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Figure 4.1 Cumulative hazard plot of the Coz-Snell residuals.

distribution of Cox-Snell residuals for n = 3 was shown by Lagakos (1981) to
be quite dissimilar to a unit exponential sample.

On other occasions, a straight line plot may be obtained when the model
fitted is known to be incorrect. Indeed, practical experience suggests that a fit-
ted model has to be seriously wrong before anything other than a straight line
of unit slope is seen in the cumulative hazard plot of the Cox-Snell residuals.

In the particular case of the null model, that is, the model that contains no
explanatory variates, the cumulative hazard plot will be a straight line with
unit slope and zero intercept, even if some explanatory variables should actu-
ally be included in the model. The reason for this is that when no covariates are
included, the Cox-Snell residual for the ith individual reduces to — log So(t;).
From equation (3.26) in Chapter 3, in the absence of ties this is approximately

E§=1 1/n; at the kth uncensored survival time, k = 1,2,...,r — 1, where n;

is the number at risk at time ¢;. This summation is simply Zle 1/(n—j+1),
which is the expected value of the kth order statistic in a sample of size n
from a unit exponential distribution.

In view of the limitations of the Cox-Snell residuals in assessing model
adequacy, diagnostic procedures based on other types of residuals, that are of
practical use, are described in the following section. .

4.2.2 Plots based on the martingale and deviance residuals

The martingale residuals, introduced in Section 4.1.3, can be interpreted as
the difference between the observed and expected number of deaths in the
time interval (0,¢;), for the ith individual. Accordingly, these residuals high-
light individuals who, on the basis of the assumed model, have died too soon

r
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or lived too long. Large negative residuals will correspond to individuals who
have a long survival time, but covariate values that suggest they should have
died earlier. On the other hand, a residual close to unity, the upper limit
of a martingale residual, will be obtained when an individual has an unex-
pectedly short survival time. An index plot of the martingale residuals will
highlight individuals whose survival time is not well fitted by the model. Such
observations may be termed outliers. The data from individuals for whom the
residual is unusually large in absolute value, will need to be the subject of
further scrutiny. Plots of these residuals against the survival time, the rank
order of the survival times, or explanatory variables, may indicate whether
there are particular times, or values of the explanatory variables, where the
model does not fit well.

Since the deviance residuals are more symmetrically distributed than the
martingale residuals, plots based on these residuals tend to be easier to inter-
pret. Consequently, an index plot of the deviance residuals may also be used
to identify individuals whose survival times are out of line.

In a fitted Cox regression model, the hazard of death for the ith individual at
any time depends on the valueslof explanatory variables for that individual,
i, through the function exp([i x;). This means that individuals for whom
B x; has large negativ? values have a lower than average risk of death, and
individuals for WhOIIl/ B x; hasa large positive value have a higher than average
risk. The quantity 3 x; is the risk score, introduced in Section 3.1 of Chapter
3, and provides information about whether an individual might be expected to
survive for a short or long time. By reconciling information about individuals
whose survival times are out of line, with the values of their risk score, useful
information can be obtained about the characteristics of observations that are
not well fitted by the model. In this context, a plot of the deviance residuals
against the risk score is a particulary helpful diagnostic.

Ezample 4.8 Infection in patients on dialysis

Consider again the data on times to infection in kidney patients. From the
values of the martingale and deviance residuals given in Table 4.2, we see that
patient 2 has the largest positive residual, suggesting that the time to removal
of the catheter is shorter for this patient than might have been expected on the
basis of the fitted model. The table also shows that the two types of residual do
not rank the observations in the same order. For example, the second largest
negative martingale residual is found for patient 12, whereas patient 6 has
the second largest negative deviance residual. However, the observations that
have the most extreme values of the martingale and deviance residuals will
tend to be the same, as in this example. Index plots of the martingale and
deviance residuals are shown in Figure 4.2.

. The plots are quite similar, but the distribution of the deviance residuals
1S seen to be more symmetric. The plots also show that there are no patients
that have residuals that are unusually large in absolute value. Figure 4.3 gives
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Figure 4.2 Index plots of the martingale and deviance residuals.

a plot of the deviance residuals against the risk scores, that are found from
the values of 0.030 Age; — 2.711 Sex;, for i = 1,2,...,13.
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Figure 4.3 Plot of the deviance residuals against the values of the risk score.

