
EPIB 681 Data Analysis in health Sciences II ALR-3.5  de-confounding using multiple logistic regression model

AGENDA Readings (* = ?insufficient)

* Chapter 3.5 of Hosmer and LemeshowReview of handout on confounding from c678

Other ResourcesKey Points  in / Commentary on ALR Ch 3.5 ––
textsWorked Examples

Statistical methods for comparative studies: methods for
bias reduction, by Anderson et al. -- 6 authors, whom I
abbreviate to 'aahovw'. Extract from the relevant chapter 3 on
the c622 website. Diagram for c678 adapted from these
authors

• Salaries of PhD's versus MSc's

- Y measured in $ .. i.e. interval scale

- same principles whether confounder is binary or interval

articles- extreme confounding :  example of Simpson's paradox
• Brand & Keirse: pair of very good expository articles (from Pediatric

and Perinatal Epidemiology 1990; 4: 22-38) on logistic regression
[c678, Resources/Material for sessions 9-11]

• Who is more likely to receive death penalty?

- 2 binary "X" variables • "Appropriate Uses of Multivariate Analysis" (JH) from the Annual
Review of Public Health in 1983.

under Other Resources in the c622 website,
See in particular the sections on two major uses of multiple
regression:- to make comparisons

FAIRER (reduce bias)
SHARPER (increase precision).

- extreme confounding:  example 2 of Simpson's paradox

• Neonatal Mortality (Brand and Keirse article)

- good e.g. of adjustment formula (crude -> adjusted logit)
• Figure in the Blood Pressure and Altitude article under resources for

session 5 of course 678- age confounds M:F comparison, but not vice versa!

Clear and present dangers• Down's syndrome in relation to parity & maternal age
1  In the article CLINICAL PRACTICE GUIDELINE: ENDPOINTS OF

RESUSCITATION, Tisherman reviews a number of studies, including  Maynard,
N 1993 "Assessment of splanchnic oxygenation by gastric tonometry in patients
with acute circulatory, failure. JAMA 270:1203-10." and tells us that

- using age as an interval versus categorical variable

• Autism & MMR
Although a variety of resuscitation endpoints correlated with
surviving critical illness, only pHi at 24h proved an
independent predictor of death by logistic regression

- modeling age-specific dx-rates as log-linear doesn't
reduce the confounding (see exercise)

2 A title of a Table in another article..
Demo

ADJUSTED ESTIMATES OF ASSOCIATION OF
PATIENT CHARACTERISTICS WITH INITIALLY
MISSED DIAGNOSIS, DELAYED TREATMENT, AND
DEATH  FROM  MULTIVARIATE  LOGISTIC  REGRESSION

• Resting on a knife-edge: collinearity

- Excel spreadsheet in session 4 of course 678
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Key Points  in / Commentary on ALR Ch 3.5 –– female ratio of newborn infants (on the 678 website under resources for
session 9-11), where the authors assessed whether the smoking habits of (1)
the mother and (2) the father around the time of conception affects the
likelihood of the offspring being male or female, and one would like to isolate
the two effects (mother, father) from each other.. i.e. have narrow interval
estimates for each beta, i.e.. we seek simultaneous CI's for the two betas
such that the two estimates are not highly correlated (often negatively, if the
two 'exposures' are positively correlated in their distribution in the sample, and
their true effects are in the same direction), or even if there are, are within
narrow ranges

• The multivariable model (3.5 page 65, para 1)

"One goal of such an analysis is to statistically adjust the estimated
effect of each variable in the model for differences in the distributions
of, and associations among the other independent variables " (italics by
JH)
Remark 1: yes, in some analyses (but certainly not in all, and not in cases of

diagnostic and prognostic functions) this might be a goal
• The multivariable model (3.5 page 65, para 4)Remark 2: in many studies, there is not the 'symmetry of role' among the X's

that the authors imply: more often, there is one X variable ('exposure' for want
of a better word) that is of primary interest, and the other X's are a nuisance .
The authors' use of the word each makes the aim broader than it really is.
Indeed, in situations where the focus is on one X, it would be helpful to rewrite
the equation as

g[ µ or π |  X  Z ] =  β0  +   βx X  +   γ z Z

where X is the 'eXposure' cariable, and Z is  the collection of the confounding
and other explanatory variables.    [ H&L do so in group & age e.g  on p66)

Mathematically  speaking, there is a certain symmetry to the regression
equations. In particular, in c621 situations, X2 being a confounder of the
observed X1=>Y relationship implies that X1 is also a confounder of the
observed X2=>Y relationship.  For example, when we study the effect of
duration of  occupational exposure to noise on the prevalence hearing loss, we
are, because of practical research design constraints, forced to confront, and
'adjust for', the simultaneous effect of age. But we would not add as a study
aim "to adjust the estimated effect of age for differences in the
distributions of exposure". Here, age is an extraneous variable, of no
intrinsic interest, one that -- if we could do the study experimentally,
on say animals, we would control directly, rather than by regression
techniques.  [ This is not necessarily so in c681, where rules that
apply in the 'regular' or identity scale, do not always hold in the logit
scale: for example, in Brand and Keirse's first example (Table 9),
age confounds the sex=>mortality relationship (if work with odds) but
sex does not confound the age=>mortality relationship! This goes
back to the rules for 'collapsibility, and confounding: these rules are
different for different effect measure scales (i.e. the rules for
confounding are different for odds ratios than they are for risk
differences. I expect you will cover this again in the more advanced
epidemiology classes).

