23
Poisson and logistic regression

In principle the way a computer program goes about fitting a regression
model is simple. First the likelihood is specified in terms of the original
set of parameters. Then it is expressed in terms of the new parameters
using the regression cquations, and finally most likely values of these new
parameters are found. In studies of event data the two most important
likelihoods are Poisson and Bernouilli, and the combinations of these with
regression models are called Poisson and logistic regression respectively.
Gaussian regression is the combination of the Gaussian likelihood with
regression models and will be discussed in Chapter 34.

23.1 Poisson regression

When a time scale, such as age, is divided into bands and included in
a regression model, the observation time for each subject must be split
between the bands as described in Chapter 6. This is illustrated in Fig. 23.1,
where a single observation time ending in failure (‘fhe top line) has been
split into three parts, the last of which ends in failure. These parts can then
be used to make up frequency records containing the number of failures and
the observation time, as was done for the ischaemic heart disease data in
Table 23.1, or they can be analysed as though they were individual records.

If they are to be analysed as though they were individual records then
each of these new records must contain variables which describe which time
band is being referred to, how much observation time is spent in the time
band, and whether or not a failure occurs in the time band. Values of

Table 23.1. The IHD data as frequency records

Cases Person-years Age Exposure

4 607.9 0 0
2 311.9 0 1
5 1272.1 1 0
12 878.1 1 1
8 888.9 2 0
14 667.5 2 1
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Fig. 23.1. Splitting the follow-up record.

other explanatory variables, such as exposure, must also be included. The
idea extends to more than one time scale — each record then refers to an
observation of a subject through one cell of a Lexis diagram — but the
number of new records can then be many times the number of subjects
and analysis becomes cumbersome.

To instruct a computer program to fit a Poisson regression model to the
frequency records in Table 23.1 it is first necessary to enter the names of the
variables which contain the observation time for the record, the number of
failures, the exposure level and the age band. When the Poisson regression
option is selected the program automatically assumes that the regression
model is of the form

log(Rate) = Corner + A+ B + . . .,

where A, B, etc., are explanatory variables. It is therefore only necessary
to instruct the program that the rate for each record is to be calculated
from the person-years variable and the number of failures variable, and that
exposure and age are to be included in the model as explanatory variables.

The log likelihood for each combination of age band and exposure takes
the standard Poisson form. For example when age is at level 2 and exposure
is at level 1 the rate parameter is A?. There are 14 failures and 667.5 person-
years so the log likelihood for A% is

141log(\2) — 667.5)3.

The total log likelihood (in terms of the original parameters) is equal to
the sum of the separate log likelihoods for the six cells of the table. This
total is expressed (by the.computer program) in terms of the four new pa-
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rameters Corner, Age(l), Age(2), and Exposure(1), using the information
provided by the regression model. As usual the most likely values of the
log parameters are found on the log scale and some programs leave the user
to convert these back to the original scale.

The same log likelihood is obtained from individual records as from fre-
quency records, provided the explanatory variables in the individual records
take discrete values in the same way as for the frequency records. For ex-
ample, the contribution to the log likelihood from a subject with exposure
at level 1, age band at level 2, and observation time y, is

dlog(A}) — yA,

where d takes the value 1 if the subject fails in this age band and 0 oth-
erwise. Adding this log likelihood over all subjects contributing to the
frequency record with exposure at level 1 and age at level 1 gives

14log(A%) — 667.5)2,

which is the same as the log likelihood for this frequency record.

A computer program for Poisson regression can also be used after the
confounding effect of age has been allowed for by indirect standardization,
that is by calculating the expected number of failures using standard refer-
ence rates. This is because the log likelihood for the parameter representing
the (common) ratio of age-specific rates in a study group to the age-specific
reference rates has the same algebraic form as the log likelihood for a rate
parameter; one is obtained from the other by exchanging the person-years
and the expected number of failures. With this exchange, the original
parameters are now rate ratios expressing age-controlled comparisons of
different sections of the study group to the reference rates. The regression
model relates these to a smaller number of parameters in the same way
as with rates. Note that the parameter estimates in such models are, in
effect, ratios of SMRs. For the reasons discussed in Chapter 15, they can
be misleading if an inappropriate set of reference rates is used.

23.2 Logistic regression

In logistic regression the original parameters are odds parameters and these
are expressed in terms of new parameters in the same way as for the rate
parameter. The most important application of logistic regression is to
case-control studies and we shall use the study of BCG and leprosy as an
illustration.

