SESSION 11 LOGISTIC REGRESSION: MORE DETAILS

Review

```
Data: Binary Y's; Parameters of interest: PROPORTIONS (P's)
```

Logistic regression $=$ Logit regression $=$ Log odds regression
Logit of $P(Y=1) \mid X_{1} \ldots X_{k}=\beta_{0}+\beta_{1} . X_{1} \ldots+\beta_{k} \cdot X_{k}$
Odds $=$ antiLog[Logit] $=\exp [$ Logit]
$=\exp [$ Logit $]=\exp \left[\beta_{0}+\beta_{1} \cdot X_{1} \ldots+\beta_{k} \cdot X_{k}\right]$
Odds Ratio corresponding to $\delta \mathbf{x}_{\mathbf{j}}=\exp \left[\beta_{j} . \delta \mathbf{X}_{j}\right]$
("all other X's Equal")

Fitting of β 's by Method of Maximum Likelihood

```
Output from Logistic Regression via INSIGHT
HIV study (NEJM)
    HIV = CESAREAN TPERIODS ADV_MDIS LBW
    Response Distribution: Binomial
    Link Function: Logit
    Nominal Variable Information
Level TPERIODS (Trimesters of Treatment)
    1 0.0 0
    2 1.5 1 or 2
    3.0 all 3
Parameter Information
    Parameter Variable TPERIODS
        (\betao) 1 INTERCEPT
        ( }\mp@subsup{\beta}{1}{})2\mathrm{ CESAREAN
        ( }\mp@subsup{\beta}{2}{)
        (|3) 4 1.5 <- "redundant" and its beta
    (--) 5 3.0 <- will be set to 0
    ( (\beta4) 6 ADV_MDIS If you do not want the last
    ( }\mp@subsup{\beta}{5}{})7\mathrm{ LBW one to be the "reference"
    best to "make your own"
```

```
Summary of Fit
Mean of
Response 0.16 Deviance 6573.86 Pearson Chi-Sq 7773.98
SCALE 1.00 Deviance/DF 0.84 Pearson Chi-Sq/DF 0.99
Scaled Dev 6573.86 Scaled Chi-Sq 7773.98
```

NOTES:

Mean of Response $=\operatorname{mean}(Y): 1241 / 7840=16 \%$ became HIV+
Deviance: $=-2\{$

```
            log[Likelihood of current model]
                        minus
                    log[Likelihood of "saturated" model]
```

\}
"saturated" model: as many parameters as obsn's $=6573.86$

Deviance for logistic regression plays same role as residual sum of squares does for "regular" or "Gaussian-error, Identity Link" regression

NOTES on Summary of Fit (continued...):
SCALE $=1.00$
If we have a good model, the magnitudes of the deviations are predicable from the Binomial, since the binomial variance for the count in a particular cell or covariate pattern is

```
# of subjects in cell x fitted P x (1- fitted P)
```

So the ratio of observed to predicted residual variance should be approximately 1. This ratio is referred to as the SCALE, and is usually set to 1 by default.

If there is considerably "greater than Binomial" variation ("extra-binomial variation" as it is known in the trade), it indicates that there may be non-independence of responses (e.g. if units are several offspring of same mother and treatments assigned to mother while units in utero, or if units are several patients of same physician). Unless you have such "correlated" responses, you should leave the scale at 1 .

NOTES on Summary of Fit (continued...):
Pearson Chi-Sq $=7773.983$ is $\Sigma(O-E)^{2 / E}$,
or if you prefer, $\quad \Sigma(Y-Y-h a t)^{2} / Y-h a t$,
with the Σ over all observations.
A low value, relative to the degrees of freedom, indicates a better fit. This is a goodness of fit test rather than the usual chi-square test for testing a certain NULI hypothesis. Unfortunately, when we enter the data as 0 's and 1's, the software treats each observation as a separate "cell", and you remember from your earlier statistics courses that the chi-square table is not that accurate for the $\Sigma(O-E)^{2 / E}$ statistic if the E's are small (say less than 5). Here, the E's are fitted proportions, with values between 0 and 1! So do not take the chi-square statistic too seriously if it is based on individual Y 's and Y_hats (the large DF will warn you!). If however, the data are aggregated, so that Y is no longer $0 / 1$ but a sizable numerator (and accompanying denominator), the chi-square table is a reasonably accurate reference for the so-called "chi-square" statistic.