There may be some situations where two or more X's (e.g. risk factors) are of
simultaneous interest, and one is keenly interested in the true net effect of
each. An example is the article "Parental periconceptional smoking and male:

"If the age (Z) distribution is also the same for the two groups, then a
univariate analysis would suffice and we would compare the mean
weight (Y) in the two groups (X=0 and X=1, " (italics by JH)
Remark 1: YES, in c621, one would get the same estimate whether one omitted

age or not. BUT including age would (if age contributes to the variation in Y,
and presumably it does or else one would not be considering it) reduce the
standard error (i.e. increase the precision) of the estimate.

Remark 2: Paradoxically, this again is one of the places where the message
from c621 does not automatically carry over to c681.. Because, at any X,
the variance of a binary Y is very large relative to its mean, and because this
variance [ π(1-π)]  changes with the mean [ i.e., with π], it is sometimes
difficult to say whether including a Z in a logistic model will decrease or
increase the SE of the beta for the X of interest. Given that, and given that a
sample of n binary Y's does not mean we have n effective degrees of
freedom to fit as many parameters as we wish, we have to be more prudent
about inclusion of Z's that in c621 "might not do much good, but would not do
much harm either."

• The multivariable model (analysis of covariance) (3.5 page 65, para 5)

"This  situation is described graphically in Figure 3.1"
Fig 3.1 is AT THE CORE of the concept of statistical adjustment, and is
repeated with colour, and lines that reflect where the data are, on the right hand
side of page 2 of what was handed out on confounding from c678. JH gives
other examples later in the c681 notes that you are reading now, and points here
to a textbook and articles where this is explained with greater graphical clarity
and impact. The text is Statistical methods for comparative studies: methods
for bias reduction, by Anderson et al. -- 6 authors, whom I abbreviate to
'aahovw'. I have put an extract from the relevant chapter 3 on the c622 website.
Also, under Other Resources in the c622 website, is JH's article "Appropriate
Uses of Multivariate Analysis" from the Annual Review of Public Health in 1983.
It has two sections that explain -- graphically and with a few data points-- two big
uses of multiple regression.. to make comparisons FAIRER (reduce bias) and
SHARPER (increase precision). Finally, to see Fig 3.1 in a real situation, with
much more striking graphics, you could examine the Figure in the Blood
Pressure and Altitude article under resources for session 5 of course 678.

comments/corrections welcomed .. jh feb 9 2004
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Here I adopt, and illustrate confounding, & "adjustment by regression"
for an extreme  'continuous Y" example [607Ch2, Simpson's paradox]

AVERAGE
SALARY

INDUSTRY

70

90

50

30

55
(3/4)70+(1/4)30

(1/8)90+(7/8)50

PhD

10

60

1/8 3/4

MSc

AVERAGE
SALARY

INDUSTRY

MSc PhD

70

90

ACADEMIA

MSc PhD

30

50

OVERALL

MSc PhD

60

55

(3/4)70+(1/4)30

(1/8)90+(7/8)50
5a.

PROC REG  DATA = salary ;

MODEL salary = PhD industry;

FREQ number;

5b.
        Estimates  SE
INTERCEP    30      0
PHD         20      0
INDUSTRY    40      0

Average Salary = 30 + 20 if PhD + 40 if Industry1.

DATA salary;
INPUT phd industry salary number;
LINES;
       0     1       70    750
       1     1       90    125
       0     0       30    250
       1     0       50    875
;

2.

PROC MEANS  DATA = salary MEAN;
 CLASS PHD; VAR salary;
 FREQ number;

  PHD   N Obs  Mean_SALARY
--------------------------
No  0    1000      60
Yes 1    1000      55

6a.

PROC MEANS DATA = salary MEAN;
CLASS PHD; VAR industry;
FREQ number;

6b. Distrn. of CONFOUNDER

         Mean of (Indicator)
   PHD     variable INDUSTRY
 No  0         0.750  (3/4)
Yes  1         0.125  (1/8)

From 2 or from 3b ("CRUDE") $value of PhD:  —5
From 4b or from 5b ("NET")   $value of  PhD: +20

Net (adjusted) value of PhD =

                   "CRUDE" value

                       MINUS

 NET value of Industry × ( π[Industry|PhD] — π[Industry|non-PhD] )

                        —5

                       MINUS

               40  ×  (  — 0.750 )      = —5 -40(—0.625) = +20

3a

PROC REG DATA = salary ;
  MODEL salary = PhD ;
  FREQ number;

3b.   Dep. Var: SALARY

        Estimate   SE
INTERCEP   60    0.49

PHD        -5    0.69  CRUDE 

4a.

