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Key Points  in / Commentary on ALR • Fitting the multiple logistic regression model (2.3 pp 33-36)

• The multivariable case (2.1 page 31, para 1) The relevant items to be highlighted in this section are:
1. The idea of 'information' and the structure of the entries defined by

equation 2.3 (on the diagonal) and 2.4 (off diagonal) elements of
the 'information matrix'. The key is that the amount of 'information'
about the parameters (a) is bigger if one has a bigger n (note that
the information is a sum over the n observations) and (b) that
information -- for logit regression -- is bigger if one is closer to π=0.5
and smaller if one is closer to π=0.  To see this, examine the values
of π(1 – π) for various values π. At π=0.5, the product is 0.25, while
at π=0.1, it is only 0.09. This is in contrast to the 'information' when
dealing with/modeling  π itself .. where the greatest variability and
uncertainty (least information) is when one is near π=0.5, and
greatest when near π=0 or π=1. In other words, the odds is most
stable at =0.5, where the odds is 1. Sample proportions are least
stable at π=0.5.

I like this better than the often used term 'multivariate' (as in 'they
controlled for V W X in a multivariate analysis'). In mathematical
statistics, and in disciplines such as psychology, 'multivariate' means
'multiple Y values' e.g., a multi-dimensional responses variable based
on say different scales, or multiple binary and other-scaled outcomes
in a clinical trial (e.g., cure or not, side effect or not, good quality of
life, ...) on the left side of the equation. Glantz in his regression
textbook makes the same distinction between 'multivariate' and 'multi-
variable'.

So here, 'multivariable' means  '2 or more X terms in regression'

Incidentally, JH argues that one can learn most of the principles of
'multivariable' (i.e. multiple) regression from  just 2 regressor terms.

• Additional topic: design (indicator, dummy) variables for categorical
independent variables (2.1 page 31, para 1) 2. think of information as the reciprocal of variance, and vice versa.

Woolf's method of combining estimates from different strata was to
use the reciprocal (inverse) of the variance, i.e. to use weights
proportional to the amount of information.

This explicit quantification of 'information' is a by-product of the
Likelihood approach to estimation; the amount of 'information' in
an observation is not so evident in other estimation schemes, such
as least squares, where there is no probability model to help
quantify things.

This brings up the distinction between a variable  and the number of
terms in the regression model needed to represent it. (as we will see, to
represent a variable with k levels, we use k-1 indicator terms. It explains
why, if one had just one variable (e.g. 'race', with 3 categories), the
regression is considered 'multivariable'. Race is 1 variable, but requires
2 indicators (plus the '1' associated with the intercept, to represent all
3 categories.

• Coding schemes for categorical independent variables (2.2 page 32)

3. Unfortunately, unless one has very well positioned values of the X
'vectors', the variance of a parameter estimate is not simply the
reciprocal of the negative of the term in equation 2.3. This is
because the estimation is for all parameters simultaneously, and the
degree to which the different components of the X vector are
collinear affects how precise the estimates are for the coefficient
(parameter) associated with each component. So the inverse of the
'information matrix' is not readily computed by hand.

None of this discussion is particular to logistic regression.. it is a 'right
hand side of the equation' topic.

By the way, JH's preference is that 'you make your own' indicator
variables, rather than rely on the software to make them (where you
cannot always get the reference value you want)

Another issue at this stage: the coding scheme shown on p32 (having
a reference category, and indicators for the other categories, is just
one of many possible coding schemes . Watch out that the 'default'
coding scheme used by your software is what you think it is (and the
default can change from PROC to PROC in SAS, and is different in
SPSS). The coding schemes are discussed in Chapter 3.

4. The variance-covariance matrix of the beta_hats is obtained by
adding a COVB option in the MODEL statement in SAS, or issuing
the (post-estimation) 'vce' command in Stata. We already saw these
for the simple logistic model in Chapter 1, since even though the
equation had only 1 'X' variable (age in worked example, PSA in
homework exercise), the regression equation had 2 terms (beta_0
and beta_1).

5. If the x's in equation 2.3 were already 'centered' if each x had a
mean of zero, then it is clear that the 'information' from an
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observation with a large x (i.e. a value further from the mean) is
more informative about the parameter than one near the middle.
This is intuitive: to measure slopes more precisely, the most useful
observations are those at the extremes of x.

