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{enominator cancels out, and we are left with

exp(B8'z ;)
—
ZzeR(t(j)) exp(8'z)

Finally, taking the product of these conditional probabilities over the r death
times gives the likelihood function in equation (3.4).

The likelihood function that has been obtained is not a true likelihood, since
it does not make direct use of the actual censored and uncensored survival
times. For this reason it is referred to as a partial likelihood function.

In order to throw more light on the structure of the partial likelihood,
consider a sample of survival data from five individuals, numbered from 1 to
5. The survival data are illustrated in Figure 3.1.
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Figure 3.1 Survival times of five individuals.

The observed survival times of individuals 2 and 5 will be taken to be right-
censored, and the three ordered death times are denoted t(1) < tz) < t()-
Then, t(y) is the death time of individual 3, t(3) is that of individual 1, and
t(3) that of individual 4. ' o

The risk set at each of the three ordered death times consists of the indi-
viduals who are alive and uncensored just prior to each death time. Hence,
the risk set R(t(1)) consists of all five individuals, risk set R(t.@) consists of
individuals 1, 2 and 4, while risk set R(t(3)) only includes individual 4. N?W
write 1(1) = exp(B'w;), ¢ = 1,2,...,5, for the risk score for the ith individ-
ual, where z; is the vector of explanatory variables for that individual. The
numerators of the partial likelihood function for times t(1), t(2) and t(g?, re-
spectively, are 9(3), ¥(1) and ¥(4), since individuals 3, 1 and 4, respectively,
die at the three ordered death times. The partial likelihood function over the
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three death times is then

¥(3) y P(1) Q)
(1) +9(2) +¥(3) + () +9(5) (1) +9(2) +¥(4)  P(4)

It turns out that standard results used in maximum likelihood estimation
carry over without modification to maximum partial likelihood estimation. In
particular, the results given in Appendix A for the variance-covariance matrix
of the estimates of the 8’s can be used, as can distributional results associated
with likelihood ratio testing, to be discussed in Section 3.4.

3.3.2* Treatment of ties

The proportional hazards model for survival data assumes that the hazard
function is continuous, and under this assumption, tied survival times are
not possible. Of course, survival times are usually recorded to the nearest
day, month or year, and so tied survival times can arise as a result of this
rounding process. Indeed, Examples 1.2, 1.3 and 1.4 in Chapter 1 all contain
tied observations.

In addition to the possibility of more than one death at a given time, there
might also be one or more censored observations at a death time. When there
are both censored survival times and deaths at a given time, the censoring is
assumed to occur after all the deaths. Potential ambiguity concerning which
individuals should be included in the risk set at that death time is then re-
solved and tied censored observations present no further difficulties in the
computation of the likelihood function using equation (3.4). Accordingly, we
only need consider how tied survival times can be handled in fitting the pro-
portional hazards model.

In order to accommodate tied observations, the likelihood function in equa-
tion (3.4) has to be modified in some way. The appropriate likelihood function
in the presence of tied observations has been given by Kalbfleisch and Prentice
(2002). However, this likelihood has a very complicated form, and will not be
reproduced here. In addition, the computation of this likelihood function can
be very time consuming, particularly when there are a relatively large number
of ties at one or more death times. Fortunately, there are a number of approx-
imations to the likelihood function that have computational advantages over
the exact method. But before these are given, some additional notation needs
to be developed.

Let s; be the vector of sums of each of the p covariates for those individuals
who die at the jth death time, t(;), j = 1,2,...,7. If there are d; deaths at

t(), the hth element of s; is sp; = szzl Thjk, Where zp i is the value of
the hth explanatory variable, h = 1,2,...,p, for the kth of d; individuals,
k=1,2,...,d;, who die at the jth death time, j =1,2,...,r.