This figure shows that patients with the largest deviance residuals have low
risk scores. This indicates that these patients are at relatively low risk of an
early catheter removal, and yet their removal time is sooner than expected.
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4.2.8 Checking the functional form of covariates

Although the model-based approach to the analysis of survival data, described
in Chapter 3, identifies a particular set of covariates on which the hagard
function depends, it will be important to check that the correct functional
form has been adopted for these variables. An improvement in the fit of a
model may well be obtained by using some transformation of the values of
a variable instead of the original values. For example, it might the that a
better fitting model is obtained by using a non-linear function of the age
of an individual at baseline, or the logarithm of a biochemical variable such
as serum bilirubin level. Similarly, an explanatory variable such as serum
cholesterol level may only begin to exert an effect on survival when it exceeds
some threshold value, after which time the hazard of death might increase
with increasing values of that variable.

A straightforward means of assessing this aspect of model adequacy is based
on the martingale residuals obtained from fitting the null model, that is, the
model that contains no covariates. These residuals are then plotted against
the values of each covariate in the model. It has been shown by Therneau
et al. (1990) that this plot should display the functional form required for
the covariate. In particular, a straight line plot indicates that a linear term is
needed.

As an extension to this approach, if the functional form of certain covariates
can be assumed to be known, martingale residuals may be calculated from the
fitted Cox regression model that contains these covariates alone. The resulting
martingale residuals are then plotted against the covariates whose functional
form needs to be determined.

The graphs obtained in this way are usually quite “noisy” and their inter-
pretation is much helped by superimposing a smoothed curve that is fitted to
the scatterplot. There are a number of such smoothers that can be obtained,
including smoothing splines, but the one that is most commonly used is the
LOWESS or LOESS smoother, proposed by Cleveland (1979). This algorithm
is implemented in many software packages.

Even with a smoother, it can be difficult to discern a specific functional
form when a non-linear pattern is seen in the plot. If a specific transforma-
tion is suggested, such as the logarithmic transformation, the covariate can
be so transformed, and the martingale residuals for the null model plotted
against the transformed variate. A straight line would then confirm that an
appropriate transformation has been used.

Ezample {.4 Infection in patients on dialysis
In this example, we illustrate the use of martingale residuals in assessing
whether the age effect is linear in the Cox regression model fitted to the data
of Example 4.1. First, the martingale residuals for the null model are obtained
and these are plotted against the corresponding values of the age of a patient
in Figure 4.4.

There is too little data to say much about this graph, but the smoothed
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Figure 4.4 Plot of the martingale residuals for the null model against Age, with q
smoothed curve superimposed.

curve indicates that there is no need for anything other than a linear term in
Age. In fact, the age effect is not actually significant, and so it is not surprising
that the smoothed curve is roughly horizontal.

We end this section with a further illustrative example.

Ezample 4.5 Survival of multiple myeloma patients

In this example we return to the data on the survival times of 48 patients with
multiple myeloma, described in Example 1.3. In Example 3.5, a Cox regression
model that contained the explanatory variables Hb (serum haemoglobin) and
Bun (blood urea nitrogen) was found to be a suitable model for the hazard
function. We now perform an analysis of the residuals in order to study the
adequacy of this fitted model.

First, a cumulative hazard plot of the Cox-Snell residuals is shown in Fig-
ure 4.5. The line made by the plotted points in Figure 4.5 is reasonably
straight, and has a unit slope and zero intercept. On the basis of this plot,
there is no reason to doubt the adequacy of the fitted model. However, as
pointed out in Section 4.2.1, this plot is not at all sensitive to departures from
the fitted model.

To further assess the fit of the model, the deviance residuals are plotted
against the corresponding risk scores in Figure 4.6. This plot shows that pa-
tients 41 and 38 have the largest values of the deviance residuals, but these
are not much separated from values of the residuals for some of the other
patients. Patients with the three largest risk scores have residuals that are
close to zero, suggesting that these observations are well fitted by the model.
Again, there is no reason to doubt the validity of the fitted model,
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Figure 4.5 Log-cumulative hazard plot of the Coz-Snell residuals.
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Figure 4.6 Deviance residuals plotted against the risk score.
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In order to investigate whether the correct functional form for the variates
Hb and Bun has been used, martingale residuals are calculated for the nul
model and plotted against the values of these variables. The resulting plots,
with a smoothed curve superimposed to aid in their interpretation, are shown
in Figures 4.7 and 4.8.

The plots for Hb and Bun confirm that linear terms in each variable are
required in the model. Note that the slope of the plot for Hb in Figure 4.7 is
negative, corresponding to the negative coefficient of Hb in the fitted model,
'~ while the plot for Bun in Figure 4.8 has a positive slope.

