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What Happens When a1 X 1 X r Die is Rolled?

Peter K. DUNN

This article examines the probabilities of outcomes from rolling
dice with the dimension 1 x 1 x r for various values of . Exper-
iments were conducted by school students and university stu-
dents. The results of the experiments are given and the probabil-
ities examined using a generalized linear model. Notes are also
made about the value of the experiment in teaching the groups
of students.
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1. INTRODUCTION

Dice have been used for centuries in gambling. Probabilities
of various outcomes have been studied since about 1654 when
Blaise Pascal and Pierre de Fermat began discussions. All of
these discussions naturally focus on the use of standard cubic
dice. But what happens if we consider dice of dimensions 1 x
1 x r? (Note that r can be considered the aspect ratio of the die.)

This problem was recently posed to a group of Year 11 and 12
students (ages about 16 and 17) and then a few weeks later
to a small group of undergraduate university students studying
generalized linear models. A picture of the dice in question (see
Figure 1) was presented to the students and the students were
asked a series of questions. Note that both 1 x 1 faces on the
die are labeled with a 6. The students then performed a set of
experiments on some dice constructed for various values of r.

This article has two points of focus: First, the results of rolling
the nonstandard die and the associated probabilities are dis-
cussed. Second, the approach of the two different student groups
is examined. Initially, the Year 11 and 12 students will be con-
sidered followed by the university students. Some results will
then be presented.

2. YEAR 11 AND YEAR 12 STUDENTS

I was asked to conduct a one-hour session for Year 11 and 12
school children at a Maths Day conducted by a local school.
The Maths Day consisted of four one-hour activities throughout
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a day, conducted by willing school teachers and university staff
(namely myself).

As a statistician, I was keen to be involved as previous Maths
Days (and their precursor, Maths Camps) had been devoid of any
statistical activities; I was hoping to change that. The result is
the activity discussed in this article, prompted by a talk by Dave
Griffiths which I had the pleasure of attending at the Australian
Statistics Conference in Adelaide in 2000.

2.1 Preliminaries

Before approaching the problem of rolling a 6 with nonstan-
dard dice, I tried to raise a bit of interest in the old (and po-
tentially uninteresting) problem of rolling dice. I began by ex-
amining some data of actual dice rolls from history [using data
found in Hand, Daly, Lunn, McConway, and Ostrowki (1996);
dataset 131 shows Wolf’s data, the frequency of each face in
20,000 rolls; dataset 263 gives Weldon’s dice data, showing
counts of various outcomes]. We discussed sampling errors and
computed some simple probabilities.

I then showed them Efron’s dice, invented by Bradley Efron.
The dice consist of four cubes as shown in Figure 2. With
Efron’s dice Pr(A beats B) = 2/3, Pr(BbeatsC) = 2/3,
Pr(C beats D) = 2/3, but also Pr(D beats A) = 2/3. The stu-
dents were rather interested in this outcome.

Having created some interest, the students were then asked
about the probabilities of various faces showing up for dice with
dimensions 1 x 1 X r. After showing a picture of the die for
clarity (see Figure 1), they were asked to consider the plot of r
against the probability of rolling a 6, say p. Many students were
not sure, though some proposed linear solutions while others
suggested curved and sigmoid shaped solutions.

As a guide, students were asked to consider some special
cases: When r = 1 (standard cubic dice), as r — O and as r —
0o. They were then asked to make some guesses forr = 2, r =
0.75, and r = 0.5. After discussing these issues, most students
were happy to accept that a linear relationship was unlikely.
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Figure 1. A noncubic die. Notice that the 6 is on both 1 x 1 faces on
the die.
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Figure 2. Efron’s dice. For these dice, on average A beats B, B beats
C, C beats D and D beats A.

I then suggested an experiment be conducted to find the form
of the relationship (fortunately, I had suitable equipment with
me).

The relationship is interesting; it is not symmetric about r =
1, for example, since the probability of obtaining a 6 thenis 1/3
(remembering the two 1 x 1 faces are both marked with a 6),
which is not halfway between the limits of O and 1.

2.2 Experimentation

The idea of an experiment was initially treated with enthusi-
asm by approximately half the students. Nonetheless, the dis-
cussion of how to conduct the actual experiment was engaged
in by all students with an increasing degree of interest. The pur-
pose of the experimentation was to promote discussion of some
statistical concepts using a concrete example, and to then have
the students conduct a simple experiment.