The simplest approximation to the likelihood function is that due to Breslow
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(1974), who proposed the approximate likelihood

- exp(B's;)
H L R (3.9)
=1 {ZléR(t(])) exp(8 fcl)}

In this approximation, the d; deaths at time t(;, are considered to be dis-
tinct and to occur sequentially. The probabilities of all possible sequences of
deaths are then summed to give the likelihood in equation (3.9). Apart from a
constant of proportionality, this is also the approximation suggested by Peto
(1972). This likelihood is quite straightforward to compute, and is an ade-
quate approximation when the number of tied observations at any one death
time is not too large. For these reasons, this method is usually the default
procedure for handling ties in statistical software for survival analysis, and
will be used in the examples given in this book.
Efron (1977) proposed

ﬁ exp(8's;)
i=1 Hij:1 [ZzeR(t(j)) exp(B8'si) — (k - 1)d1:1 ZleD(t(j)) exp(,@'wl)}

as an approximate likelihood function for the proportional hazards model,

where D(t(;)) is the set of all individuals who die at time ?(;). This is a

closer approximation to the appropriate likelihood function than that due to

Breslow, although in practice, both approximations often give similar results.
Cox (1972) suggested the approximation

(3.10)

r

exp(B's;)
j=1 ZleR(t(j);dj) exp(8'sy)

(3.11)

where the notation R(t(;);d;) denotes a set of d; individuals drawn from
R(t(;y), the risk set at t(;j. The summation in the denominator is the sum
over all possible sets of d; individuals sampled from the risk set without
replacement. The approximation in expression (3.11) is based on a model for
the situation where the time-scale is discrete, so that under this model, tied
observations are permissible. Now, the hazard function for an individual with
vector of explanatory variables x;, h;(t), is the probability of death in the unit
time interval (¢,t+ 1), conditional on survival to time ¢. A discrete version of
the proportional hazards model of equation (3.3) is the model

hi(t) / ho(t)
for which the likelihood function is that given in equation (3.11). In fact, in
the limit as the width of the discrete time intervals becomes zero, this model
tends to the proportional hazards model of equation (3.3).
When there are no ties, that is, when d; = 1 for each death time, the ap-
proximations in equations (3.9), (3.10), and (3.11) all reduce to the likelihood
function in equation (3.4).
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43.9.4° The Newton-Raphson procedure

Models for censored survival data are usually fitted by using the Newton-
Raphson procedure to maximise the partial likelihood function, and so the
procedure is outlined in this section.

Let u(3) be the p x 1 vector of first derivatives of the log-likelihood function
in equation (3.5) with respect to the G-parameters. This quantity is known as
the vector of efficient scores. Also, let I{3) be the p x p matrix of negative
second derivatives of the log-likelihood, so that the (j, k)th element of I(3) is

_9%log L(B)
0B;06k

The matrix I(3)is known as the observed information matriz.
According to the Newton-Raphson procedure, an estimate of the vector of
-parameters at the (s + 1)th cycle of the iterative procedure, B, ,, is

Bas1 =B, +T71(B,)u(B,),

for s = 0,1,2,..., where u(3,) is the vector of efficient scores and I~*(3,) is
the inverse of the information matrix, both evaluated at ,Zis. The procedure
can be started by taking Bo = 0. The process is terminated when the change
in the log-likelihood function is sufficiently small, or when the largest of the
relative changes in the values of the parameter estimates is sufficiently small.

When the iterative procedure has converged, the variance-covariance ma-
trix of the parameter estimates can be approximated by the inverse of the
information matrix, evaluated at ,@, that is, I _1(,@). The square root of the
diagonal elements of this matrix are then the standard errors of the estimated

values of By, Ba,. .., Bp.

3.4 Confidence intervals and hypothesis tests for the f’s

When a statistical package is used to fit a proportional hazards model, the
parameter estimates that are provided are usually accompanied by their stan-
dard errors. These standard errors can be used to obtain approximate confi-
dence intervals for the unknown S-parameters. In particular, a 100(1 — a)%
confidence interval for a parameter 4 is the interval with limits A= z,, j25€ B),
where 3 is the estimate of 3, and z,/, is the upper a/2-point of the standard
normal distribution.

