

We begin by discussing some computer results using the Cox PH model,
without actually specifying the model; the purpose here is to show the sim-
ilarity between the Cox model and standard linear regression or logistic
regression.

We then introduce the Cox model and describe why it is so popular. In add:-
tion, we describe its basic properties, including the meaning of the propor-
tional hazards assumption.

The outline below gives the user a preview of the material to be covered by
the presentation. A detailed outline for review purposes follows the presen-
tation.

1. A computer example using the Cox PH model (pages 86-94)
II. The formula for the Cox PH model (pages 94-96)
[11. Why the Cox PH model is popular (pages 96-98)
IV. ML estimation of the Cox PH model (pages 98-100)
V. Computing the hazard ratio (pages 100-104)

VI. Adjusted survival curves using the Cox PH model
(pages 104-108)

VIL The meaning of the PH assumption (pages 108-11 1)
VIII. Summary (page 112)
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Objectives Upon completing the module, the learner should be able to:

1. State or recognize the general form of the Cox PH model.

2. State the specific form of a Cox PH model appropriate for the analy-
sis, given a survival analysis scenario involving one or more explana-
tory variables.

3. State or recognize the form and properties of the baseline hazard
function in the Cox PH model.

4. Give three reasons for the popularity of the Cox PH model.

5. State the formula for a designated hazard ratio of interest given a
scenario describing a survival analysis using a Cox PH model, when

a. there are confounders but no interaction terms in the model;
b. there are both confounders and interaction terms in the model.
6. State or recognize the meaning of the PH assumption.

7. Determine and explain whether the PH assumption is satisfied when
the graphs of the hazard functions for two groups cross each other
over time.

8. State or recognize what is an adjusted survival curve.
9. Compare and/or interpret two or more adjusted survival curves.
10. Given a computer printout involving one or more fitted Cox PH
models,
a. compute or identify any hazard ratio(s) of interest;
b. carry out and interpret a designated test of hypothesis;
¢. carry out, identify or interpret a confidence interval for a desig-
nated hazard ratio;
d. evaluate interaction and confounding involving one or more
covariates.
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Presentation

This presentation describes the Cox proportional
hazards (PH) model, a popular mathematical model
used for analyzing survival data. Here, we focus on the
model form, why the model is popular, maximum like-
lihood (ML) estimation of the model parameters, the
formula for the hazard ratio, how to obtain adjusted
survival curves, and the meaning of the PH assump-
tion.

. A Computer Example Using
the Cox PH Model

EXAM PLE

We introduce the Cox PH model using computer out-
put from the analysis of remission time data (Freireich
et al., Blood, 1963), which we previously discussed in
Chapters 1 and 2. The data set is listed here at the left.

These data involve two groups of leukemia patients,
with 21 patients in each group. Group 1 is the treat-
ment group, and group 2 is the placebo group. The
data set also contains the variable log WBC, which is a
well-known prognostic indicator of survival for
leukemia patients.

For this example, the basic question of interest con-
cerns comparing the survival experience of the two
groups adjusting for the possible confounding and/or
interaction effects of log WBC.



EXAMPLE (cor)tinued)

Output from Spida
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We are thus considering a problem involving two
explanatory variables as predictors of survival time 7,
where T denotes “weeks until going out of remission.”
We label the explanatory variables X, (for group sta-
tus) and X, (for log WBC). The variable X, is the pri-
mary study or exposure variable of interest. The vari-
able X, is an extraneous variable that we are including
as a possible confounder or effect modifier.

Note that if we want to evaluate the possible interac-
tion effect of log WBC on group status, we would also
need to consider a third variable, that is, the product of
X;and X,

For this dataset, the computer results from fitting three
different Cox proportional hazards models are pre-
sented below. The computer package used is SPIDA,
This is one of several packages that have procedures for
carrying out a survival analysis using the Cox model.
The information printed out by different packages will
not have exactly the same format, but they will provide
similar information. A comparison of output using
SPIDA, SAS, and BMDP procedures on the same dataset
is provided in Appendix A at the back of this text.