PROC SORT DATA = salary;
            by industry;

PROC REG  DATA = salary;
           by industry;
MODEL salary = PhD;
FREQ number;

4b.

     INDUSTRY = 0  INDUSTRY = 1

       Estimate SE  Estimate SE

INTERCEP  30     0     70     0
PHD       20     0     20     0

On the "participation in industry" scale, PhDs are at 0.125, and
non_PhD's at 0.750, a difference of 0.625; the salary gap from 'not
in industry' (industry = 0, ie academia) to in industry (=) is 40K
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% receiving 
Death Penalty

White 
Victim

10%

15%

20%

5%

Defendant
White Black WhiteWhite BlackBlack

Black 
Victim

Overall

Any resemblance to 
recent events is 
"purely co-incidental"

PROC LOGISTIC data=a;
MODEL n_death/n_cases
         = de_black ;
  "CRUDE"

 -2 LOG L  226.513(null) 226.291(model)

       Estimate  SE  ChiSq P-value  OR
INTERCPT  -2.00 0.24  67.3  0.0001  .
DE_BLACK  -0.16 0.35   0.2  0.6382 0.847

PROC FREQ data=b;
TABLES
 vi_black*death*de_black
 / measures cmh;
 WEIGHT nmbr;

DEATH     DE_BLACK          VI_BLACK=0
    |     0  |     1  | Tot
 ---+--------+--------+
  0 |    132 |     52 | 184
    |  87.42 |  82.54 |
 ---+--------+--------+
  1 |     19 |     11 |  30
    |  12.58 |  17.46 |
 ---+--------+--------+
Tot      151       63  214
                           OR    1.47
                             (0.65,3.3)

Estimates of
Common OR

M-H ** 1.574 0.701 3.533
Logit* 1.454 0.667 3.173

** test-based.

* correction of 0.5 in
every cell of tables that
contain a zero.

DEATH     DE_BLACK          VI_BLACK=1

    |       0|       1|  Total
 ---+--------+--------+
  0 |      9 |     97 | 106
    | 100.00 |  94.17 |
 ---+--------+--------+
  1 |      0 |      6 |   6
    |   0.00 |   5.83 |
 ---+--------+--------+
 Tot       9      103   112

             OR not computed - 0 cell

data a;
INPUT
   de_black
       vi_black
            n_death
                 n_spared;

n_cases = n_death + n_spared;

LINES;   
      0    0  19   132
      0    1   0     9
      1    0  11    52
      1    1   6    97
;

data b; set a;
death=1; nmbr = n_death ; output;
death=0; nmbr = n_spared; output;
PROC PRINT;
VAR de_black vi_black death nmbr;

DE_BLACK VI_BLACK DEATH  NMBR

    0        0      1      19
    0        0      0     132
    0        1      1       0
    0        1      0       9
    1        0      1      11
    1        0      0      52
    1        1      1       6
    1        1      0      97

PROC LOGISTIC data=a;
MODEL n_death/n_cases =
   de_black vi_black ;
OUTPUT OUT=fitted
PREDICTED = fitted_p ;

*cf 0.266     OR (crude)
victim white  1    (ref)
victim black  0.347

 -2 LOGL  226.5(B0)  219.1(B0,B1,B2)
ChiSq: 7.4 with 2 DF (p=0.0243)

Var.        Est. SE  ChiSq  P    OR

INTERCPT  -1.95 0.25 63.9  0.00   .
DE_BLACK   0.44 0.40  1.2  0.27  1.553
VI_BLACK  -1.32 0.52  6.5  0.01  0.266*

PROC FREQ data=b;
  TABLES death * de_black /
     cmh norow nopercent;
  WEIGHT nmbr;
                     "CRUDE"
Type of
Study  Method   OR       CI
------------------------------
C-C    M-H    0.847  0.42 1.69
      Logit   0.847  0.42 1.69

          DE_BLACK

DEATH |   0   |    1  | Total
 -----+-------+-------+
    0 |   141 |   149 | 290
      | 88.1% | 89.8% |
 -----+-------+-------+
    1 |    19 |    17 |  36
      | 11.9% | 10.2% |    (11%)
 -----+--------+--------+
Total    160      166   326

PROC PRINT
    data=fitted;
VAR de_black
    vi_black
    fitted_p;

DE_BL VI_BL FITTED_P OBS_P #OBS #FITTED
  0     0    0.1237  0.1258  19    18.7
  0     1    0.0362  0.0000   0     0.3
  1     0    0.1798  0.1746  11    11.3
  1     1    0.0551  0.0583   6     5.7

NB: 4 proportions modeled by 3
parameters: close to 'saturated' model.

Other eg's : neonatal mortality (Brand/Keirse); Down's, parity, age.
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