In this data set, the values of Bun range from 6 to 172, and the distribution
of their values across the 48 subjects is positively skewed. In order to guard

" against the extreme values of this variate having an undue impact on the co-
& efficient of Bun, logarithms of this variable might be used in the modelling
8 process. Although there is no suggestion of this in Figure 4.8, for illustrative
_E 0+ urposes, we will use this type of plot to investigate whether a model contain-
— purp )
2 * ing log Bun rather than Bun is acceptable. Figure 4.9 shows the martingale
Re) . § . residuals for the null model plotted against the values of log Bun.
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Figure 4.7 Plot of the martingale residuals for the null model against the values of 2 -2
Hb, with a smoothed curve superimposed. £ .
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E 0 Figure 4.9 Plot of the martingale residuals for the null model against the values of
2 log Bun, with a smoothed curve superimposed.
s}
T ] s The smoothed curve in this figure does suggest that it is not appropriate to
2 . use a linear term in log Bun. Indeed, if it were decided to use log Bun in the
e ot model, Figure 4.9 indicates that a quadratic term in log Bun may be needed.
2 . In fact, adding this quadratic term to a model that includes Hb and log Bun
g ~27 leads to a significant reduction in the value of —2log L, but the resulting value
3 . ' of this statistic, 201.458, is then only slightly less than the corresponding value
= y sughtly
for the model containing Hb and Bun, which is 202.938. This analysis confirms
-3 J , : : i . : : . that the model should contain linear terms in the variables Hb and Bun.
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Value of Bun 4.3 Identification of influential observations
Figure 4.8 Plot of the martingale residuals for the null model against the values of In the assessment of model adequacy, it is important to determine whether

Bun, with a smoothed curve superimposed. any particular observation has an undue impact on inferences made on the
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basis of a model fitted to an observed set of survival data. Observations that
do have an effect on model-based inferences are said to be influential.

As an example, consider a survival study in which a new treatment is to
be compared with a standard. In such a comparison, it would be important
to determine if the hazard of death on the new treatment, relative to that on
the standard, was substantially affected by any one individual. In particular,
it might be that when the data record for one individual is removed from the
data base, the relative hazard is increased or reduced by a substantial amount.
If this happens, the data from such an individual would need to be subject to
particular scrutiny.

Conclusions from a survival analysis are often framed in terms of estimates
of quantities such as the relative hazard and median survival time, which de-
pend on the estimated values of the 5-parameters in the fitted Cox regression
model. Tt is therefore of particular interest to examine the influence of each
observation on these estimates. We can do this by examining the extent to
which the estimated parameters in the fitted model are affected by omitting in
turn the data record for each individual in the study. In some circumstances,
the estimates of a subset of the parameters may be of special importance, such
as parameters associated with treatment effects. The study of influence may
then be limited to just these parameters. On many occasions, the influence
that each observation has on the estimated hazard function will be of inter-
est, and it would then be important to identify observations that influence
the complete set of parameter estimates under the model. These two aspects
of influence are discussed in the following sections.

In contrast to models encountered in the analysis of other types of data,
such as the general linear model, the effect of removing one observation from
a set of survival data is not easy to study. This is mainly because the log-
likelihood function for the Cox regression model cannot be expressed as the
sum of a number of terms, in which each term is the contribution to the log-
likelihood made by each observation. Instead, the removal of one observation
affects the risk sets over which quantities of the form exp(8'z) are summed.
This means that influence diagnostics are quite difficult to derive and so the
following sections of this chapter simply give the relevant results. References

to the articles that contain derivations of the quoted formulae are included in
the final section of this chapter.

4.8.1 Influence of observations on a parameter estimate

Suppose that we wish to determine whether any particulars observation has
an untoward effect on ﬁj, the jth parameter estimate, j = 1,2,...,p, in a
fitted Cox regression model. One way of doing this would be to fit the model
to all n observations in the data set, and to then fit the same model to the
sets of n — 1 observations obtained by omitting each of the n observations
in turn. The actual effect that omitting each observation has on the param-
eter estimate could then be determined. This procedure is computationally
expensive, unless the number of observations is not too large, and so we use
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instead an approximation to the amount by which Bj changes when the ith
observation is omitted, for ¢ = 1,2,...,n. Suppose that the value of the jth
parameter estimate on omitting the ith observation is denoted by B<(i). Cain
and Lange (1984) showed that an approximation to [9]- - Bj(i) is baséd on the
score residuals, described in Section 4.1.6.

