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ABSTRACT.

 

In the evaluation of a diagnostic imaging test for the diagnosis of a particular illness in a
particular category of patients, the test should be construed as leading to a test result in the sense of a set of
descriptive readings from the image(s), not interpretation of these; and in the evaluation of the test, therefore,
the first challenge is the translation of each test result (set of readings) into the corresponding probability that
the illness is present. This interpretive translation should not be subjective, nor should it be based on an
objective algorithm founded on clinical judgments. Instead, a suitable diagnostic probability function (of the
elements in the test result) should be derived empirically by logistic regression analysis of suitable data. We
illustrate this alternative outlook by reanalysis of the data from the Prospective Investigation of Pulmonary

 

Embolism Diagnosis. 
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INTRODUCTION

 

Any evaluation of a diagnostic test has to do with a particu-
lar generic context of its potential application: concern to
learn about the presence of a particular illness in a particu-
lar domain of presentation for testing. Thus, for ventila-
tion-perfusion (V-Q) scanning of the lungs, the evaluation
might focus on the diagnosis of pulmonary embolism (PE)
in the patient giving rise to a suspicion for this illness by a
specified set of domain-defining criteria.

For whichever context, evaluation must focus on a par-
ticular conceptual variant of the test. Thus, as for V-Q
scanning in this context, the concept of the test without
further specifications is so vague that one does not know
even the broadest nature of its results: is it images per se,
descriptive readings or data based on these (such as number
of mismatched defects), or interpretation of the images or
data with respect to presence of the illness (such as “low
probability” of PE)? In other words, without such specifica-
tion, it is unclear, even, where the test ends and the inter-
pretation of its result begins. The choice among these three
conceptualizations of an imaging test is, in and of itself, al-
ready a major basis for divergent outlooks on the evaluation
of imaging tests.

Another important basis for divergence of outlooks re-
lates to the theoretical framework for diagnosis and, hence,
for diagnostic research. It was the radiologist Lusted who, in
collaboration with Ledley, introduced the Bayes’ theorem
framework for this [1]. Yet, an alternative theoretical
framework [2] deserves attention, one that in the context of
diagnostic tests has particular merit with respect to imaging
tests on the grounds that they produce descriptive readings
or data on multiple aspects of the image(s).

In what follows, we outline very briefly the outlook that
now prevails in the evaluation of diagnostic imaging tests,
present critical questions about it, and then outline and jus-
tify the proposed alternative approach to setting diagnostic
probabilities. We illustrate the prevailing outlook by the
Prospective Investigation of Pulmonary Embolism Diagno-
sis (PIOPED) [3] and the alternative by reanalysis of the PI-
OPED data.

 

THE PREVAILING OUTLOOK

 

The PIOPED was an eminent, multicenter study about the
presence of PE in the domain of adults in whom symptoms
suggestive of PE were present within the most recent 24
hours and prompted a request for radiologic assessment.
The radiologic test at issue was V-Q scanning in conjunc-
tion with chest roentgenography [3,4].

The definition of the V-Q test under evaluation in-
volved three sequential elements:
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1.

 

Production

 

 of the images (imaging proper)—when to
produce them (recency of symptoms) and how (equip-
ment and its use)

2.

 

Reading

 

 of the images—what to read (e.g., number of
moderate segmental perfusion defects without . . .); who
would read it (two “nuclear medicine readers” with their
two levels of backup “adjudicators”); and under what
conditions (presumably, unaware of preimaging data and
angiographic findings)

3.

 

Interpretation

 

 of the readings—their translation (by an
algorithm adopted for the study) into overall result on a
predefined unidimensinal ordinal scale of probability
(categories of “high probability,” etc.) for the illness
(PE) being present.

The reading of the images results in more-or-less objective
facts documented by the readers, such as the number of large,
moderate, and small segmental mismatched perfusion de-
fects. The interpretation of the readings, on the other hand, is
a judgment based on these facts, addressing the probability of
presence of PE. For example, in the PIOPED, the finding of
two large segmental perfusion mismatches or the finding of
10 resulted in the same interpretation of “high probability”
of PE. Under evaluation in the PIOPED was, more specifi-
cally, the “diagnostic usefulness” of the interpretation.

This type of test conceptualization—the test result not
being the readings per se (item 2 in the elements just listed)
but the interpretation of these (item 3)—was by no means
peculiar to the PIOPED; it is used quite routinely in evalua-
tions of diagnostic imaging. In terms of this conceptualiza-
tion, the test is supposed to result in a diagnostic classifica-
tion—positive result implying presence of the illness and
negative result implying its absence—and interest tends to
focus on the “accuracy” of this classification [5–11].