• Testing for significance of the  model (2.4 page 36-40)

A little precision of language would help here:

What the authors are referring to is an OVERALL (omnibus) test of

H0: all 5 beta_s ( i.e. all except beta_0) are ZERO

  [effectively, that model is simply logit[π] = beta_0 ]
vs.

Halt: one of more of 5 beta's is NON-ZERO

This is the same test that is paraded out as the overall F test in regular
linear regression.. we are seldom interested in testing this H0, and are
often more interested in WHICH variables matter? HOW MUCH do they
matter? HOW WELL do they triage the probabilities into those closer to
0, and those closer to 1 (as in diagnostic and prognostic functions) and
[for confounding situations] WHAT is the adjusted coefficient of the
'exposure' of primary interest?

Yet, because of the way the test statistic is placed prominently on
printouts, many 'hoping for something significant' researchers fix their
gaze on the overall (global) test first, even though it is seldom their
research focus.

• Worked example: Low Birthweight  (2.2 pages 35 36)

Before getting into details, take note of the overall proportion of low
birthweight babies: 59/189 or 31% -- a VERY HIGH proportion. (usual
in western populations is maybe 4-10%)

Notice also the 59:130  or 'odds' of 0.45:1. The log of this odds is
–0.79 -- the starting point for our 'null' logistic regression, the same
beta_0 coefficient obtained by simply fitting the model

In SAS in Stata

PROC LOGISTIC DESCENDING; logistic low
MODEL low =  ; logit

It is also helpful, at this point where the model is minimal, to calculate
the logLikelihood, against which all improvements will be assessed.

If (without any covariates) everyone has the same 31% chance to be
'low', then the probability of observing the 59 : 130 split we did is

L = (0.31 to power of 59 ) x ( 0.69 to power of 130)

take log (natural) of this  to get

logL = 59 x log(0.43) + 1`30 x log(.69) =  –117.338

which, apart from rounding, agrees with the  –117.336 reported by
Stata or SAS.

• Before concluding that (any or) all coefficients are non zero
(middle of p37)

As you know from your other regression course, this is a tricky issue. Any
such a statement must say which other terms are included in the
model. And it can be misleading to look at the Wald test (each
beta_hat divided by its SE) in a table such as Table 2.2 and conclude
that 'lwt and possibly race were significant while age and ftv were not'

The individual test statistics and p-values in Table 2.2 are in relation
to "variable entered last' hypotheses.. and the p-values could change
radically if some of the other variables in Table 2.2 were not included
in the model. And one shouldn't drop 2 variables at once: one should
do things in a careful sequential order.. (if two variables were highly
collinear, and the (common) variable they represent is an important
predictor, one could obtain misleading (non-significant) p-values for
each if both are included in the model.. and so dropping both,
because neither is significant in a model that includes both, would be
inappropriate.

The likelihood ratio test comparing the model with 6 terms (Table 2.2)

• Worked example: Fitted model ;  Table 2.2  (2.3 page 36)

We should spend some time inspecting (at least the signs of the
coefficients in ) Table 2.2 and try to draw the relationships implied by
the fitted equation, both in the π scale and in the logit[π] scale

For example what if we plotted p_hat versus lwt ? against age ?
the fitted logits versus lwt ? against age ?
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and 4 terms (Table 2.3) is a better way of testing the value of the two
deleted variables age and ftv.

Note also the analogy here with partial F tests in regular regression
and same "degrees of freedom for test = difference in size of models"
idea

One compares the difference between the R-sq in a model with 6
terms, and its counterpart in a model with 4 terms using as a reference
distribution, the F distribution with 2 degrees of freedom in the
numerator -- and n-6 in the denominator.

In the limit, with a large n, under the null , 2 times the F[2, n-6]
statistic has a distribution close to a chi-square distribution with 2
degrees of freedom -- i.e. the 2 tests are the same, With binary Y's, we
don't spend degrees of freedom estimating a separate variance
parameter for the variation of Y around its expectation-- we assume it
is Bernoulli.. i.e. it is like having an infinite number of degrees of
freedom in the denominator  of the (partial) F statistic -- thereby
making it like a chi-square statistic.

• Confidence Intervals (still on logit scale) (2.5 pp. 40-)

You will need to be able to do such calculations by hand, in cases
where your are interested in effect modification (interaction)

and so it is worth understanding the structure of eqn 2.7 and being
able to do the calculations without getting muddled.. fortunately, the
largest dimension you will have to deal with is usually 2, and not the 4
dimensional example in page 43.