Some of the questions posed to the students included:

1. What values of r should we use, and why?

2. How many times should we roll each die of side r? Should
there be a different number of rolls depending on r? Ex-
plain!

3. What other factors are there that might affect the answers
besides the value of r?

4, How should the data be reported?

5. What steps should be taken to conduct the experiment?

6. How should the dice be rolled?

Naturally, the questions did not have simple correct answers,
and many students seemed (initially at least) to be reluctant to
answer because they did not know the “right” answer. The data
were briefly analyzed; we leave this discussion until Section 4.
First, we discuss the above questions and the student responses.

2.2.1 What Values of r to Use?

The first question was approached with some trepidation. One
student, on seeing the box of tricks 1 had with me, offered the
solution “Whatever you have brought along.”” Some students
thought just a few values of r would be sufficient, while others
were keen for many values of r. After some discussion, most
seemed to agree that lots of dice with values of r near 1 would
be more helpful than having lots of dice with larger and larger
values of 7 (such as r = 2, r = 3, r = 4, and so on). Students
had previously deduced, not using this notation, that p — 0 as
7 — oo and p — 1 asr — 0. It was also noted that if r was
too small (or too large), the probability of rolling a 6 would be
effectively one (or zero) and the notion of an experiment with a
random outcome would then fail.

Having never done the experiment myself, I was not sure of
useful values of r to use either; I was also unsure what constituted

values of r that were too large or too small to remove the random
outcome element. 1 did have, however, a selection of dice with
me which I revealed at this time. The props consisted of three
sets with dice having the following (approximate) values of 7:
0.25, 0.5,0.75,0.85,0.9, 1, 1.1, 1.15, 1.25, 1.5, 1.75, and 2. A
unit was about 5¢cm (2 inches). I divided the students into three
groups for conducting the experiment.

2.2.2 How Many Times Should Each Die be Rolled?

The second question was probably the most keenly discussed
of all, and from that point discussion was more open. Some stu-
dents were of the belief that no rolls were necessary for “small”
and “large” values of r since “everyone knows what the answer
will be” (despite some of their previous answers!). Other stu-
dents, however, were keen to roll dice numerous times in the
hope that an unusual event would appear, and probabilities very
close to, but not exactly, 0 or 1 could be estimated with some ac-
curacy. The students finally decided that 30 rolls for each value
of r would be used.

Although 30 rolls may not seem a large number, it should be
remembered that each of the 12 die would be rolled 30 times for a
total of 360 rolls. There were also pragmatic issues: the potential
for boredom was real, and the discussion thus far had taken about
30 minutés so there was about 30 minutes left. The sample of size
30 therefore represented a compromise between completing the
experiment in a reasonable time and having enough data points
to make some sensible conclusions.

2.2.3  What Other Factors Might Affect the Results?

Other factors that might affect the outcome were then dis-
cussed; I was fishing for some kind of randomization and ex-
perimental design. The students found it easy to accept that all
other variables should be kept as constant as possible—in par-
ticular, the same person in each group should be responsible
for rolling. After some discussion, I was able to persuade the
students that randomly choosing a die to roll might be preferred
over each group starting (for example) with the largest value of r
and systematically working through the set.

These issues appeared to be received better in theory than in
practice; in practice, some students were systematically working
through the sets of dice until I reminded them of the discussion
on randomization. The groups did, however, stick with the one
person rolling the dice. However, in general it would be untrue
to say the same person rolled the dice in similar fashion; there
were some very creative rolling techniques in place to avoid the
potential problems mentioned in Section 2.2.6.

One further issue discussed was how to ensure each face had
a chance of appearing face-up. This is discussed more in Sec-
tion 2.2.6.

2.2.4 How Should the Data be Reported?

The students answered this question easily, but I believe itis an
important question to ask. If it had not been asked—even though
it was easily answered-—I suspect the data recording would have
been insufficient or haphazard. Because the students had decided
to use 30 rolls for each value of r, however, reporting the number
of rolls was less prone to error than if different numbers of rolls
were chosen for various 7.

2.2.5 What Steps Should be Taken to Conduct the Experi-
ment?
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To address this question, we simply discussed some practical
issues: Who would roll? Who would record? How would dice
be randomly selected? There were (conveniently) three groups
of four, and it was decided that each group would divide into
pairs and do half the dice each (time was scarce).