With the definitive diagnosis based on angiography, the
key results of the study were the empirical values for test
“sensitivity” (true-positive rate) and “specificity” (true-neg-
ative rate) corresponding to each of three different defini-
tions of positive test result: “high probability,” “high or in-
termediate probability,” and “high, intermediate, or low
probability” [3]. These results of the study are readily con-
vertible to estimates of the likelihood ratios corresponding
to each of the four possible test results (“high probability,”
etc.). When coupled with whatever prior probability exists
for PE, these are taken to provide for calculation of the
probability that PE is present, using Bayes’ theorem [7].

As for comparison of alternative tests, equally ingrained
is that idea of using a predefined ordinal scale of test results,
such as the one in the PIOPED, and then proceeding to
comparison in terms of the respective areas under the “re-
ceiver operating characteristic” (ROC) curve [8–11].

 

CRITICAL QUESTIONS

 

Taking some distance from this prevailing outlook and cul-
ture in the evaluation of diagnostic imaging tests, two im-

portant, interrelated questions arise. First, would it not be
much more natural to take the development of categories of
illness probability (“high probability,” etc.)—insofar as
they are of interest at all—to be the first-order objective of
the study rather than an 

 

a priori

 

 constraint for it? In other
words, why define the readings-based categories of illness
probability in advance of the study, given that consensus on
these categories in the absence of the actual data is difficult
at best? Second, is it not better to ignore completely such
categories, to adopt that alternative outlook even more rad-
ically, and thus to address the question of how, in the do-
main of the study, the prevalence of the illness is a joint
function of the readings on the images, possibly together
with documented diagnostic indicators other than those
from the imaging? Were such a function to be addressed,
the first-order result of the study would provide for deriving
an evidence-based, actual diagnostic probability estimate
from any given set of readings (descriptive) from the images
(possibly together with the associated other information on
the patient).

Our main concern in this article is to argue that, espe-
cially in the context of imaging diagnostics, the prevailing
outlook should give way to the alternative one. Toward this
end, we present reanalyses of the PIOPED data from the al-
ternative vantage and address the theoretical issues sur-
rounding these.

 

THE ALTERNATIVE OUTLOOK: ELEMENTS

 

The PIOPED “interpretation categories” were defined on
the basis of the following input readings/data [3]:

• Number of large segmental (i.e., 75% or more of a seg-
ment) perfusion defects that were mismatched (i.e., with-
out corresponding ventilation or roentgenographic ab-
normalities or substantially larger than these)

• Number of moderate segmental (i.e., 25%–75%) mis-
matched perfusion defects

• Number (0, 1–3, 4

 

1

 

) of small segmental (i.e., 25% or
less) mismatched perfusion defects with normal roent-
genogram

• Presence (yes, no) of any perfusion defect with a corre-
sponding but substantially larger roentgenographic ab-
normality

• With respect to large or moderate segmental perfusion
defects with matching ventilation defects (equal or
larger in size), with or without matching roentgeno-
graphic defects (none or substantially smaller), maxi-
mum number of involved segments 

in a single lung, and
in a single lung region

• Presence (yes, no) of nonsegmental perfusion defect(s)
(effusion, cardiomegaly, etc.)

• Presence (yes, no) of exact correspondence between per-
fusion outlines and the shape of the lungs as seen on the
roentgenogram.
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We defer to the PIOPED investigators’ judgment that
these are the descriptors to be abstracted from the images,
that is, that the PE-diagnostic information in the images is,
as a practical matter, imbedded in these descriptors of the
images. Judgments of this type are, after all, unavoidable
with respect to whatever category of inputs—history, physi-
cal examination, blood chemistry—in diagnostic research,
and by no means is it our purpose here to advocate alterna-
tive radiologic judgments.

On the other hand, we do not share the PIOPED investi-
gators’ judgment as for how to translate these component
descriptors of the images into an index, unidimensional, of
the images’ suspiciousness, of the degree to which they
point to the presence or absence of PE. Instead, as was
pointed out earlier here, the alternative outlook calls for
learning about this integration from the study data, with
this inquiry at the very core of the study concerns in this
framework. So long as this option exists, clinging to pre-
study classification schemes in research is contrary to the
very idea of what research is about.