If a 100(1 — )% confidence interval for 3 does not include zero, this is
evidence that the value of 3 is non-zero. More specifically, the null hypothesis
that 8 = 0 can be tested by calculating the value of the statistic 3/ se (3). The
observed value of this statistic is then compared to percentage points of the
standard normal distribution in order to obtain the corresponding P-value.
Equivalently, the square of this statistic can be compared with percentage
points of a chi-squared distribution on one degree of freedom. This procedure
is sometimes called a Wald test. Indeed, the P-values for this test are often
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given alongside parameter estimates and their standard crrors in computer
output.

When attempting to interpret the P-value for a given parameter, B;, say,
it is important to recognise that the hypothesis that is being tested is that
B; = 0 in the presence of all other terms that are in the model. For example,
suppose that a model contains the three explanatory variables X, X5, X3,
and that their coefficients are 31, 82, O3. The test statistic 3, / se (Bg) is then
used to test the null hypothesis that 52 = 0 in the presence of 3, and Bs. If
there was no evidence to reject this hypothesis, we would conclude that X5
was not needed in the model in the presence of X; and Xs.

In general, the individual estimates of the 5’s in a proportional hazards
model are not all independent of one another. This means that the results of
testing separate hypotheses about the (-parameters in a model may not be
easy to interpret. For example, consider again the situation where there are
three explanatory variables, X1, X2, X3. If 5, and 32 were not found to be
significantly different from zero, when compared with their standard errors,
we could not conclude that only X3 need be included in the model. This
is because the coefficient of X, for example, could well change when X, is
excluded from the model, and vice versa. This would certainly happen if X;
and X, were correlated.

Because of the difficulty in interpreting the results of tests concerning the
coeflicients of the explanatory variables in a model, alternative methods for
comparing different proportional hazards models are required. It turns out
that the methods to be described in Section 3.5 are much more satisfactory
than the Wald tests. Little attention should therefore be paid to the results
of these tests given in computer-based analyses of survival data.

3.4.1 Standard errors and confidence intervals for hazard ratios

We have seen that in situations where there are two groups of survival data,
the parameter 3 is the logarithm of the ratio of the hazard of death at time ¢ for
individuals in one group relative to those in the other. Hence the hazard ratio
itself is 1 = . The corresponding estimate of the hazard ratio is 12} = exp(ﬁ),
and the standard error of ¢ can be obtained from the standard error of 8
using the result given as equation (2.9) in Chapter 2. From this result, the
approximate variance of 12), a function of ,@, is

~ 12 ~
{exp(®)} var (),
that is, ¥2 var (3), and so the standard error of ¥ is given by
se () = yse (). (3.12)

Generally speaking, a confidence interval for the true hazard ratio will be
more informative than the standard error of the estimated hazard ratio. A
100(1 — @)% confidence interval for the true hazard ratio, 1, can be found
simply by exponentiating the confidence limits for 3. An interval estimate
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obtained in this way is preferable to one found using ¥ + Zas25€ (1). This is
because the distribution of the logarithm of the estimated hazard ratio will be
more closely approximated by a normal distribution than that of the hazard
ratio itself.

The construction of a confidence interval for a hazard ratio is illustrated in
Example 3.1 below. Fuller details on the interpretation of the parameters in
the linear component of a proportional hazards model are given in Section 3.7

3.4.2 Two eramples

In this section, the results of fitting a proportional hazards model to data
from two of the examples introduced in Chapter 1 are given.

Ezample 8.1 Prognosis for women with breast cancer

Data on the survival times of breast cancer patients, classified according to
whether or not sections of their tumours were positively stained, were first
given in Example 1.2. The variable that indexes the result of the staining
process can be regarded as a factor with two levels. From the arguments
given in Section 3.2.1, this factor can be fitted by using an indicator variable
X to denote the staining result, where X = 0 corresponds to negative staining
and X = 1 to positive staining. Under the proportional hazards model, the
hazard of death at time ¢ for the ith woman, for whom the value of the
indicator variable is x;, is

hi(t) = ePihy(t),

where z; is zero or unity. The baseline hazard function ho(t) is then the hazard
function for a women with a negatively stained tumour. This is essentially the
model considered in Section 3.1.1, and given in equation (3.2).