2.2.6 How Should the Dice be Rolled?

An important issue to discuss is how to ensure each face had
a chance of appearing face-up. Unless the students were made
aware of this problem, the natural tendency, especially for the
larger values of r, was to roll the dice out of the hand in a
systematic manner giving the faces with a six little chance of
appearing; naturally this must be warned against.

This question is of particular importance because a die rotled
on aside withr # 1 will (almost) never show a 6 (unless perhaps
7 is very small), and a die rolled on a side length 1 will show
a 6 with probability 0.5 (unless perhaps r is very large). Gentle
rolling to give each face a reasonable chance to appear uppermost
should be the aim; extreme rolling techniques approaching those
mentioned above should be avoided. A simple demonstration
of rolling dice in these extreme cases is generally sufficient to
identify and explain the problem. Indeed, attention can be drawn
by taking the cubic die and claiming the probability of rolling a
6 is 0.5, and then demonstrating this by rolling the die a number
of times on a appropriate edge.

3. UNIVERSITY STUDENTS

A few weeks after the session with the school children, after
returning to the corridors of academia, I was teaching a course
on generalized linear models to a group of three undergraduate
students. In discussions with the students (during a sidetrack),
the dice experiment was mentioned. The students seemed very
interested in the problem and proceeded to speculate on the re-
lationship between r and p. Because of their interest, 1 then
decided to use the experiment as an assignment question. The
response of the students exceeded my expectations.

Similar questions to those used for the school students (see
Section 2.2) were initially asked of the university students. Pleas-
ingly, the response was quite enthusiastic. I encouraged the stu-
dents to talk among themselves about the questions and tried to
keep myself from interjecting (except to keep them on-task). It
should be noted that the students were not aware which size dice
I had available until after the questions were answered.

The students were asked to consider the plot of r against the
probability of rolling a 6, p. Thankfully, none of the students
proposed linear solutions; indeed, they all suggested curved and
sigmoid shaped solutions between the limits of p = Gandp = 1.

One more formal suggestion was that the probability of ob-
taining a 6 might be related to the ratio of the surface areas.
Because the total surface area is 2 4 4r, the probability of ob-
taining a 6 then mightbe 2/(2+4r) = 1/(1+ 2r). Interestingly,
the shape of this graph is certainly not correct even though it sat-
isfies the limits conditions as 7 — 0 and r — 1, and also that
r = 1 produces the correct probability of 1/3.

Similar questions to those asked of the school students were
asked of the university students. Only three warrant any further
discussion.
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3.1 What Values of r to Use?

There was much discussion on this topic. The students finally
decided that numerous values of r near 1 would be beneficial,
while fewer values of r between 0 and 1 would be beneficial.
There was more discussion on values of r > 1, since this is an
unbounded region.

One student suggested values of 7 up to 5; others were happy
to restrict to values up to r = 2.

3.2 How Many Times Should Each Die be Rolled?

The second question was again the most keenly discussed of
all. Initially, the students’ answers were ad hoc like the school
students, until one student suggested determining the size of the
sample necessary to achieve given accuracy using, as found in
numerous introductory statistics classes,

n = (z49)°p(1 - p)/B?,

where 2, , is the z-score for an 100(1—«)% confidence interval,;
p is the proportion; and B is the bound placed on the estimate
of p. For a 95% confidence interval with p = 0.5, the conclusion
was that around 380 rolls would be needed for a margin of error
of £0.05.

This was an interesting exercise as the students grappled with
the issue of estimating the necessary sample size when the value
of p was unknown (and indeed, was the quantity being esti-
mated). All the students knew the formula and this potential
problem, but I believe they all better understand the implication
having encountered it themselves.

3.3 What Other Factors Might Affect the Results?

The students quickly realized the potential for experimental
design techniques to be used. They all, thankfully, identified
randomization as important (especially if they were to roll each
of the 12 dice 380 times!). They also nominated controlling
variation as important, and explained how the experiment should
be conducted so that each roll was as similar as possible. The
important issues from Section 2.2.6 were discussed at this point.

One student raised an interesting issue after the experiment
had been completed: He noted that in rolling dice with r near O or
for large r that there was a human inclination (for him at least) to
try and roll the “unlikely” event. Another raised the issue, after
experimentation had been completed also, of the physical size
of the dice. For dice with small 7, there is a small physical area
on which the dice could balance; in contrast, the smaller surface
areas of the dice with larger r still had a reasonable surface area
on which to land.