This problem is familiar from various contexts in medical
and other sciences. The beginning is to translate the de-
scriptors into a set of numerical “variates.” In this, a binary
descriptor typically becomes an “indicator” variate taking
on value 1 for a designated one of the two categories, for
the category that it “indicates,” 0 otherwise; if the descrip-
tor has three categories, an indicator is defined for two of
these, etc.; and the tally of something might translate to
two variates, a qualitative one indicating that the tally is at
least 1, and a quantitative one representing the number per
se or a transform of this; and, analogously for whatever
other type of quantitative descriptor. With the variates (X

 

i

 

)
thus defined, the concern classically has been to find a suit-
able “weight”—coefficient (b

 

i

 

)—for each, leading to a lin-
ear discriminant score S 

 

5

 

 a 

 

1

 

 b

 

1

 

X

 

1

 

 

 

1

 

 b

 

2

 

X

 

2

 

 . . . , one whose
distribution is maximally different between the categories
of interest, here presence and absence of PE [12]. In the last
three decades, this classical outlook has become a subissue
under the broader topic of logistic regression analysis
[13,14] based on the defined variates, providing not only
the discriminant scoring function but also its associated
probabilities for the discriminated categories (e.g., PE
present versus PE absent). It is a particular feature of logis-
tic formulation for the regression model that the coeffi-
cients (b

 

i

 

) in the linear “argument” (a 

 

1

 

 b

 

1

 

X

 

1

 

 

 

1

 

 b

 

2

 

X

 

2

 

 . . .)
in it are invariant over the prevalence of the category of in-
terest (PE) in the study experience; only the “intercept” (a)
depends on this.

In this spirit, we fitted the logistic regression model spec-
ified in Appendix 1 to the PIOPED data on the 731 in-
stances in which the V-Q test was satisfactorily carried out
and the definitive diagnosis was established by angiography
(supplemented by follow-up). Care was taken not to in-
volve too many variates in the specification of that full
model so as to avoid the problem of “over-fitting.” In that
full model, provision was made for different degrees of rele-

vance for increasing number of mismatched perfusion de-
fects, 

 

a priori

 

 presuming that a linear term would represent
too strong a dependence. That model was then reduced in
the usual stepwise fashion until all of the remaining coeffi-
cients differed “significantly” (two-sided P 

 

,

 

 0.10) from
zero. The result was, 

 

a priori

 

, of the form

 

(1)

 

where P represents the estimated proportion with PE (the
estimated probability of the presence of PE), e the base
(2.72) of natural logarithms, and S the linear discriminant
scoring function from the regression analysis. The latter
took the form of:

 

(2)

 

X
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5

 

 number of large or moderate perfusion defects, 
mistmatched

X

 

2

 

 

 

5

 

 maximum number of matched perfusion defects in 
any lung region

X

 

3

 

 

 

5

 

 indictor (see above) of X

 

1

 

 greater than or equal to 1

X

 

4

 

 

 

5

 

 indicator of X

 

2

 

 greater than or equal to 1

X

 

5

 

 

 

5

 

 indicator of presence of any perfusion defect with a 
corresponding but substantially larger roentgenographic 
abnormality

The values for the probability of PE that Equation 1
yields with this scoring function range from 12% to 90%,
with 25th, 50th, and 75th centiles of the distribution equal
to 15%, 17%, and 67%, respectively, based on the PIOPED
data. For selected ranges of the estimated probability, Table
1 shows the actual frequencies (prevalence) of PE, together
with the corresponding numbers of patients. It is seen that
this diagnostic function placed 29% of the patients in the
greater than 60% probability range (a high probability of
PE relative to the overall prevalence of 34%), and 60% of
them in the less than 20% range (a low probability of PE in
the same sense), thus leaving only 11% in the intermediate,
20 to 60% range.

For comparison, Table 2 shows the results of our applica-
tion of the 

 

a priori

 

 classification used in the PIOPED. Strik-
ingly, while 18% of the patients fell in the “high probabil-
ity” category and 85% of these had PE, the majority, 62%,
of the patients fell in the “intermediate” probability cate-
gory, in which the prevalence of PE was 25%; and only
20% of the patients fell in the two lowest-probability cate-
gories, representing, approximately, the less than 20%
probability range. The pattern is distinctly less attractive
than that in Table 1.