Model 1:

Column name Coeff StErr p-value HR 0.95 Cl P(PH)
Rx 1.509 0.410 0 4.523 2.027 10.094 0.794
n:42 9%Cen: 28.571 -2 log L: 172.759

Model 2:

Column name Coeff StErr p-value HR 0.95 CI P(PH)
Rx 1.294 0.422 0.002 3.648 1.505 8.343 0.944
log WBC 1.604 0.329 0.000 4.975 2.609 9.486 0.917
n:42 %Cen: 28.571 -2 log L: 144.559

Model 3:

Column name Coeff StErr p-value HR 0.95 Cl P(PH)
Rx 2.355 1.681 0.161 10.537 0.391 284.200 0.628
log WBC 1.803 0.447 0.000 6.067 2.528 14.561 0.996
Rx X Jog WBC  -0.342 0.520 0.510 0.710 0.256 1.967 0.410
n:42 %Cen: 28.571 -2 log L: 144.131
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OUTPUT FROM SPIDA

EXAMPLE (continued)

We now describe how to use the computer printout to
evaluate the possible effect of treatment status on
remission time adjusted for the potential confounding
and interaction effects of the covariate log WBC. For
now, we focus only on the first five columns of infor-
mation provided in the printout, as presented at the
left for all three models.

For each model, the first column identifies the vari-
ables that have been included in the model. The second
column gives regression coefficients corresponding
to each variable in the model. The third column gives
standard errors of the regression coefficients. The
fourth column gives p-values for testing the signifi-
cance of each coefficient. The fifth column, labeled as
HR, gives hazard ratios for the effect of each variable
adjusted for the other variables in the model.

Except for the HR column, these computer results are
typical of output found in standard linear regression
printouts. As the printout suggests, we can analvze the
results from a Cox model in a manner similar to the
way we would analyze a linear regression model.

We now distinguish among the output for the three
models shown here. All three models are using the
same set of remission time data on 42 subjects. The
outcome variable for each model is the same—time in
weeks until a subject goes out of remission. However,
the independent variables are different for each model.
Model 1 contains only the treatment status variable,
indicating whether a subject is in the treatment or
placebo group. Model 2 contains two variables—treat-
ment status and log WBC. And model 3 contains an
interaction term defined as the product of group status
and log WBC.
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EXAMPLE (continued)
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We now focus on the output for model 3. The method
of estimation used to obtain the coefficients for this
model, as well as the other two models, is maximum
likelihood (ML) estimation. Note that a p-value of
0.510 is obtained for the coefficient of the product
term for the interaction of treatment with log WBC.
This p-value indicates that there is no significant inter-
action effect, so that we can drop the product term
from the model and consider the other two models
instead.

The p-value of 0.510 that we have just described is
obtained by dividing the coefficient —-0.342 of the product
term by its standard error of 0.520, which gives -0.66. and
then assuming that this quantity is approximately a stan-
dard normal or Z variable. This Z statistic is known as a
Wald statistic, which is one of two test statistics typically
used with ML estimates. The other test statistic, called the
likelihood ratio, or LR statistic, makes use of the log like-
lihood value. This is given by -2 log L in the output, which
has the value 144.131 for model 3.

We now look at the printout for model 2, which con-
tains two variables. The treatment status variable /Ry
represents the exposure variable of primarv interest.
The log WBC variable is being considered as a con-
founder. Our goal is to describe the effect of treatment
status adjusted for log WBC.

Notice first that the log likelihood value for model 2 is
given by -2 log L. = 144.559. We can use this value
together with the -2 log L value from model 3 to obtain
the LR statistic for testing the significance of the inter-
action term in model 3.

We compute 144.559 minus 144.131 to obtain 0.428.
This test statistic has a chi-square distribution under
the null hypothesis of no interaction effect. The p-value
for this test is between 0.40 and 0.50, which indicates
no significant interaction. Although the p-values for
the Wald test (0.510) and the LR test are not exactly the
same, both p-values lead to the same conclusion.
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LR#Wald

When in doubt, use the LR test.

OUTPUT

Three statistical objectives

1.
2.
3.

test for significance of effect
point estimate of effect
confidence interval for effect

EXAMPLE (co

In general, the LR and Wald statistics may not give exactly
the same answer. Statisticians have shown that of the two
test procedures, the LR statistic has better statistical prop-
erties, so when in doubt, you should use the LR test.

We now focus on how to assess the effect of treatment
status adjusting for log WBC using the model 2 output,
again shown here.