In the group of women whose tumours were positively stained, there are two
who die at 26 months. To cope with this tie, the Breslow approximation to the
likelihood function will be used. This model is fitted by finding that value of 3,

, which maximises the like}ihood function in equation (3.9). The maximum
likelihood estimate of 3 is 3 = 0.908. The standard error of this estimate is
also obtained from statistical packages for fitting the Cox regression model,
and turns out to be given by se (3) = 0.501.

The quantity e? is the ratio of the hazard function for a woman with X =1
to that for a woman with X = 0, so that B is the logarithm of the ratio
of the hazard of death at time t for positively stained relative to negatively
stained women. The estimated value of this hazard ratio is €998 — 2 48. Since
this is greater than unity, we conclude that a woman who has a positively
stained tumour will have a greater risk of death at any given time than a
comparable women whose tumour was negatively stained. Positive staining
therefore indicates a poorer prognosis for a breast cancer patient.

The standard error of the hazard ratio can be found from the standard error
of 3, using the result in equation (3.12). Since the estimated relative hazard is

¥ = exp(f) = 2.480, and the standard error of 8 is 0.501, the standard error
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of ¥ is given by
se (V) = 2.480 x 0.501 = 1.242.

We can go further and construct a confidence interval for this hazard ratio.
The first step is to obtain a confidence interval for the logarithm of the hazard
ratio, 0. For example, a 95% confidence interval for 3 is the interval from
B—1.96se(B) to B+ 1.96se (3), that is, the interval from —0.074 to 1.890.
Exponentiating these confidence limits gives (0.93,6.62) as a 95% confidence
interval for the hazard ratio itself. Notice that this interval barely includes
unity, suggesting that there is evidence that the two groups of women have a

different survival experience.

Example 3.2 Survival of multiple myeloma patients

Data on the survival times of 48 patients suffering from multiple myeloma
were given in Example 1.3. The data base also contains the values of seven
other variables that were recorded for each patient. For convenience, the values
of the variable that describes the sex of a patient have been redefined to be
zero and unity for males and females respectively. The variables are then as

follows:

Age:  Age of the patient,
Ser.  Sex of the patient (0 = male, 1 = female),
Bun: Blood urea nitrogen,
Ca:  Serum calcium,
Hb:  Serum haemoglobin,
Pcells:  Percentage of plasma cells,
Protein:  Bence-Jones protein (0 = absent, 1 = present).

The sex of the patient and the variable associated with the occurrence of
Bence-Jones protein are factors with two levels. These terms are fitted using
the indicator variables Sex and Protein. The proportional hazards model for
the ith individual is then

hz(t) = exp(ﬂlAgei + ﬁQSEIq_' + ,GgBun, + B4 Ca; + ,65Hbz
+ BgPcells; + 7 Protein; ) ho(t),

where the subscript ¢ on an explanatory variable denotes the value of that
variable for the ith individual. The baseline hazard function is the hazard
function for an individual for whom the values of all seven of these variables
are zero. This function therefore corresponds to a male aged zero, who has
zero values of Bun, Ca, Hb and Pcells, and no Bence-Jones protein. In view of
the obvious difficulty in interpreting this function, it might be more sensible to
redefine the variables Age, Bun, Ca, Hb and Pcells by subtracting values for an
average patient. For example, if we took Age — 60 in place of Age, the baseline
hazard would correspond to a male aged 60 years. This procedure also avoids
the introduction of a function that describes the hazard of individuals whose
ages are rather different from the age range of patients in the study. Although
this leads to a baseline hazard function that has a more natural interpretation,
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it will not affect inference about the influence of the explanatory variables on
.the h'azard of death. For this reason, the untransformed variables will be used
in this example. Oun fitting the model, the estimates of the coefficients of the

explanatory variables and their standard errors are found to be those shown
in Table 3.1.