Let rs; denote the vector of values of the score residuals for the ith obser-
vation, so that r; = (rs1i,7s2,...,Tspi), Where Tsji, 3 = 1,2,...,p, is the
ith score residual given in equation (4.13). An approximation to Bj — Bj(i),

the change in 8; on omitting the ith observation, is then the jth component
of the vector

T'g; var (3)7
var (B) being the variance-covariance matrix of the vector of parameter esti-
mates in the fitted Cox regression model. The jth element of this vector, which
is called a delta-beta, will be denoted by Ai,éj, so that Aiﬁj R Bj - ,@(’1) Use
of this approximation means that the values of Aiﬁj can be computfed from
quantities available after fitting the model to the full data set.

Observations that influence a particular parameter estimate, the jth say,
will be such that the values of A; B;, the delta-betas for these observations are’
larger in absolute value than for other observations in the data set. Index 1;lots
of the delta-betas for each explanatory variable in the model will then reveal
whether there are observations that have an undue impact on the parameter
estimate for any particular explanatory variable. In addition, a plot of the
values of A;3; against the rank order of the survival times yields information
about the relation between survival time and influence.

The fielta-betas may be standardised by dividing A, ﬁj by the standard er-
ror of 3; to give a standardised delta-beta. The standardised delta-beta can be
interpreted as the change in the value of the statistic 3 / se (B), on omitting
the ith observation. Since this statistic can be used in assessing whether a par-
ticular parameter has a value significantly different from zero (see Section 3.4
of Chapter 3), the standardised delta-beta can be used to provide information
on how the significance of the parameter estimate is affected by the removal
of the ith observation from the data base. Again, an index plot is the most
useful way of displaying the standardised delta-betas.

The statistic A;3; is an approximation to the actual change in the pa-
rame'ter estimate when the 4th observation is omitted from the fit. The ap-
pr0>.(1mation is generally adequate in the sense that observations that have
an influence on a parameter estimate will be highlighted. However, the ac-
tu.al effect of omitting any particular observation on model-based inferences
will need to be studied. The agreement between the actual and approximate
delta-betas in a particular situation is illustrated in Example 4.6.

Ezample 4.6 Infection in patients on dialysis

In this example, we return to the data on the times to infection following com-
mencement of dialysis. To investigate the influence that the data from each
of the 13 patients in the study has on the estimated value of the coefficients
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of the variables Age and Seu iu the linear component of the titted Cox regres-
sion model, the approximate unstandardised delta-betas, A, i3 and A3, are
obtained. These are given in Table 4.4.

Table 4.4 Approzimate della-betas
for Age (31), and Sex (B32).

Observation Aifh AifBa

1 0.0020 -0.1977
2 0.0004 0.5433
3 -0.0011 0.0741
4 —0.0119 0.5943
) 0.0049 0.0139
6 —0.0005 —0.1192
7 —0.0095 0.1270
8 —0.0032 —0.0346
9 —-0.0073 —0.0734
10 0.0032 —0.2023
11 0.0060 -0.2158
12 0.0048 —0.1939
13 0.0122 —-0.3157

The largest delta-beta for Age occurs for patient number 13, but there are
other delta-betas with similar values. The actual change in the parameter
estimate on omitting the data for this patient is 0.0195, and so omission
of this observation increases the hazard of infection relative to the baseline
hazard. The standard error of the parameter estimate for Age in the full data
set is 0.026, and so the maximum amount by which this estimate is changed
when one observation is deleted is about three-quarters of a standard error.
When the data from patient 13 is omitted, the age effect becomes slightly
more significant, but the difference is unlikely to be of practical importance.

There are two large delta-betas for Sez that are quite close to one an-
other. These correspond to the observations from patients 2 and 4. The actual
change in the parameter estimate when each observation is omitted in turn is
0.820 and 0.818, and so the approximate delta-betas underestimate the actual
change. The standard error of the estimated coeflicient of Sex in the full data
set is 1.096, and so again the change in the estimate on deleting an observa-
tion is less than one standard error. The effect of deleting either of these two
observations is to increase the relative hazard, but again this increase is not
great.

To compare the approximate delta-betas with the actual values, a plot of
their values against the rank of the time to infection is given in Figures 4.10
and 4.11. These figures show that the agreement is generally quite good,
although there is a tendency for the actual changes in the parameter estimates
to be underestimated by the approximation. The largest difference between
the actual and approximate value of the delta-beta for Age is 0.010, which
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