There are three statistical objectives typically consid-
ered. One is to test for the significance of the treat-
ment status variable, adjusted for log WBC. Another is
to obtain a point estimate of the effect of trcaumen:
status, adjusted for log WBC. And a third is to obtain u
confidence interval for this effect. We can uccom-
plish these three objectives using the output provided,
without having to explicitly describe the formula tor
the Cox model being used.

To test for the significance of the treatment effect, the
p-value provided in the table for the Wald statistic is
0.002, which is highly significant. Alternatively, a like-
lihood ratio (LR) test could be performed comparing
the log likelihood statistic (144.559) for model 2, with
the log likelihood for a model which does not contain
the treatment variable. This latter model, which should
contain only the log WBC variable, is not provided
here, so we will not report on it other than to note that
the LR test is also very significant. Thus, these test
results show that using model 2, the treatment effect is
significant, after adjusting for log WBC.

A point estimate of the effect of the treatment is pro-
vided in the HR column by the value 3.648. This value
gives the estimated hazard ratio (HR) for the effect of
the treatment; in particular, we see that the hazard for
the placebo group is 3.6 times the hazard for the treat-
ment group. Note that the value 3.648 is calculated as
e to the coefficient of the treatment variable; that is, e
to the 1.294 equals 3.648.
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SPIDA: provides CI directly
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To describe the confidence interval for the effect of
treatment status, we consider the output for the
extended table for model 2 given earlier.

From the table, we see that a 95% confidence interval
for the treatment effect is given by the range of values
1.505-8.343. This is a confidence interval for the haz-
ard ratio (HR), which surrounds the point estimate of
3.648 previously described. Notice that this confidence
interval is fairly wide, indicating that the point esti-
mate is somewhat unreliable. As expected from the low
p-value of 0.002, the confidence interval for HR does
not contain the null value of 1.

The calculation of the confidence interval for HR is
carried out as follows:

1. Compute a 95% confidence interval for the
regression coefficient of the Rx variable (f:%1 ). The
large sample formula is 1.294 plus or minus 1.96
times the standard error 0.422, where 1.96 is the
97.5 percentile of the standard normal or Z dis-
tribution.

2. Exponentiate the two limits obtained for the confi-
dence interval for the regression coefficient of Rx.

The SPIDA program output provides the required con-
fidence interval directly, so that the user does not have
to carry out the computations required by the large
sample formula. Other computer packages may not
provide the confidence interval directly, but, rather,
may provide only the regression coefficients and their
standard errors.
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OUTPUT

TPUT: Confidence Intervals

To this point, we have made use of information from
outputs for models 2 and 3, but have not vet consid-
ered the model 1 output, which is shown again here
Note that model 1 contains only the treatment ~tatis
variable, whereas model 2, shown below, contalis oo
WBC in addition to treatment status. Model 1 i ~onie
times called the “crude” model because it ignores the
effect of potential covariates of interest, like log WBC.

Model 1 can be used in comparison with model 2 1o
evaluate the potential confounding etfect of the variable
Jog WBC. In particular, notice that the value in the HR
column for the treatment status variable is 4.523 for
model 1, but only 3.648 for model 2. Thus, the crude
model yields an estimated hazard ratio that is somewhat
higher than the corresponding estimate obtained when
we adjust for log WBC. If we decide that the crude and
adjusted estimates are meaningfully different, we then
say that there is confounding due to log WBC.

Once we decide that confounding Is present, we then
must control for the confounder—in this case, log
WBC-—in order to obtain a valid estimate of the effect.
Thus, we prefer model 2, which controls for log WBC,
to model 1, which does not.

Note that if we had decided that there is no “meaning-
ful” confounding, then we would not need to control
for log WBC to get a valid answer. Nevertheless, we
might wish to control for log WBC anvhow, to obtaina
more precise estimate of the hazard ratio. That is. if
the confidence interval for the HR is narrower when
using model 2 than when using model 1, we would pre-
fer model 2 to model 1 for precision gain.

The confidence intervals for Rx in each model are
shown here at the left. The interval for Rx in model 1
has width equal to 10.094 minus 2.027, or 8.067; for
model 2, the width is 8.343 minus 1.505, or 6.838.
Therefore, model 2 gives a more precise estimate of the
hazard ratio than does model 1.



