Correlation and Regression

references. A&B Ch 5,8,9,10; Colton Chapter 6,
M&M Chapters 2 (descriptive) and 9 (inference)
Similarities

« Boath involve relationships between pair of numerical variablesX & Y.

« Both: "predictability”, "reduction in uncertainty"; "explanation”.
« Both involve straight line relationships [can get fancier too].

Differences
 Correlation is Symmetric; Regression is Directional.

« Correlation involves sampling pairs of (X,Y) points;
regression may involve choosing X values and sampling Y valuesto
form the (X,Y) pairsor it may involve sampling pairs, but regards
the X values as 'fixed’; x taken to be without error (not always so).

 Regression can be extended to relationships that are more complicated
than just a straight line and can relate Y to multiple X variables.

Correlation [Pearson Product Moment Correlation
Coefficient]

L oose Definition:
Degree to which, in observed (x,y) pairs, y value tends to be larger than
average when x islarger (smaller) than average; extent to which larger
than average x's are associated with larger (smaller) than averagey's

Mathematically:
S{x —xHyi-y}

(S =X 32 ) ( Slyi - 712 )
E{ (X - ) (Y - y) }
NEL (X = 1x)2) E{ (Y - py)?)

for (x,y) sample pairs, ryy =

"universe" of pairs pPxy =

Positive Correlation: Large X'swith large Y's and small X'swith small Y's

Negative Correlation: Large X's with small Y's and small X'swith large Y's

No Correlation: Large X's with either large Y's or smal Y's

ave(x) ave(x) ave(x)

How r ranges from -1 (neg correln.) through O (zero correln.) through +1
(positive  correin)  (r not tied to x or 'y scae).

Y X-X nhegative X-X positive
y-yY positive y-Y positive
NEGATI VE PRCDUCT PCsI TI VE PRODUCT
ave(Y)
X-X negative X-X positive
y-Y negative y-Y negative
PCSI Tl VE PRCDUCT NEGATI VE PRCDUCT
ave(X)
PRODUCTS
y
++ 4+ + o+
+ o+ +
+ + + + +
ave(y)
+ + + |- - + 4+ - + |-
+ + + + +| -
+ + o+
ave(x) ave(x) ave(x)
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p2 is a measure of how much the variance of Y isreduced by
knowing what the value of X is (or vice versa) See article (by
Chatillon) on "Balloon Rule" for visually estimating r.

Var(Y | X)=Var(Y)es(1-r2) r2 : "coefficient of determination"
Var(X |Y)=Var(X)e(1-r2)

Large r2 (i.e.r close-1or +1) - > close linear association of X and Y
values; far less uncertain about value of one variable if told value of other.

If X and Y scores are standardized to have mean=0 and unit SD=1 it can be
seenthat r islike a"rate of exchange" ie the value of a standard deviation's
worth of X in terms of PREDICTED standard deviation units of Y.

If we know observation isZyx SD's from uy, least squares prediction of
observation'sZy valueisgiven by predicted Zy = pe* Zx

Notice the regression towards mean: r is always less than 1 in absolute
value, and so will make the predicted Zy closer to O (or equivalently make
Y closer to to my ) than the Zx wasto O (or X wasto ).

Inferencesre p [based on sample of n (x,y) pairs]
Naturally, the observed r in any particular sample will not exactly match the p
in the population (i.e. the coefficient one would get if one included
everybody). The quantity r varies from one sample of n to another sample of
n. i.e. r is subject to sampling fluctuations about p.

1. A common question asked of one's datais whether there is evidence of a
non-zero correlation between 2 variables. To test this, one sets up a null
hypothesisthat p iszero and determines the probability, calculated under
this null hypothesisthat infact p = 0, of obtaining anr more extreme
than we observed. If the null istrue, r would just be "randomly diffrent”
from zero, with the amount of the random variation governed by n.

rvin-—2

\/l—r2

the null hypothesisof p = 0 istrue, follow t distribution with n-2 df.

[Colton'stable A5 gives the smallest r which would be considered evidence
that pis not equal to 0. For example, if n=20, so that df = 18, an
observed correlation of 0.44 or higher, or between -0.44 and -1 would be
considered statistically significant at the P=0.05 level (2-sided). NB: the t-

This discrepancy of r from zero is measured as and should, if

test assumes that the pairs are from a Bivariate Normal distribution. Also,
itisvalid only for testing p = 0, not for testing any other value
of p.

. Other common questions: given that r is based only on a sample, what

confidence interval should | put around r so that there is a good chance (say
95%) that the interval will include the "true" coefficient p ?

