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10. Check distributional assumptions and choose a different model if needed (in the case of
Cox models, stratification or time-dependent covariables can be used if proportional
hazards is violated).

11. Do limited backwards step-down variable selection.®® Note that since stepwise techniques
do not really address overfitting and they can result in a loss of information, full model fits
(that is, leaving all hypothesized variables in the model regardless of P-values) are
frequently more discriminating than fits after screening predictors for significance.?'4°
They also provide confidence intervals with the proper coverage, unlike models that are
reduced using a stepwise procedure,®%-6*¢5 from which confidence intervals are falsely
narrow. A compromise would be to test a pre-specified subset of predictors, deleting them if
their total y* < 2 x d.f. If the x? is that small, the subset would likely not improve model
accuracy.

12. This is the ‘final’ model.

13. Validate this model for calibration and discrimination ability, preferably using bootstrap-
ping. Steps 7 to 11 must be repeated for each bootstrap sample, at least approximately. For
example, if age was transformed when building the final model, and the transformation was
suggested by the data using a fit involving age and age?, each bootstrap repetition should
include both age variables with a possible step-down from the quadratic to the linear
model based on automatic significance testing at each step.

14. If doing stepwise variable selection, present a summary table depicting the variability of the
list of ‘important factors’ selected over the bootstrap samples or cross-validations. This is
an excellent tool for understanding why data-driven variable selection is inherently
ambiguous. :

15. Estimate the likely shrinkage of predictions from the model, either using equation (2) or by
bootstrapping an overall slope correction for the predictions.** Consider shrinking the
predictions to make them calibrate better, unless shrinkage was built—in. That way,
a predicted 0-4 mortality is more likely to validate in a new patient series, instead of finding
that the actual mortality is only 0-2 because of regression to the mean mortality of 0-1.

8. SOFTWARE

Modern statistical software such as S-Plus3’ on UNIX workstations makes it quite feasible to
perform the extensive calculations required to do the recommended model building steps. The
first author has written a package of UNIX S-Plus functions called Design®® that allow the
analyst to perform all analyses mentioned here including tests of linearity, pooled interaction
tests, model validation and graphical methods for interpreting models. Here are some examples:

# First find optimum transformations relating each predictor to each

# other, and use multiple regression in these transformations to

# impute missing values. Use shrinkage to avoid over-imputing

trans « transcan( ~ age + cholesterol + sys.bp + weight, imputed = T, shrink = T)

cholesterol « impute(trans, cholesterol) # impute missings

sys.bp « impute(trans, sys.bp)

# Fit a Cox P.H. model allowing some interactions with age and

# nonlinearity in cholesterol and sys.bp using restricted cubic splines

# x =T, y = T means store data in fit for future bootstrapping

fit « cph(Surv(fu.time, death) ~ age » (res(cholesterol) + rcs(sys.bp)) +
weight, x =T, y =T, surv =T, time.inc = B)

anova(fit) # automaitic pooled Wald tests

fastbw(fit) # fast backward step-down
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Table II. Candidate predictors and d.f.

Predictor Name  Number of Original levels
parameters

Dose of oestrogen TX 3 placebo, 0-2, 1-0, 50 mg oestrogen

Age in years age 3

Weight index: wt(kg) — ht(cm) + 200 wt 3

Performance rating pf 2 normal, in bed <50% of time, in bed
>50%, in bed always

History of cardiovascular disease hx 1 present/absent

Systolic blood pressure/10 sbp 3

Diastolic blood pressure/10 dbp 3

Electrocardiogram code ekg 5 normal, benign, rhythm disturbance,
block, strain, old myocardial infarct, new
MI

Serum haemoglobin (g/100 ml) hg 3

Tumour size (cm?) sz 3

Stage/histologic grade combination sg 3

Serum prostatic acid phosphatase ap 3

Bone metastasis bm 1 present/absent

# Next validate model, penalizing for backward stepdown variable selection

validate(fit, B = 100, bw = TD # bootstrap validation of accuracy indexes
calibrate(fit, B = 100, bw =T, u = 5) # bias-corrected 5-yr survival calibration
plot(summary (fit)) # plot hazard ratios with confidence limits
nomogram (fit) # draw nomogram displaying how model works
latex (fit) # typeset model equation

The Design library includes a function rcorr.cens for computing the general c-index, and the
function val.prob which produced Figure 1 and also prints a variety of accuracy measures. For
binary and ordinal logistic models and for ordinary linear models, Design has a general
penalized maximum likelihood estimation facility. Design is available in the statlib repository
(Internet address lib.stat.cmu.edw. transcan and impute are separate functions in
statlib which work on UNIX as well as DOS Windows S-Plus. Some other software systems
which have some intermediate-level capabilities include Stata (Computer Resources Center Inc,,
College Station TX), SPIDA (NHMRC Clinical Trials Centre, Eastwood, NSW Australia), and
SAS (SAS Institute Inc., Cary NC).