Table 3.1 Estimated values of
the coefficients of the ezplanatory
variables on fitting a proportional
hazards model to the data from

Ezample 1.3.
Variable i se (B)
Age —-0.019 0.028
Sex —0.251 0.402
Bun 0.021 0.006
Ca 0.013 0.132
Hb —0.135 0.069
Peells —0.002 0.007
Protein —0.640 0.427

We see from Table 3.1 that some of the estimates are close to zero. Indeed
if individual 95% confidence intervals are calculated for the coefficients of the7
seven variables, only those for Bun and Hb exclude zero. This suggests that
the hazard function does not depend on all seven explanatory variables.

However, we cannot deduce from this that Bun and Hb are the relevant
variables, since the estimates of the coefficients of the seven explanatory vari-
gbles in the fitted model are not independent of one another. This means that
if one of the seven explanatory variables were excluded from the model. the
coefficients of the remaining six might be different from those in Table, 3.1
For example, if Bun is omitted, the estimated coefficients of the six remaini;lg.
explanatory variables, Age, Sex, Ca, Hb, Pcells and Protein, turn out to be
—0.009, —0.301, —0.036, —0.140, —0.001, and —0.420, respectively. Compari-
son' with the values shown in Table 3.1 shows that there are differences in the
estimated coefficients of each of these six variables, although in this case the
differences are not very great.

In general, to determine on which of the seven explanatory variables the
hazard function depends, a number of different models will need to be fitted
and the results compared. Methods for comparing the fit of alternative models’
and strategies for model building are considered in subsequent sections of this7

chapter.
3.5 Comparing alternative models

%n a modelling approach to the analysis of survival data, a model is developed
or the dependence of the hazard function on one or more explanatory vari-
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ables. In this development process, proportional hazards models with linear
components that contain different sets of terms are fitted, and comparisons

made between them.

As a specific example, consider the situation where there are two groups of
survival times, corresponding to individuals who receive ecither a new treat-
ment or a standard. The common hazard function under the model for no
treatment difference can be taken to be ho(t). This model is a special case of
the general proportional hazards model in equation (3.3), in which there are
no explanatory variables in the linear component of the model. This model is
therefore referred to as the null model

Now let X be an indicator variable that takes the value zero for individuals
receiving the standard treatment and unity otherwise. Under a proportional
hazards model, the hazard function for an individual for whom X takes the
value z is e®®ho(t). The hazard functions for individuals on the standard and
new treatments are then ho(t) and e”hg(t), respectively. The difference be-
tween this model and the null model is that the linear component of the latter
contains the additional term Bz. Since 3 = 0 corresponds to no treatment ef-
fect, the extent of any treatment difference can be investigated by comparing
these two proportional hazards models for the observed survival data.

More generally, suppose that two models are contemplated for a particular
data set, Model (1) and Model (2), say, where Model (1) contains a sub-
set of the terms in Model (2). Model (1) is then said to be parametrically
nested within Model (2). Specifically, suppose that the p explanatory vari-
ables, X1, Xs,...,Xp, are fitted in Model (1), so that the hazard function
under this model can be written as

exp{B1x1 + Baz2 + - - + Bpzptho(t).

Also suppose that the p + ¢ explanatory variables X1, X, .. X Xprlr ey
Xp4q are fitted in Model (2), so that the hazard function under this model is

exp{B1z1 + - + Bpp + Bpr1Zpi1 + -+ BprqTpratho(t)-

Model (2) then contains the g additional explanatory variables Xp11, Xpy2,
..., Xpiq- Because Model (2) has a larger number of terms than Model (1),
Model (2) must be a better fit to the observed data. The statistical problem
is then to determine whether the additional ¢ terms in Model (2) significantly
improve the explanatory power of the model. If not, they might be omitted,
and Model (1) would be deemed to be adequate.