The probability estimates provided by Equation 2 (in
conjunction with Equation 1) are predicated on the overall
prevalence of PE in the dataset leading to the scoring func-
tion in Equation 2, this prevalence—the mean P of the

P 1 1 e S–+( )⁄= ,

S 2.02– 2.61 X1( )1 8⁄ 0.12 0.41X3+( )X2

0.65X4 0.34X5+ +

–+=

;
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posttest estimates based on the data—being 251/731 

 

5

 

0.34. If the “practice-specific” overall prevalence is P

 

9

 

 (

 

Þ

 

P),
then the scoring function in Equation 2 requires adjust-
ment by the addition of log [P

 

9

 

/(1 

 

2

 

 P

 

9

 

)] 

 

2

 

 log[P/(1 

 

2

 

P)] 

 

5

 

 log[P

 

9

 

/(1 

 

2

 

 P

 

9

 

)] 

 

1

 

 0.65.
As an example of diagnostic probability estimation,

then, the local prevalence of PE in the PIOPED diagnostic
domain might be 25% (as best is known), and the V-Q scan
might show five mismatched segmental perfusion defects
representing at least 25% of the segment, as many as three
matched defects in a single lung region and no perfusion
defect under a roengenographic abnormality. Referring to
Equation 2, the intercept (

 

2

 

2.02) needs to be adjusted by
adding log [0.25/(1 

 

2

 

0.25)] 

 

1

 

 0.65 

 

5
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0.45; X
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 1, and X
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 0. In these terms, S 
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2

 

0.22,
so that antilog (

 

2

 

S) 

 

5

 

 1.24 and, thus, P 

 

5

 

 1/(1 

 

1

 

 1.24) 

 

5

 

0.45 as the estimate of the probability of PE.

 

THE ALTERNATIVE OUTLOOK: EXTENSIONS

 

In accordance with the spirit of the PIOPED, addressed ear-
lier here was the situation in which the radiologist ex-

presses diagnostic probability on the basis of the radiologic
data alone. Yet, ultimately the diagnostic probability that
guides the decision about intervention is based on added
inputs from the patient’s history and physical examination
as well as tests other than imaging. Some aspects of history
are relevant to differential risks for the illness at issue and
its differential-diagnostic alternatives, whereas the other as-
pects of history, together with the physical examination
and nonimaging tests, akin to imaging, address differential
manifestations between the illness and its alternatives.

For the purposes of the ultimate diagnosis, the diagnostic
probability function that addresses the risk information as
well as the nonimaging manifestational information jointly
with the imaging information (readings) is an obvious ex-
tension of what is presented here—in principle, that is. Re-
alistically, though, the radiologist is concerned to under-
stand how to integrate the imaging readings into an
imaging score S

 

i

 

, and to use this for entirely imaging-based
diagnosis, whereas the clinician in direct charge of the pa-
tient might first focus on the rest, on the integration of the
risk and preimaging manifestational information into a
clinical score S

 

c

 

; and the latter, even, might best be ad-

 

TABLE 1.

 

Prevalence of PE by range of estimated probabilty of PE from a logistic regres-
sion model (Equations 1 and 2) together with the corresponding input numbers of pa-
tients, in the PIOPED experience

Estimated 
probability PE prevalence, %

Patients

PE No PE Total

 

80%

 

1

 

89 67 (27%) 8 (2%) 75 (10%)
60–80% 66 91 (36%) 47 (10%) 138 (19%)
40–60% 62 13 (5%) 8 (2%) 21 (3%)
20–40% 21

 

a

 

12 (5%) 45 (9%) 57 (8%)
15–20% 18 42 (17%) 191 (40%) 233 (32%)
10–15% 13

 

b

 

26 (10%) 181 (38%) 207 (28%)
Any 34 251 (100%) 480 (100%) 731 (100%)

 

a

 

Forty-six of the 57 patients had estimates in the 20 to 25% range.

 

b

 

One hundred twenty-six of the 207 patients had the smallest possible probability of PE, obtainable from the
function, 12%.

 

Abbreviations: 

 

PIOPED 

 

5

 

 Prospective Investigation of Pulmonary Embolism Diagnosis; PE 

 

5

 

 pulmonary em-
bolism.

 

TABLE 2.

 

Prevalence of PE by PIOPED’s 

 

a priori

 

 categories

 

a

 

 of interpretation (probability
of PE), together with the corresponding input numbers of patients, in the PIOPED expe-
rience

 

A priori

 

 
probability PE prevalence, %

Patients

PE No PE Total

 

“High” 85 112 (45%) 19 (4%) 131 (18%)
“Intermediate” 25 115 (46%) 340 (71%) 455 (62%)
“Low” 17 19 (8%) 92 (19%) 111 (15%)
“(Near-)normal” 15 5 (2%) 29 (6%) 34 (5%)
Any 34 251 (100%) 480 (100%) 731 (100%)

 

a

 

Our categorization based on the PIOPED definitions and input data.