What is involved here is the variance of a linear combination of
random variables, using a rule that you probably had (in a simpler
version) in 607

There, you probably saw

   Var[ Y1 + Y2 ] = Var[Y1] + Var[Y2] ... if Y1 and Y2 uncorrelated

and you may have seen the more general version

   Var[ Y1 + Y2 ] = Var[Y1] + Var[Y2] + 2 Cov[Y1, Y2] ...  general

And, you may have seen the rule fro the variance of a weighted
average of two uncorrelated r.v.'s

 Var[ w1.Y1 + w2.Y2 ] = w1
2.Var[Y1] + w2

2.Var[Y2] ...    if corr[Y1,Y2]=0

or even the general case

Var[ w1.Y1 + w2.Y2 ]=w1
2.Var[Y1] + w2

2.Var[Y2] + 2 w1 . w2 .Cov[Y1,y2]]

Then, equation 2.7 is just the general case of this, for a weighted sum
of (p+1) random variables

beta_0_hat to beta_p_hat --

the estimated coefficients are the random variables,

and the x's used with them (in eqn 2.6) are the weights.

• Likelihood Ratio test of a categorical variable (2.4 page 38)

This is an important warning.

Also, this is one situation where one cannot get by with the Wald test
instead of the Likelihood Ratio test. For a single interval predictor
variable, the results of the Wald test (which is a variable added last
test) and the Likelihood Ratio test will often agree closely. Here, too,
the Wald test is a z-test, and its square is therefore a chi-sq statistic with
1 df.
BUT since the (k-1) indicator terms for a (k-category) categorical
variable are automatically correlated, one has to be doubly careful
making decisions about any one category.. and one also has the
'arbitrariness of the coding scheme to contend with .. the Likelihood
ratio test (of the null hypothesis that π is the same across all
categories, all other variables being equal) is the same no matter what
coding scheme is used (This is also a favourite phd exam question).

• Wald and Score tests (2.4 page 39)

Say with Likelihood Ratio tests (& univariate Wald tests if applicable)
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A useful way to keep the calculations straight is to form a 2 way table,
for example with a linear combination of 3 random variables:

Var[ w1.Y1 + w2.Y2 + w3.Y3]

Remember that

Var[Y1] is just the covariance of Y1 with itself

Cov[Y1,Y2] is the same as Cov{Y2,Y1]

(Cov is a scaled correlation; correlations are symmetric).

For the ugly worked example ion page 4, here is the scheme
(if I haven't transcribed incorrectly .. it doesn't help that H&L write the
equation with the beta_0_hat first but Table 2.4 has it as the last row
and column):

beta_0
1

lwt
150

ir_black
0

ir_other
0

1 0.7143 -0.005211 0.0226 0.1272

150 0.000041 -0.000647 0.000036

0 0.2382 0.0532Set the table up this way:

0 0.1272
w1 w2. w3

It is hard to see on the page of arithmetic, but laying it out this way,
with two of the weights being zero, means that we can dispense with
all but the 4 products in the top left. They spared us the example of a
150 lb black woman, where we would have had

w1 Var[Y1] Cov[Y1,Y2] Cov[Y1,Y3]

w2. Cov[Y1,Y2] Var[Y2] Cov[Y2,Y3]

w3 Cov[Y1,Y3] Cov[Y2,Y3] Var[Y3]

1 150 1 0
Now , make the 9 products of the w in the row, the w in the column,
and the variance or covariance entry in the covariance matrix (the
part inside the border)

1 0.7143 -0.005211 0.0226 0.1272

150 0.000041 -0.000647 0.000036

1 0.2382 0.0532
w1

2 . Var[Y1] w1 . w2 . Cov[Y1,Y2] w1 . w3 . Cov[Y1,Y3]
0 0.1272

w1 . w2 . Cov[Y1,Y2] w2
2 . Var[Y2] w2 . w3 . Cov[Y2,Y3]

and 9 products to keep track of.

AND, if you adopted another coding scheme for race, you cold have
had 4 non-zero weighs, and 16 products to assemble and sum.

w1 . w3 . Cov[Y1,Y3] w2 . w3 . Cov[Y2,Y3] w3
2 . Var[Y3]

Now , add the 9 products. You will see that the 3 diagonal elements
are the first summation in eqn 2.7. You will also see that the entries
above the diagonal have identical counterparts below it -- because of
symmetry. So instead of adding 6 other products, you can add the 3
above the diagonal, and double their sum.

comments/corrections welcomed .. jh feb 1 2004
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