For convenience the data from this study are repeated in Table 23.2,
which shows the numbers of cases and controls by age and BCG vaccination.
Taking a prospective view the response parameter is the odds of being a
case rather than a control, so a useful way of summarizing these data is to
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Table 23.2. Cases of leprosy and controls by age and BCG scar

Age Leprosy cases Healthy controls

Scar - Scar +  Scar -  Scar +
04 1 1 7593 11719
5-9 11 14 7143 10184
10-14 28 22 5611 7561
15-19 16 28 2208 8117
20-24 20 19 2438 5588
25-29 36 11 4356 1625
30-34 47 6 5245 1234

Table 23.3. Case/control ratio (x10%) by age and BCG scar

BCG scar
Age Absent Present
0-4 0.13 0.08
5-9 1.54 1.37

10-14 4.99 291
15-19 7.25 3.45
20~24 8.20 3.40
25-29 8.26 6.77
30-34 8.96 4.86

show the estimated value of this parameter, which is the case/control ratio,
for different levels of age and BCG vaccination. This summary is given in
Table 23.3 and shows a consistently lower case/control ratio for those with
a BCG scar than for those without. It also shows that the case/control
ratio increases sharply with age in both groups.

Because there are many subjects in this study the data are entered to
the computer program as frequency records. Table 23.4 shows the data as
an array of frequency records ready for computer input. Programs often
require the data to be entered as the number of cases and the total number
of subjects for each record, rather than as the number of cases and the
number of controls. The change is easily made by deriving a new variable
equal to the variable for the number of cases plus the variable for the
number of controls.

The log likelihood contribution for a frequency record in which N sub-
jects split as D cases and H controls takes the Bernoulli form

Dlog(w) — Nlog(1l 4+ w),

where w is the odds, given by the model, that a subject in that frequency
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Table 23.4. The BCG data as frequency records

Cases Total Scar Age
1 7594 0 0

1 11720 1 0
11 7154 0 1
14 10198 1 1
28 5639 0 2
22 7583 1 2
16 2224 0 3
28 8145 1 3
20 2458 0 4
19 5607 1 4
36 4392 0 5
11 1636 1 5
47 5292 0 6

6 1240 1 6

record is a case rather than a control. When fitting a regression model the
total log likelihood is expressed in terms of new parameters using the re-
gression equations and most likely values of the new parameters are found.
For individual records the log likelihood is

dlog(w) — log(1 + w),

where d = 1 for a case and d = 0 for a control. The sum of the log
likelihoods for all subjects contributing to a frequency record is equal to

Dlog(w) — N log(1 + w),

which is the same as the log likelihood for the frequency record.
The regression model

log (Odds) = Corner + Age + BCG,

expresses the constraint that the odds ratio for BCG vaccination is constant
over age groups. Apart from the corner, all the parameters in this model
are odds ratios. The BCG parameter compares the odds of being a case
for subjects who are BCG positive to the odds of being a case for subjects
who are BCG negative. The six age parameters compare the odds of being
a case for subjects in the age groups 1-6 to the odds of being a case in age
group 0. The most likely values of these parameters (on a log scale) are
shown in Table 23.5.

Exercise 23.1. What is the most likely value of the odds ratio for BCG vac-
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Table 23.5. Output from a logistic regression program

Parameter Estimate SD

Corner —8.880 0.7093
Age(1) 2.624 0.7340
Age(2) 3.583 0.7203
Age(3) 3.824 0.7228
Age(4) 3.900 0.7244
Age(5) 4.156 0.7224
Age(6) 4.158  0.7213
BCG(1) —0.547  0.1409

cination? Does this seem about right, from Table 23.37 Compare this estimate
with the Mantel-Haenszel estimate given in Chapter 18.