9. CASE STUDY

Consider the 506-patient prostate cancer dataset from Byar and Green®’ which has also been
analysed in references 68 and 69. The data are listed in reference 70, Table 46, and are available by
Internet at utstat.toronto.edu in the directory /pub/data-collect. These data were from
a randomized trial comparing four treatments for stage 3 and 4 prostate cancer, with almost equal
numbers of patients on placebo and each of three doses of oestrogen. Four patients had missing
values on all of the following variables: wt, pf, hx, sbp, dbp, ekg, hg, bm; two of these
patients were also missing sz (see Table I1 for abbreviations). These patients will be excluded from
consideration.

There are 354 deaths among the 502 patients. If we only wanted to test for a drug effect on
survival time, a simple rank-based analysis would suffice. To be able to test for differential
treatment effect or to estimate prognosis or expected absolute treatment benefit for individual

-
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patients, however, we need a multivariable survival model.> First we consider fitting a full
additive model which does not assume linearity of effect for any predictor. Categorical predictors
will be expanded using dummy variables. For pf we could lump the last two categories since the
last category has only two patients. Likewise, we could combine the last two levels of ekg.
Continuous predictors will be expanded by fitting 4-knot restricted cubic spline functions, which
contain two non-linear terms and thus have a total of 3 d.f. Table Il defines the candidate
predictors and lists their d.f. The variable stage is not listed as it can be predicted with high
accuracy from sz, sg, ap, bm (stage could have been used as a predictor for imputing missing
values on sz, s8).

There are a total of 36 candidate d.f. which should not be artificially reduced by ‘univariable
screening’ or graphical assessments of association with death. This is about 15 as many predictor
d.f. as there are deaths, so there is some hope that a fitted model may validate. Let us also examine
this issue by estimating the amount of shrinkage using equation (2). We use a Cox proportional
hazards model for time until death. The UNIX S-Plus Design library fits the full model using
restricted cubic spline expansions and makes use of Therneau’s survival4 package in statlib”*
to perform the calculations. First we invoke the transcan function and impute functions (from
statlib for any versions of S-Plus) to develop customized non-linear imputation equations for all
predictors and to apply these equations to impute missing values.

# Define function for easy determination of whether a value is in a list
'%in%’ « function (a, b) match (a, b, nomatch =0) > 0

levels(ekg) [levels(ekg) %in% c(’old MI’,'recent MI’)] « 'MI’
# combines last R levels and uses a new name, MI

pf.coded « as.integer(pf) # save original pf, re-code to 1-4
levels(pf) « c(levels(pf) [1:3], levels(pf) [3]) # combine last 2 levels of original
W « transcan(~ sz + sg + ap + sbp + dbp + age + wt + hg +
ekg + pf + bm + hx, imputed =T, impcat = 'tree’)
sz « impute(w, sz) # uses imputation rule w
sg <« impute(w, sg)
age « impute(w, age)
wt « impute(w, wt)
ekg « impute(w, ekg)

dd <« datadist(rx, age, wt, pf, pf.coded, heart, map, hg, sz, sg, ap, bm)
options(datadist = ’dd’) # datadist stores characteristics of raw data

units(dtime) « Month’
S « Surv(dtime, statusl| = ’alive’)

f « cph(8 ~ rx + recs(age,4) + rcs(wt,4) + pf + hx +
res(sbp,4) + res(dbp,4) + ekg + reschg,4) +
res(sg,4) + res(sz,4) + rcs(ap,4) + bm)

The likelihood ratio y? statistic is 140 with 36 d.f. This test is highly significant so some modelling
is warranted. The AIC value (on the x? scale) is 140 — 2 x 36 = 68. The rough shrinkage estimate
15 0743 (104/140) so we estimate that 26% of the model fitting will be noise, especially with regard
to calibration accuracy. The approach of reference 2 is to fit this full model and to shrink
predicted values. We will instead try to do data reduction (blinded to individual y? statistics
from the above model fit) to see if a reliable model can be obtained without shrinkage. A
good approach at this point might be to perform a variable clustering analysis which for our
purposes we will do informally. The data reduction strategy is listed in Table III. For ap, more
exploration is desired to be able to model the shape of effect with such a highly skewed
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Table III. Data reduction strategy (blinded to Y)

Variables Reductions d.f. saved

wt Assume variable not important enough for 4 knots 1
Use 3 knots

pf Assume linearity 1

hx, ekg Make new 0, 1,2 variable and assume linearity: 5

2 = hx and ekg not normal and benign,
1 = either, 0 = none

sbp, dbp Combine into mean arterial bp and use 3 knots: 4
map =% dpb + { spb

Sg Use 3 knots 1

82 Use 3 knots 1

ap Look at shape of effect of ap in detail, -2

and take log before expanding in spline to achieve
numerical stability: add 2 knots

distribution. Since we expect the tumour variables to be strong prognostic factors we will retain
them as separate variables. No assumption will be made for the dose-response shape for
oestrogen, as there was reason to expect a non-monotonic effect due to competing risks for
cardiovascular death.