 

Abbreviations:

 

 PE 

 

5

 

 pulmonary embolism; PIOPED 5 Prospective Investigation of Pulmonary Embolism Di-
agnosis.
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dressed in terms of its components, a risk score Sr and a pre-
imaging manifestational score Sm.

Given such a segmentation of the research issues, leading
to the component scores Sr, Sm, and Si, the ultimately rele-
vant overall scoring function can be developed by fitting a
regression model (logistic) with the independent variates
(Xs) defined in terms of these scores. The fitting would in-
herently account for whatever degree of redundancy there
is among these three input elements in terms of informa-
tion about the presence or absence of the illness at issue.

DISCUSSION

Our orientational proposition is that diagnostic interpreta-
tion of the readings from a (set of) diagnostic image(s)
should not be construed as part of the test itself. Instead,
the test should be construed as ending with the readings
(descriptive) constituting the test result.

Given this conceptualization of an imaging test in diag-
nosis, we strongly propose that a priori definition of a scale
(unidimensional) a result interpretation should be replaced
by logistic regression analysis of the data on image-descrip-
tors, leading empirically to unidimensional scoring of the
multidimensional result and ready translation of this score
to diagnostic probability estimate, possibly with practice-spe-
cific adjustment of the “intercept” in the scoring function.
The logistic regression framework would not only substitute
for the a priori definition of the scale of result interpretation
but also for the Bayes’ theorem framework [1,5] in setting
the posttest probability, as the fitted logistic regression
function in and of itself implies the posttest probability.

Insofar as one wants to think in terms of Bayes’ theorem,
it is to be noted that the posttest probability in these terms
can be put to the form of Equation 1, with S 5 log [P9/(1 2
P9)] 1 log (LR), where P9 is the local pretest probability in
the sense of the local overall prevalence (or the arithmetic
mean of the posttest probabilities) and LR is the likelihood
ratio—the probability of the result among cases divided by
that among noncases of the illness at issue. This means that
in the Bayes’ theorem framework of setting diagnostic prob-
abilities, the requisite LR inputs are readily derived by visit-
ing the logistic regression framework: LR 5 S 2 log [P/(1 2
P)], where P is the overall prevalence in the study data
leading to the scoring function S.

Given that the use of the Bayes’ theorem framework re-
quires the use of the logistic regression approach to address
to requisite likelihood ratios, there really is no point in re-
taining the Bayes’ theorem framework for setting diagnostic
probabilities. The logistic regression framework is sufficient
in itself, and the Bayes’ theorem framework is unworkable
without input from the logistic regression framework so
long as the test result is multidimensional, as is characteris-
tic of diagnostic imaging tests in general.

We thank H. Dirk Sostman, M.D., for providing us with access to the
Prospective Investigation of Pulmonary Imbolism Diagnosis database
and for helpful discussions on the manuscript.
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APPENDIX 1
In addition to the Xs in Expression 2, including X6 5

X2X3, we defined the following independent variates:
X7 5 X1X4

X8 5 X3X5

X9 5 X4X5

X10 5 X1
1/2
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X11 5 X1
1/4

X12 5 number of large mismatched perfusion defects di-
vided by the sum of the numbers of large and inter-
mediate ones

X13 5 number of small mismatched perfusion defects with
normal roentgenogram coded 0, 1, and 2 for 0, 1-3
and 41, respectively, and multiplied by X3

X14 5 indicator of nonsegmental perfusion defects(s) multi-
plied by X3

X15 5 maximum number of matched perfusion defects in a
single lung multiplied by X3

No data are available as to nonsegmental perfusion de-
fects with exact correspondence between perfusion outlines
and the shape of the lungs as seen on the roentgenogram.

Stepwise reduction of the full model having led to the re-
tention of the variates in Expression 2 (with X3 deleted but
X6 5 X2X3 retained), each of the deleted variates was re-
entered alone as an additional one, but none of them made
a significant (one-sided P , 0.05) contribution.

With the final model, the standard errors associated with
the intercept and the coefficients of X1

1/8, X2, X4, X5, and X6

were 0.21, 0.21, 0.13, 0.30, 0.20, and 0.15.