NOTES on Summary of Fit (continued...):
For examples of data in this "numerator/denominator" format, see (in 626) the low birthweight, asthma and Down's syndrome data. In INSIGHT, you enter the numerator as "Y" and when you check "Binomial" in the Method dialog box, you enter the denominator in the box designated Binomial. If running PROC LOGISTIC from the Program editor, you enter the numerator \& denominator in the model statement as

MODEL numerator_variable/denominator_variable = ... ;
Pearson Chi-Sq/DF $=0.99 \ldots$ as the label implies.
One reason to show this is that the average value of a statistic having a chi-squared distribution with v degrees of freedom is v, in other words, the average value of a chi-squared random variable divided by v, is 1.
however, as explained above, this Chi-sq/df guide works best when data are already grouped (in cells)

Analysis of Deviance

| Source | DF | Deviance | Deviance/DF | Scaled Dev | Prob $>$
 Scaled Dev |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: |
| Model | 5 | 275.55 | 55.11 | 275.55 | 0.0001 |
| Error | 7834 | 6573.86 | 0.84 | 6573.86 | |

NOTES:

* Statistical Inferences are now via Likelihood
* Larger ("Full") vs Smaller ("Reduced") model (use \# of terms rather than \# of variables)

This is an "Overall test" of
$\mathrm{H}_{0}: \quad \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}$ ARE ALL ZERO
vs $H_{\text {alt }}$: AT LEAST ONE Of $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}$ IS NOT ZERO

The "Model Deviance" is a Difference of two deviances:
Recall, using L as shorthand for "Likelihood", ...
Deviance is like error sum of squares, so will be larger with smaller model, so..

Deviance (smaller model) minus
Deviance (larger model)
$=$ Model Deviance
Deviance: $=-2\{\log [L(s m a l l e r)] \quad-\log [I(" s a t u r a t e d ")]$
(smaller model)
Deviance: $\quad=-2\{\log [L(\operatorname{larger})] \quad-\log [L(" s a t u r a t e d ")]$ (larger model)

```
difference = -2{log[L(smaller)] - log[L(larger)]
    { part with log[I("saturated")] cancels}
```

Type III (Wald) Tests

| Source | DF | Chi-Sq | Pr $>$ Chi-Sq |
| :--- | ---: | ---: | ---: | ---: |
| | | | |
| CESAREAN | 1.00 | 40.24 | 0.0001 |
| TPERIODS | 2.00 | 110.84 | 0.0001 |
| ADV_MDIS | 1.00 | 35.51 | 0.0001 |
| LBW | 1.00 | 60.19 | 0.0001 |

NOTES:
Again, Type III refers to variable "ADDED LAST"
If 1 DF, the test statistics is the square of
(beta_hat / its SE), and it is referred to a Chi_sq Table with 1 df. The reason it is Z [or $Z^{2}=$ Chi-sq(1)] rather than t is that there is no separate estimation of σ^{2} when $Y^{\prime} s$ are binary...

With Binary $Y^{\prime} s, \sigma^{2}(Y)=P(1-P)$, where $P=$ Proportion of $Y^{\prime} s$ that are 1, i.e., the variance is a known function of the mean, and so does not have to be estimated separately. In Gaussian error models, the separate estimation of σ^{2} invokes the Student's t distribution.

If a categorical variable has c levels, represented by c-1 indicator variables, the test statistic is more complicated, and is referred to a Chi-Square Table with c-1 df.

Type III (LR) Tests

| Source | DF | Chi-Sq | Pr $>$ Chi-Sq |
| :--- | ---: | ---: | ---: | ---: |
| CESAREAN | 1.00 | 48.89 | 0.0001 |
| TPERIODS | 2.00 | 138.99 | 0.0001 |
| ADV_MDIS | 1.00 | 33.58 | 0.0001 |
| LBW | 1.00 | 56.98 | 0.0001 |

What is "LR"
Remember -2\{log[L(smaller)] - log[L(larger)]
A difference of the logs of two quantities is the log of their ratio.. can rewrite test statistic as

```
    -2 log [ L(smaller)] / log[L(larger) ]
    = -2 log ["Likelihood Ratio"]
```

WALD vs LR ??

	Source	WALD	LR
	CESAREAN	40.24	48.89
COMPARE the	TPERIODS	110.84	138.99
Chi-Sq statistics	ADV_MDIS	35.51	33.58
	LBW	60.19	56.98

The LR test statistic is more accurate, and preferred (takes more computation, but that is hardly an issue nowadays)

Parameter Estimates

Variable	Levels (cat.)	DF	Estimat (β _hat)	SE	Chi-Sq	$\begin{aligned} & \mathrm{Pr}> \\ & \mathrm{Chi}-\mathrm{Sq} \end{aligned}$	OR-hat $\exp \left[\beta _h a t\right]$ by hand!
INTERCEPT		1	-2.79	. 11	627.4	. 0001	
CESAREAN		1	-0.85	. 13	40.2	. 0001	0.43
TPERIODS	0.0	1	1.18	. 11	106.7	. 0001	3.25
	1.5	1	0.82	. 14	31.6	. 0001	2.27
	3.0	0	0.00				
ADV_MDIS		1	0.53	. 09	35.5	. 0001	1.70
LBW		1	0.58	. 07	60.1	. 0001	1.79