heart « hx + |(ekg %in% c('normal’,’benign’))
label(heart) « 'Heart Disease Code’
map « (R*dbp + sbp)/3
label(map) « 'Mean Arterial Pressure/10’
f « cph(8 ~ rx + rcs(age,4) + rcs(wt,3) + pf.coded +
heart + rcs(map,3) + reshg,4) +
res(sg,3) + res(sz,3) + res(og(ap),6) + bm,
x=T,y=T, surv="T, time.inc = 5% 123)
# X,y for predict, validate, calibrate; surv, time.inc for calibrate
The total savings is thus 11 d.f. The likelihood ratio x* is 126 with 25 d.f., with a slightly
improved AIC of 76. The rough shrinkage estimate is slightly better at 0-80, but still worrisome.
A further data reduction might be achieved by using the transcan transformations determined
from self-consistency of predictors, but we will stop here and use this model.
Now assess this model in more detail by examining coefficients and summarizing multiple
parameters within predictors using Wald statistics.

f # writing an object name in S causes it to be printed
Cox Proportional Hazards Model

cph(formula = S8 ~rx + rcs(age, 4) + rcs(wt, 3) + pf.coded + heart + rcs(map, 3) +
rcs(hg, 4) + res(sz, 3) + rcs(sg, 3) + rcs(log(ap), 6) + bm,
x=T,y="T, surv =T, time.inc = 5x12)

Obs BEvents Model L.R. d.f. P Score Score P R2
502 364 126 25 0 138 0 0221

coef se(coef) 2 P
rX = O-2 mg estrogen 3.74e — 03 1.50e - 01 0-0250 9-80e — 01
rx = 1.0 mg estrogen —4231le—-01 1-66e—01 —R-5427 1-10e — 02
rx = 5.0 mg estrogen —-9:73e -~02 1:58e —O01 —-0-6176 537e — 01
age —1-17e—02 2:35e —02 —-0-4995 6-17e — 01

age’ 200e —02 3-86e —-02 0-5190 68:04e — 01
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age’’ 271e —01 495e-01 0-5482 5-84e - 01
wt —248e-02 939 —03 —R8178 8-86e — 03
wt’ 1-84e — 02 1-12e — 02 1-86379 1-0le - 01
pf.coded 228e —01 12le—-01 1-8625 68-25e — 02
heart 4:18¢e — 01 8:08e - 02 51723 2:3le — 07
map 3R4e — 02 849e — 02 0-3817 7-03e — 01
map’ -—-487e—-02 94le—-02 —0-4887 6:37e — 01
hg -1586e—~01 768e—02 —2:0343 4:19e — 02
hg' 7-42e —02 2'10e -0l 0-:3530 7-24e — 01
hg"’ 58088 -~01 1-27e + 00 04014 6-88e — 01
sz 1:00e — 02 1-44e - 02 0-6955 4-87e — 01
sz’ 879 — 03 R37e —02 03715 7-10e — 01
sg 7-18e — 02 7-88e —02 09138 36le —01
88’ —704e —03 9:83e — 02 —0-07186 9-43e — 01
ap —796e—-01 31lle-0l1 —2-5584 1-05e — 02
ap’ 489e + 01 2'18e +01 22482 2466 — 02
ap’’ -—-3.64e+02 1-8%e +02 —2-:2909 R:20e — 02
ap’’’ 4-04e + 02 1-75e +02 23087 21le —02
ap’’”’ —969e+01 4-16e+01 —2-3311 1-97e — 02
bm 328e -02 1-81e —01 01790 8:58e — 01
# The terms with ’, 7, etc. after the name are cubic spline nonlinear terms
# The dose effect is apparently nonlinear.
anova(f) # output was actually typesetted automatically using latex(anova(f))

# latex requires the print.display package from statlib

There are 12 parameters associated with non-linear effects, and the overall test of linearity
indicates the strong presence of non-linearity for at least one of the variables
age, wt, map, hg, sz, sg, ap (see Table IV). There is a difference in survival time between at
least two of the doses of oestrogen.