In the discussion of Example 3.2, we saw that when there are a number of
explanatory variables of possible relevance, the effect of each term cannot be
studied independently of the others. The effect of any given term therefore
depends on the other terms currently included in the model. For example,
in Model (1), the effect of any of the p explanatory variables on the hazard
function depends on the p — 1 variables that have already been fitted, and so
the effect of X, is sald to be adjusted for the remaining p — 1 variables. In
particular, the effect of X, is adjusted for X3, X, ..., X1, but we also speak
of the effect of X,, eliminating or allowing for Xy, X,... , Xp—1. Similarly,
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when the ¢ variibles Xpy1, Xpt2,.. ., Xpiq are added to Model (1), the effect
of these variables on the hazard function is said to be adjusted for the p
variables that have already been fitted, X, X,,..., X,.

3.5.1 The statistic —2log L

In order to compare alternative models fitted to an observed set of survival
data, a statistic that measures the extent to which the data are fitted by
a particular model is required. Since the likelihood function summarises the
information that the data contain about the unknown parameters in a given
model, a suitable summary statistic is the value of the likelihood function when
the parameters are replaced by their maximum likelihood estimates. This is
the maximised likelihood under an assumed model, and can be computed from
equation (3.4) by replacing the §’s by their maximum likelihood estimates
under the model. For a given set of data, the larger the value of the maximised
likelihood, the better is the agreement between the model and the observed
data.

For reasons given in the sequel, it is more convenient to use minus twice
the logarithm of the maximised likelihood in comparing alternative models.
If the maximised likelihood for a given model is denoted by L, the summary
measure of agreement between the model and the data is —2log L. From
Section 3.3.1, L is in fact the product of a series of conditional probabilities,
and so this statistic will be less than unity. In consequence, —2log L will
always be positive, and for a given data set, the smaller the value of —2log L,
the better the model.

The statistic —2log L cannot be used on its own as a measure of model
adequacy. The reason for this is that the value of L, and hence of —2log L,
is dependent upon the number of observations in the data set. Thus if, after
fitting a model to a set of data, additional data became available to which the
fit of the model was the same as that to the original data, the value of —2log L
for the enlarged data set would be different from that of the original data.
Accordingly the value of —2log L is only useful when making comparisons
between models fitted to the same data.

3.5.2 Comparing nested models
Consider again Model (1) and Model (2) defined above, and let the value of

the maximised log-likelihood function for each model be denoted by L(1) and
L(2), respectively. The two models can then be compared on the basis of the
difference between the values of —2log L for each model. In particular, a large
difference between —2log L(1) and —2log L(2) would lead to the conclusion
that the g variates in Model (2), that are additional to those in Model (1), do
improve the adequacy of the model. Naturally, the amount by which the value
of —2log L. changes when terms are added to a model will depend on which
terms have already been included. In particular, the difference in the values

of —2log L(1) and —2log L(2), that is, —2log L(1) +2log L(2), will reflect the
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combined effect of adding the variables Xpiq, Xpt2,- - Xpig o model that
already contains X1, X2, . ... Xp. This is said to be the change in the value of
—2log L due to fitting X1, Xpt2,- -+, Xp+q, adjusted for X1, Xo, ..., Xp-
The statistic —2log L(1) + 2log L(2), can be written as
~2log{L(1)/L(2)},
and this is the log-likelihood ratio statistic for testing the null hypothesis that
the ¢ parameters Bp+1, Bp+2, - - - » Opt+q in Model (2) are all zero. From results

associated with the theory of likelihood ratio testing (see Appendix A), this
statistic has an asymptotic chi-squared distribution, under the null hypoth-
esis that the coefficients of the additional variables are zero. The number of
degrees of freedom of this chi-squared distribution is equal to the difference
between the number of independent 3-parameters being fitted under the two
models. Hence, in order to compare the value of —~2log L for Model (1) and
Model (2), we use the fact that the statistic —2log L(1) + 21og L(2) has a
chi-squared distribution on ¢ degrees of freedom, under the null hypothesis
that Bp+1,Bp+2,- -+ Opiq are all zero. If the observed value of the statistic is
not significantly large, the two models will be adjudged to be equally suitable.
Then, other things being equal, the more simple model, that is, the one with
fewer terms, would be preferred. On the other hand, if the values of —2log L
for the two models are significantly different, we would argue that the addi-
tional terms are needed and the more complex model would be adopted.