All the students did exceptionally well in this assignment,
and each spent many hours (probably far too many) rolling dice
to get accurate data on the probabilities. Their analyses were
thorough and thoughtful (and also submitted late, incidentally).

4. RESULTS

4.1 Initial analysis

The results are given in Table 1 and plotted in Figure 3. The
first three groups are for the school students, and the last three
“groups” are the university students (the letters correspond to the
students first initials). Note that the last student actually mea-



Table 1. The Results of Throwing 1 x 1 x r Dice; Both 1 x 1 Faces Were Marked with a 6. The first three groups were collected by Year 11 and 12
school children; the final three were collected by three university students. Note that the last student actually measured the aspect ratio, r.

Ratio Group 1 Group 2 Group 3 Group D Group S Group A
r S m So no S3 n3 Sp np Sg Nng ra Sa Ny
0.25 30 30 27 30 30 30 294 300 97 100 0.22 266 270
0.50 28 30 26 30 29 30 234 300 84 100 0.45 208 270
0.75 18 30 20 30 24 30 167 300 68 100 0.73 170 270
0.85 16 30 16 30 23 30 151 300 48 100 0.86 139 270
0.90 19 30 13 30 15 30 144 300 48 100 0.90 116 270
1.00 12 30 8 30 12 30 99 300 29 100 1.00 93 270
1.10 9 30 8 30 11 30 62 300 20 100 112 80 270
1.15 4 30 5 30 7 30 79 300 24 100 1.16 61 270
1.25 6 30 5 30 4 30 58 300 16 100 1.24 48 270
1.50 1 30 1 30 2 30 14 300 5 100 1.50 24 270
1.75 0 30 2 30 1 30 5 300 4 100 1.76 14 270
2.00 0 30 0 30 0 30 4 300 0 100 2.00 10 270
sured the aspectratio, r, rather than taking the (approximate) val- o
ues I had supplied. The school students performed calculations ”
on their calculators, and some plotted the data using a graph- .g 3 °
ics calculator; the university students used the R software (see $ o o
Thaka and Gentleman 1996) for analysis. The results at r = 1 of- 15: © o
. . . . . o]
fer a kind of check against bias: the expected proportion is 1/3, ) § <
while the overall observed proportion is 253/780 ~ 0.33289, a N ° o
. . . . o .
suggesting that there is no large bias in the results. £ o
Note that the university students did not have the patience o | ° o
to roll the calculated 380 rolls for each of the 12 dice. That ° ' ! ! !
0.5 1.0 15 20

the students rolled from 1,200 to 3,600 dice in total, however,
is a testament to their patience and reflects the high level of
enthusiasm and interest that the students had for the experiment.

Combining all the data for the various values of r (for
Group A, the results were combined with the closest nominal
value of r used by the other groups), estimates of the probabili-
ties can be found. A plot of the probabilities is shown in Figure 4
and the probabilities are given in Table 2. From the plot it be-
comes apparent that some dice with » < 0.25 could be useful to
fix the left tail of the plot.

4.2 Generalized Linear Models: Background

More sophisticated analyses are possible. The university stu-
dents were asked to find a model for predicting the probability of
rolling a 6, say p, from the aspect ratio r. Because the response
variable is a proportion, all three chose to use a generalized linear

1.0
|
>

Group 1
Group 2
Group 3
Group A
Group D
Group S

q4O0x+po

The proportion of sixes

00 02 04 06 08

The aspect ratio, 1

Figure 3. The probabilities of rolling a six for various values of r for the
die in Figure 1.

The aspect ratio, r

Figure 4. The probabilities of rolling a six for various values of r for the
die in Figure 1. The data in Table 1 have been combined.

model (GLM) based on the binomial distribution (see, e.g., Dob-
son 1983 or McCullagh and Nelder 1989). Standard regression
and appropriate transformation could also be used, for example.

Generalized linear models, as proposed by Nelder and Wed-
derburn (1989), enable fitting models to a wide range of data
types. These models are based on the family of distributions
called exponential dispersion models, or EDMs, of which the
binomial is a member (as are the normal, gamma, and Poisson
distributions, for example). Generalized linear models consist
of two components:

1. The response variable, y; (p; is used for binomial data),
comes from an EDM with mean p (or 0 < p < 1) and
dispersion parameter ¢ (nominally, ¢ = 1 for the binomial
distribution).

Table 2. The Probabilities of Rolling a 6 for Various Values of r for the
Die in Figure 1. The data in Table 1 have been combined (r was used
rather than r, with Group A for this purpose).