Since all terms are binary, exp[β _hat] provides the estimate of the ODDS RATIO, contrasting the odds of HIV+ among infants with and without the factor in question (or in case of TPERIODS, relative to the (reference) group treated in all 3 trimesters)

TESTS OF GOODNESS OF FIT

With Binomial outcome data, it is possible to assess if "remaining" variation is compatible with pure binomial variation about the means (expected values) specified by model

This is because of the relationship between the Binomial variance and Binomial mean
"Expected" numerator $=n P-->\sigma^{2}$ (numerator) $=n P(1-P$
If Deviance/DF ratio is close to 1 , it may mean that other variables can't explain much more of the remaining variation (any better than chance).

Pearson Chi-square Goodness of Fit Test

The Pearson Chi_square is best calculated using the numerators for the different covariate patterns. Neither it, nor the Error Deviance statistic, is very accurate if there is only one observation in each cell or --even if there are several observations per cell but the data analysis is set up as $Y=0$ and $Y=1$ (as in our example above).

When there are only a small number of covariate patterns, each with sizable expected numbers of events and nonevents, it is helpful to redo the analysis using the cell as the unit of analysis.

See next page (24 non-empty cells or "covariate patterns")

```
The last 3 columns are
    Residual from (fitted) proportion... from FIT(Y X)
    Predicted (fitted) proportion... from FIT(Y X)
    "Expected" Number Positive, calculated by user as a
    derived variable as the product of N_PAIRS and P_NHIVPO
```

Setup using "cell" or "covariate pattern" as observation

49		Int	Nom	Int						
		CESAREAN	TPERI ODS	ADV_MDI S	LBW	N_PAIRS	NHI VPOS	R_NHI VPO	P_NHIVPO	EXPECTED
-	1	1	0.0	0	0	372	30	0.002	0.079	29.3
-	2	0	0.0	0	0	3850	652	0.002	0.167	642.4
\square	3	1	0.0	1	0	28	5	0.051	0.127	3.6
\square	4	0	0.0	1	0	303	74	-0.011	0.255	77.2
-	5	1	0.0	0	1	110	17	0.022	0.132	14.6
\square	6	0	0.0	0	1	767	196	-0.008	0.264	202.2
-	7	1	0.0	1	1	27	4	-0.059	0.207	5.6
\square	8	0	0.0	1	1	114	40	-0.028	0.379	43.2
-	9	1	1.5	0	0	41	0	-0.056	0.056	2.3
-	10	0	1.5	0	0	441	49	-0.011	0.122	53.9
\square	11	1	1.5	1	0	23	3	0.038	0.092	2.1
\square	12	0	1.5	1	0	186	33	-0.015	0.192	35.8
\square	13	1	1.5	0	1	7	0	-0.096	0.096	0.7
\square	14	0	1.5	0	1	83	22	0.066	0.199	16.6
\square	15	1	1.5	1	1	10	3	0.146	0.154	1.5
\square	16	0	1.5	1	1	54	19	0.053	0.298	16.1
\square	17	1	3.0	0	0	124	2	-0.010	0.026	3.2
\square	18	0	3.0	0	0	878	49	-0.002	0.058	51.0
\square	19	1	3.0	1	0	34	1	-0.014	0.043	1.5
\square	20	0	3.0	1	0	208	24	0.020	0.095	19.8
\square	21	1	3.0	0	1	25	0	-0.045	0.045	1.1
\square	22	0	3.0	0	1	109	11	0.002	0.099	10.8
-	23	1	3.0	1	1	8	1	0.051	0.074	0.6
-	24	0	3.0	1	1	38	6	-0.000	0.158	6.0

Model

Hosmer-Lemeshow Goodness of Fit Test

When covariates are continuous, there may be as many covariate patterns as there are individuals. In this situation, Hosmer-Lemeshow recommend grouping individuals by their predicted probabilities and then calculating the chi-square statistic using the observed and expected numbers in each category. For example, if the predicted probabilities ranged from 0.2 to 0.6, one might form say 10 equal-sized groups, with those in the 1st category having the smallest predicted probabilities, and so on. The Expected number of events for a category is the sum of the predicted probabilities for the individuals in the category.

A LARGE Chi-square statistic i.e. a large $\Sigma(O-E)^{2 / E}$, is an indication of LACK of FIT (O's far from E's).

This test is a bit like asking how accurate are (weather) forecasters who use probabilities in their forecasts. To test the accuracy, one might group together all of the days on which the probabilities were say between 0.00 and 0.05 , those between 0.05 and 0.10 , etc...., enough in each group to give a sizable expected number. One can then calculate the Expected and observed numbers and the corresponding $\Sigma(O-E)^{2 / E}$.