Some texts, and some software packages, ascribe degrees of freedom to the
quantity —2log L. However, the value of —2log L for a particular model does
not have a chi-squared distribution, and so the quantity cannot be considered
to have an associated number of degrees of freedom. Additionally, the quantity
—2log L is sometimes referred to as a deviance. This is also inappropriate,
since unlike the deviance used in the context of generalised linear modelling,
—21log L does not measure deviation from a model that is a perfect fit to the
data.

Ezample 8.8 Prognosis for women with breast cancer

Consider again the data from Example 1.2 on the survival times of breast
cancer patients. On fitting a proportional hazards model that contains no
explanatory variables, that is, the null model, the value of —2log L is 173.968.
As in Example 3.1, the indicator variable X, will be used to represent the
result of the staining procedure, so that X is zero for women whose tumours
are negatively stained and unity otherwise. When the variable X is included in
the linear component of the model, the value of —2log L decreases to 170.096.
The values of —2log L for alternative models are conveniently summarised in
tabular form, as illustrated in Table 3.2.

The difference between the values of —210gI: for the null model and the
model that contains X can be used to assess the significance of the difference
between the hazard functions for the two groups of women. Since one model
contains one more 3-parameter than the other, the difference in the values of
—2log L has a chi-squared distribution on one degree of freedom. The differ-

COMPARING ALTERNATIVE MODELS 77

Table 3.2 Values of —2log L on
fitting proportional hazards mod-
els to the data from Example 1.2.

Variables in model —2log L

none 173.968
X 170.096

ence in the two values of —2log L is 173.968 — 170.096 = 3.872, which is Jjust
significant at the 5% level (P = 0.049). We may therefore conclude that there
is evidence, significant at the 5% level, that the hazard functions for the two
groups of women are different.

In Example 2.12, the extent of the difference between the survival times of
the two groups of women was investigated using the log-rank test. The chi-
squared value for this test was found to be 3.515 (P = 0.061). This value is
not very different from the figure of 3.872 (P = 0.049) obtained above. The
similarity of these two P-values means that essentially the same conclusions
are drawn about the extent to which the data provide evidence against the
null hypothesis of no group difference. From the practical viewpoint, the fact
that one result is just significant at the 5% level, while the other is not quite
significant at that level, is immaterial.

Although the model-based approach used in this example is operationally
different from the log-rank test, the two procedures are in fact closely related.
This relationship will be explored in greater detail in Section 3.9.

Ezample 3.4 Treatment of hypernephroma

In a study carried out at the University of Oklahoma Health Sciences Center,
data were obtained on the survival times of 36 patients with a malignant
tumour in the kidney, or hypernephroma. The patients had all been treated
with a combination of chemotherapy and immunotherapy, but additionally
a nephrectomy, the surgical removal of the kidney, had been carried out on
some of the patients. Of particular interest is whether the survival time of
the patients depends on their age at the time of diagnosis and on whether or
n.0t they had received a nephrectomy. The data obtained in the study were
given in Lee and Wang (2003). In the data set to be used as a basis for this
example, the age of a patient has been classified according to whether the
patient is less than 60, between 60 and 70 or greater than 70. Table 3.3 gives
the survival times of the patients in months, where an asterisk denotes a
censored observation.

In this example, there is a factor, age group, with three levels (< 60, 60-70
>70), and a factor associated with whether or not a nephrectomy was per—,
formed. There are a number of possible models for these data depending on
whether the hazard function is related to neither, one or both of these factors.
Suppose that the effect due to the jth age group is denoted by aj, §=1,2,3,