Aspect Prob. of Aspect Prob. of
ratio r rolling 6 ratio r rolling 6
0.25 0.98 1.10 0.25
0.50 0.80 1.15 0.24
0.75 0.61 1.25 0.18
0.85 0.52 1.50 0.06
0.90 0.47 1.75 0.03
1.00 0.33 2.00 0.02
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Table 3. The Deviance for Various Binomial Generalized Linear Models
Fitted Without the Interaction (top line) and With the Interaction (bottom

line).
Link function used
Logit link Probit Comp. log-log
r + Group 141.6766 168.1534 121.1826
r + Group + r:Group 111.2969 131.6479 93.8946

2. The expected values of the y;, it; (0 < p; < 1is used for
the binomial distribution), are related to the covariates x;
through a monotonic, differentiable link function g(-) so
that

T
9(pi) = x; B,
where (3 is a vector of unknown regression coefficients.

Often, the linear component x? 3 is given the symbol 7; (the
linear predictor), so that

g(wi) =n =x!B.

There are three link functions commonly used for binomial
GiMstomap 0 < p < 1 onto —oo < 1 < oc: the logistic,
n = log(p/{1 — p}); probit n = & !(p), where ®(-) is the
inverse cumulative distribution function for the standard normal
distribution; and complementary log-log = log{— log(1—p)}.
The first two are often very similar and are symmetric about
p = 0.5; the third does not share this symmetry. For this reason,
the complementary log-log link function may prove to be the
best of the three, as the data are not expected to be symmetric
(see Section 2.1).

To assess the models, a quantity called the deviance can be
used (e.g., see Firth 1991). In the case of a binomial distribution,
the deviance is

D(y, )
= D(y,p) (

s yi L—(yi/mi) |y, (ys/mi)
i=1 ¢ !

k3 (3

for a sample of size n (in this application, the number of values
of r), where y; are the number of 6’s rolled for each r, m,; are
the total number of rolls for each 7, and p; are the predicted
proportions for each r. The deviance plays a role similar to the
residual sum of squares for standard regression models; indeed,
in the case of a normal distribution the deviance can be shown
to be exactly the residual sum of squares. It can also be shown

Table 4. The Analysis of Deviance Table from R After Fitting the Full
Model Including the Aspect Ratio r (r), the Group (Group) and the In-
teraction (r:Group). The first column are the variables, followed by de-
grees of freedom (df ), deviance, residual degrees of freedom, residual
deviance, and the p value based on a x? test of the change in deviance.

Df Deviance Resid. Df Resid. Dev P(>|Chil)

NULL 71 4036.2

r 1 3894.6 70 141.86 0.0
Group 5 1 20.4 65 121.2 1.060e-03
r:Group 5 27.3 60 93.9 5.013e-05
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that the deviance has approximately a y?-distribution on n — p
degrees of freedom (where n is the sample size and p = rank(X)
where X is the design matrix) when ¢ is known, otherwise an
I'-test is appropriate [details can be found in, e.g., McCullagh
and Nelder (1989), sec. 2.3.2]. Two nested models can then be
compared by using an analysis of deviance table in a similar way
to how the variance is used in an analysis of variance table for
normal-based models.

Generalized linear models can be fitted using most popular
statistical software packages. The software used here is R.

4.3

Although each of the students were to analyze their own data, I
have the luxury here of using the combined results. This means
the possible explanatory variables are the aspect ratio r, the
group, and the interaction between them. Note that the dice were
not constructed as three separate sets of 12 so any effect due to
the set of dice used cannot be definitely measured. However,
because the university students rolled far more times than the
school students, any group effect can be primarily attributed to
the properties of the dice also.

Two results become quickly apparent. First, the complemen-
tary log-log link function is the superior link function (on the
basis of the residual deviance); see Table 3. Second, the inter-
action is statistically significant; more formally, an analysis of
deviance test indicates that all three possible covariates are sta-
tistically significant; see Table 4. The model with the interactions
and using the complementary log-log link function will be as-
sumed hereafter unless indicated. In addition, for Group A, the
values 1 4 (rather than r; see Table 1) were used in all computa-
tions.

The mean deviance can be used as an estimate of ¢; here it
is ¢ = 93.9/60 ~ 1.57, which is close to the nominal value
of 1 for the binomial distribution. For this reason, a X2 test has
been used rather than an F'-test; the conclusion are similar in
any case.