The parameters in the model
log (Odds) = Corner + Age + BCG,

apart from the corner, refer to changes in the log odds of being a case.
From Chapter 16 we know that the odds of being a case is proportional to
the odds of being a failure in the study base, provided the selection of cases
and controls is independent of both age and BCG status. More precisely,

™

Odds of being a case = K

1—m
where

Probability that a failure is sampled as a case

- Probability that a survivor is sampled as a control”

On a log scale

log(Odds) = log(K) + log (&) )

so a change in the log odds of being a case is equal to the corresponding
change in the log odds of failure in the study base. It follows that estimates
of the effects of age and BCG on the log odds of being a case also estimate
the effects of age and BCG on the log odds of failure in the study base.
This argument does not apply to the corner (which is not a change in log
odds) so unless K is known the corner parameter in the study base cannot
be estimated.
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Table 23.6. A simulated group-matched study

BCG scar
Cases Controls
Age Absent  Present  Absent Present
04 1 1 3 5
59 11 14 48 52
10-14 28 22 67 133
15-19 16 28 46 130
20-24 20 19 50 106
25-29 36 11 126 62
30-34 47 6 174 38

When the disease is rare the probability of failure in the study base is
small and the odds of failure are related to the rate A by

T

I—WZ/\T’

where T is the duration of the study. Thus

log(Odds) = log(K) + log <1_7r_) ,
-7

log(K) + log(T') + log()),

1%

and the’same argument shows that effects estimated from a logistic re-

gression model are also estimates of effects on the log rate in the study
base.

23.3 Matched case-control studies

In Chapter 18 we presented a simulated group-matched case-control study,
based on the BCG study, in which the age distribution of controls is made
equal to that of the cases by taking four times as many controls as cases
in each age stratum. The results from this study are shown again in Ta-
ble 23.6.

When estimating the effect of BCG the matching variable, age, cannot
be ignored, so the appropriate model to fit is

log(Odds) = Corner + Age + BCG,

even though the effects of age in this model may be close to zero. The results
of fitting this model are shown in Table 23.7. As expected the estimate of
the BCG effect is virtually unchanged, although it has a slightly larger
standard deviation because it is based on a smaller number of controls.
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Table 23.5. Output from a logistic regression program

Parameter Estimate SD

Corner —-8.880  0.7093
Age(1) 2.624  0.7340
Age(2) 3.583 0.7203
Age(3) 3.824  0.7228
Age(4) 3.900 0.7244
Age(5) 4.156 0.7224
Age(6) 4158  0.7213
BCG(1) —0.547  0.1409

cination? Does this seem about right, from Table 23.37 Compare this estimate
with the Mantel-Haenszel estimate given in Chapter 18.

The parameters in the model
log (Odds) = Corner + Age + BCG,

apart from the corner, refer to changes in the log odds of being a case.
From Chapter 16 we know that the odds of being a case is proportional to
the odds of being a failure in the study base, provided the selection of cases
and controls is independent of both age and BCG status. More precisely,

™

Odds of being a case = K1

-7
where

__ Probability that a failure is sampled as a case
" Probability that a survivor is sampled as a control’

On a log scalc

log(Odds) = log(K) + log (%;) ,

so a change in the log odds of being a case is equal to the corresponding
change in the log odds of failure in the study base. It follows that estimates
of the effects of age and BCG on the log odds of being a case also estimate
the effects of age and BCG on the log odds of failure in the study base.
This argument does not apply to the corner (which is not a change in log
odds) so unless K is known the corner parameter in the study base cannot
be estimated.
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Table 23.6. A simulated group-matched study

BCG scar
Cases Controls
Age Absent  Present Absent Present
0-4 1 1 3 5
59 11 14 48 52
10-14 28 22 67 133
15-19 16 28 46 130
20-24 20 19 50 106
25-29 36 11 126 62
30-34 47 6 174 38

When the disease is rare the probability of failure in the study base is
small and the odds of failure are related to the rate A by

where T is the duration of the study. Thus

log(Odds) = log(K) + log <T7r-—> ,
7r
=~ log(K) +1og(T) + log()),

and the same argument shows that effects estimated from a logistic re-
gression model are also estimates of effects on the log rate in the study
base.

23.3 DMatched case-control studies

In Chapter 18 we presented a simulated group-matched case-control study,
based on the BCG study, in which the age distribution of controls is made
equal to that of the cases by taking four times as many controls as cases
in each age stratum. The results from this study are shown again in Ta-
ble 23.6.