Now that we have a tentative model, let us examine the model’s distributional assumptions. As
mentioned in Section 4.3, the Schoenfeld partial residuals are an effective tool for checking the
proportional hazards assumption in the Cox model. Grambsch and Therneau’? have modified
these residuals so that smoothed plots of them estimate the effect of predictors on the log
instantaneous hazard rate as a function of follow-up time. Their scaled residuals estimate f(t), the
regression coefficient as a function of time. A messy detail is how to handle multiple regression
coeflicients per predictor. Here we do an approximate analysis in which each predictor is scored
by adding up all the terms in the model to transform that predictor to be optimally related to the
log hazard (at least if the shape of the effect does not change with time). In doing this we are
temporarily ignoring the fact that the individual regression coefficients were estimated from the
data. For dose of oestrogen, for example, we code the effect as 0 (placebo), 0-0037 (0-2 mg),

—0421 (1.0 mg), and —0-0973 (5.0 mg), and age is transformed as —0-0117 age + 002 age’
+ 0-271 age’’, which in most simple form is

—1-17x 10" 2age + 3-48x 10" 3(age — 56)> + 471x 10" *age — 71)%
—101x1073(age — 75)3 + 509x 10~ *(age — 80)3
where (x) . means to ignore that term if x < 0, and the knots for age are 56, 71, 75 and 80 years.

In S-Plus the predict function easily summarizes multiple terms and produces a matrix (here,
z) containing the total effects for each predictor. Matrix factors can easily be included in model
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Table IV. Wald statistics for S

x? df. P
rx 8-38 3 0-0387
age 12-85 3 0-0050
Non-linear 818 2 0-0168
wt 8-87 2 00118
Non-linear 2:68 1 0-1014
pf.coded 347 1 0-0625
heart 26-75 1 <0-0001
map 0-25 2 0-8803
Non-linear 0-24 1 06272
hg 11-85 3 0-0079
Non-linear 692 2 00314
sz 10-60 2 0-0050
Non-linear 0-14 1 07102
sg 314 2 0-2082
Non-linear 0-01 1 09429
ap 13-17 5 00218
Non-linear 12:93 4 00116
bm 0-03 1 0-8579
TOTAL NON-LINEAR 3028 12 0-0025
TOTAL 12808 25 <0-0001

formulae.

# required x = T above to store design
# matrix

Z « predict(f, type = terms’)

f.short « cph(S ~ z,x=T,y=T) # store x, y so can get residuals

The fit f.short based on the matrix z of single d.f. predictors has the same LR y? of 126 as the fit
f, but with a falsely low 11 d.f. All regression coefficients are unity.

Now get scaled Schoenfeld residuals separately for each predictor and test the proportional
hazards assumption for each using the ‘correlation with time’ test. Also plot smoothed trends in
the residuals. The plot method for cox. zph objects uses restricted cubic splines to smooth the
relationship.

phtest « cox.zph(f.short, transform = ’identity’)

phtest
rho chisq o]

rx 0-12965 6-5451 00105
age —008911 2.8518 00913
wt —0-00878 0-0269 0-8697
pf.coded -0-06238 1-4278 02321
heart 0-01017 0-0451 0-8319
map 0-03928 0-4998 04796
hg -006678 17368 0-1876
sz —-0-08262 0-9834 03214
sg -—0042786 06474 04210
ap 00137 0-0558 0-8133
bm 0-04891 09241 0-3364
GLOBAL NA 153776 0-1659
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Beta(t) for rx

Time

Figure 2. Raw and spline-smoothed scaled Schoenfeld residuals for dose of oestrogen, non-linearly coded from the Cox
model fit, with + 2 standard errors.”!

Only the drug effect significantly changes over time (P = 0-01 for testing the correlation rho
between the scaled Schoenfeld residual and time), but when a global test of PH is done penalizing
for 11 df., the P-value is 0-17. A graphical examination of the trends does not find anything
interesting for the last 10 variables. A residual plot is drawn for rx alone and is shown in Figure 2.

plot (phtest, var ="rx’)

We will ignore the possible increase in effect of oestrogen over time. If this non—-PH is real,
a more accurate model might be obtained by stratifying on rx or by using a time x rx interaction
as a time-dependent covariable.

Note that the model has several insignificant predictors. These will not be deleted, as that
would not improve predictive accuracy and it would make confidence intervals for B or for
predicted survival probabilities with the correct coverage probabilities hard to obtain.5* At this
point it would be reasonable to test pre—specified interactions. Here we will test all interactions
with dose. Since the multiple terms for many of the predictors (and for rx) make for a great
number of d.f. for testing interaction (and a loss of power), we will do approximate tests on the
data-driven codings of predictors. P-values for these tests are likely to be somewhat anti-
conservative.

z.doge « z[,'rx’] # same as saying z[,1] — get first column
z.other « z[,-1] # all but the first column of z
f.ia « cph(8 ~ z.dose * z.other)

anova(f.ia)

Factor Chi-Square d.f. P

z.dose (Factor + Higher Order Factors) 189 11 0062
All Interactions 122 10 0873

z.other (Factor + Higher Order Factors) 134-3 20 0-000
All Interactions 122 10 0273

z.dose * z.other (Factor + Higher Order Factors) 122 10 0273

TOTAL 137:3 21 0-000