The fact that Group is significant may be attributed to the set
of dice used, or imply that the rolling techniques were different.

To evaluate the model, a Q-Q plot of the quantile residuals (see
Dunn and Smyth 1996) can be used to determine if the model
appears suitable and, in particular, if the binomial distribution

Generalized Linear Models: Results

Normal Q-Q Plot
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Figure 5. A Q-Q plot of the quantile residuals for the binomial GLM
fitted with a complementary log-log link function and including the inter-
action terms. A good model would have the points lying (approximately)
on the straight line.
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Figure 6. The prediction curves for the dice data, using both the com-
plementary log-log and logit link functions. The filled points are from the
university students data and are based on more information than the data
of the school students (unfilled points) and are weighted proportionally
heavier in fitting the model. The triangle identifies the point correspond-
ing to the large negative residual in Figure 7, the cross identifies the point
with very high influence as shown in Figure 8.

Normal Q-Q Plot

)
o
~
@
2
§
5 ©
[¢]
o
[=}
£ 9 5
] 0°
<
I
°
T T T T T
-2 -1 0 1 2

Theoretical Quantiles
Figure 7. A Q-Q plot of the quantile residuals for the binomial GLM
fitted with a complementary log-log link function with only r as a covariate.
A good model would have the points lying (approximately) on the straight
line.
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Figure 8. Cook’s distance for the binomial GLM fitted with a comple-
mentary log-log link function with only r as a covariate.

appears adequate for modeling the responses. This plot is shown
in Figure 5 and indicates the model is adequate, though one
point is of concern at the left of the plot. The large negative
residual corresponds to Observation 38 (Group A; r = 0.45).
The complementary log-log link produces a smaller residual
deviance than the logit link and a large negative residual; the Q-

Q plot using the logit link function (not shown) indicates some
larger positive residuals, and this link also produces a larger
residual deviance.

Although the Group is an important factor, a simple relation-
ship between the aspect ratio 7 and the probability of rolling a
6 is of interest; such a model can be found in R based on the
complementary log-log link function as

log (—log{l —p;}) = 2.04188 -
(0.05164)

2.92478r
(0.05800)

where the standard errors are in parentheses below the param-
eter estimates; both parameters are highly significant. This in-
formation could be used to explicitly determine a relationship
between r and p; it is a little messy and is not given here. The
prediction curves using the complementary log-log link func-
tion and, for comparison, the logit link function are plotted in
Figure 6.

The Q-Q plot of the quantile residuals for this model is shown
in Figure 7. Observation 28 (Group 3, r = 0.85) corresponds
to the large negative residual; this is shown in Figure 6 with
a triangle over the plotted point. Cook’s distance can be used
to identify influential observations (see McCullagh and Nelder
1983, sec: 12.7.3); Cook’s distance for each observation is shown
in Figure 8. Observation 38 (Group A; r = 0.45) corresponds to
the large value; this is shown as a superimposed cross on the data
point in Figure 6. This point is also noted above in the discussion
of the full model.

5. CONCLUSIONS AND REFLECTIONS

This article, as mentioned in the Section 1, has two main points
of focus, into which this section is divided.

First, the statistical results. While not claiming to be definitive,
some results have been presented for estimating the probability
of rolling a 6 for 1 x 1 x r dice (when each 1 x 1 face is marked
with a six). The data are well modeled by a binomial generalized
linear model using a complementary log-log link function. There
is a suggestion that the dice or the technique of the rollers may
be important.

Second, the teaching exercise. I found the exercise to be sur-
prisingly well received by both the school and university stu-
dents. The experiment was a scaffold for discussing various
statistical concepts—such as sampling error, designing exper-
iments, randomization, data recording as well as analysis and
graphing. For the university students, concepts such as estimat-
ing sample size, modeling, and diagnostic tests were also used.
For both groups, there was a great deal of interest in finding esti-
mates of the probabilities. Importantly, the question was simple
to pose, easily understood and of interest to the students; the
experiment was also simple to perform (once the dice were con-
structed).

The exercise appeared to be a worthwhile contribution to
Maths Day and I believe the students left with a sense of un-
derstanding some of the basic statistical concepts. Likewise, the
university students found the idea appealing and invested a large
amount of time in the assignment, while gaining an understand-
ing of modeling with a binomial GLM and performing some
simple diagnostic tests.

[Received March 2002. Revised June 2003.]
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