When estimating the effect of BCG the matching variable, age, cannot
be ignored, so the appropriate model to fit is

log(Odds) = Corner + Age + BCG,

even though the effects of age in this model may be close to zero. The results
of fitting this model are shown in Table 23.7. As expected the estimate of
the BCG effect is virtually unchanged, although it has a slightly larger
standard deviation because it is based on a smaller number of controls.
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Table 23.7. Regression output for the group-matched study

Parameter Estimate SD

Corner —1.0670 0.800
Age(1) —0.0421  0.827
Age(2) 0.0119 0.812
Age(3) 0.0713 0.814
Age(4) 0.0244 0.816
Age(5) ~0.1628 0.814
Age(6) ~0.2380 0.813
BCG(1) —0.5721  0.155

However, the age effects are very different from the previous output for
the whole data set in Table 23.5. They are now all close to zero but this
does not mean that age can be omitted from the model. Te do so would
produce a biased estimate of the BCG effect. Variables which have been
used in the matching must be included in the model used to estimate the
effects of interest. The same point was made in Chapter 18 where matched
case-control studies were analysed by stratifying on the matching variable
and using the Mantel-Haenszel method to combine the separate estimates
of the effect of interest over strata.

Exercise 23.2. Explain the large differences in the age effects between the two
outputs. You may find it helps to make a summary table of case/control ratios
based on the data in Table 23.6.

Using a computer program for logistic regression is a convenient way of
analyzing group-matched case-control studies and gives correct estimates of
odds ratios, at least for variables not used in the matching, provided there
are not too many matching strata. However, in individually matched case-
control studies each new case introduces its own stratum and, therefore,
a new nuisance parameter. This turns out to be one of the situations in
which replacing the nuisance parameters by their most likely values and
using profile likelihood to estimate the parameters of interest gives the
wrong answer. For individually matched studies the likelihood argument of
Chapter 19 can be extended to cover regression models. This new method
is called conditional logistic regression analysis, and will be discussed in
Chapter 29.

23.4 Modelling risk and prevalence

The prospective approach to the regression analysis of case-control studics
regards the case/control status as the outcome variable. In Chapter 1 we
discussed other epidemiological studies in which the outcome of interest
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is binary. Most important are studies of risk(sometimes called cumulative
incidence studies) in which each subject is studied for a fixed period, the
outcome being failure or survival, and cross sectional prevalence studies in
which each subject’s present state is recorded as diseased or healthy.

In both these types of study the original parameters are probabilities.
For case-control studies, we choose to model odds rather than probabilities
because odds ratios are independent of the sampling fractions used and
have a ready interpretation as risk or rate ratios in the study base. For
risk and prevalence studies there is no such compelling reason to use the
odds, although it often proves useful to do so because the log odds is
unconstrained and models for the log odds are likely to describe the data
better than models for = or log(r).

An alternative to the log odds may be derived from the relationship
between 7, the probability of failure in a time interval of length 7', and A,
the failure rate for this interval. This relationship is given by

Cumulative survival probability = exp(— Cumulative failure rate)

that is,

1 —m =exp(—=AT),
)

log(l —m) = AT
and

log(—log(1 — 7)) = log(T) + log(A).

Thus models for log(—log(l — )} may be interpreted as models for log()),
apart from the corner parameter, and parameters which are estimated from
such models may be interpreted as the logarithms of rate ratios. The func-
tion log(—log(l — 7)) is called the complementary log-log transformation
of m and some programs allow regression models to be fitted on this scale.
Provided 7 is less than about 0.2 the complementary log-log function does
not differ appreciably from the log odds, so in this case regression models
for the log odds can also be interpreted as regression models for log(\).

For diseases in which mortality (and migration) of subjects is unaffected
by their contracting the disease, there is a similar relationship between
age-specific prevalence and the age-specific incidence rate. In this case,
parameters of complementary log-log models for prevalence are identical
to parameters of an underlying model for log incidence rates. However in
general such an assumption cannot be made and the relationship between
effects on prevalence and effects on incidence is complicated.
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Solutions to the exercises

23.1 The most likely value of the log of the BCG parameter is —0.547.
This corresponds to an odds ratio of exp(—0.547) = 0.579. We therefore
_estimate that vaccination with BCG reduces the incidence rate of leprosy
in the base study to about 58% of what it would be without vaccination.
From Chapter 18 the Mantel-Haenszel estimate of the BCG parameter is
0.587.

23.2 The discrepancies between the two outputs is due to the age match-
ing of controls to cases in the second analysis. In the first analysis there is no
such matching, and the age parameters refer to the underlying relationship
between age and leprosy incidence (incidence increases with age). Match-
ing controls to cases with respect to age has the effect that the sampling
probabilities for controls differ between age strata so that K, the constant
of proportionality between the odds of being a case and the odds of failure
in the study base, now varies between age bands. It follows that the age
parameters of the model now include the effect of variation in sampling
probabilities, and are not interpretable.