Or (answerable by the same technique): one observesacertain rq ; in
another population, one observesavaluers . Isthere evidence that the p's
in the 2 populations we are studying are unequal ?

From our experience with the binomial statistic, which islimited to { 0,n}
or {0,1}, it isno surprize that ther statistic, limited asitisto {-1,1}, also
have a pattern of sampling variation that is not be symmetric unless p is
right in the middle, i.e. unless p = 0. The following transformation of r
will lead to a statistic which is approximately normal even if ther ('s) in
the population(s) we are studying is(are) quite distant from O:

1+r
1—r}

% In{ [where In islog to the base e or natural log].

It isknown as Fisher's transformation of r; the observed r, transformed to
this new scale, should be compared against a Gaussian distribution with

1
n-3°

_1 1+p _
mean = 3 In{l_p } and SD =

eg.2a: Ho: p = 0.5; r=0.4in sample of n=20. To test Hp, compute

1 1+0.4 1 1+ 05
> M 104} 5 M5}
1

Gaussian (0,1) tables. Extreme values of the standardized Z are taken as
evidence against Hg. Often, the alternative hypothesis concerning p is 1-

sided, of theformp > some quantity.

and compare with
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e.q. 2b: testing Hp: p1 = p2. r1 & ryinindependent samplesof np & n,

Remembering that "variances add; SD's do not", compute the test statistic

1
3 nT— -3 } -10]

1 N 1
n-3 n-3°

and compare with Gaussian (0,1) tables.

1+r,
In{1 -,

e.g. 2c: 100(1-a)% Cl(p) from r=0.4 in sample of n=20.

By solving the double inequality

£ zap

l‘ |n{1+r}_l' |n{l_+e}
1-r 2
—zapp £
1

1-p
\/n—3'

so that the middle term is p , we can construct a Cl for p.

With alittle re-arranging, it turns out to be p[|ower, upper]

1+r_{1_r} e[iZZa/2/8qrt[n-3]]
1+r+{1-n el £22za2/ Sort[n-3] ]

Worked e.qg. 95% ClI(p) based on r=0.55 in sample of n=12.

With a=0.05, sothat zz/2> =1.96, we have lower & upper bounds for p:

[ £2¢«1.96/sqrt[9] ]
[ £2¢«1.96/ srt[9] ]

1+0.55—{1—0.55} e
1+0.55+{1-0.55} e

[ £2«1.96/sqrt[9] ]
[ £2¢1.96/ srt[9] ]

1.55-0.45¢e
155+ 0.45e

1.55-0.45¢ > 1307

1.55 + 0.45 ¢ * 1:307

1.55 -0.45+ 3.69
1.55+ 0.45+ 3.69

1.55-0.45/ 3.69
' 1.55+ 0.45/ 3.69

= -0.04 to

0.84

This Cl, which overlaps zero, agrees with the test of p =0 described above.
055V 12 — 2

\ 1-0.552

which is not as extreme as the tabulated t10,0.05(2-sided) value of 2.23.
Note Therewill be some dlight discrepancies between the t-test of p =0 and
the z-based Cl's. The latter are only approximate. Note also that both
assume we have data which have a bivariate Gaussian distribution.

For if we evaluate , We get avalue of 2.08,

A partial nomogram for 100(1-0.05)% i.e. 95% Cl'sfor pis
given on web page. It isbased on Fisher's transformation of r. In
addition to reading it vertically to get aCl for p (vertical axis) based on an
observed r (horizontal axis), one can also useit to test whether an observed r
is compatible with, or significantly different at thea = 0.05 level, from
some specificp value, py say, on the vertical axis: simply read across
fromp = py and seeif the observed r falls within the horizontal range
appropriate to the sample size involved. Note that thistest of a nonzero p
is not possible viathe t-test. Books of statistical tables have fuller
nomograms.
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Spearman's (Non-parametric) Rank Correlations -- obscured and artifactual
Correlation Coefficient

How Calculated:

e (i) replace theraw x's and y's by their ranks
(1=smallest to n=largest)

(ii) calculate Pearson correlation on the ranks.

Advantages
» Easy to do manualy (if ranking not a chore);

r _p_ 6SE
Spearman = = nr 2.1y

{d=Dinrankson X & Y for each obsn.}

* Lesssensitiveto outliers (x -> rank
==> variance fixed (for agiven n).
Extreme {x —x } or{yj—y } canexert
considerable influence on rpg, .o op-

» Picksup on non-linear patterns e.g. the
rSpearman for the following datais 1, whereas

the "Pearson- 1S less.
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Regression
Uses
 Curvefitting
e Summarization (‘model")
* Description
 Prediction
» Explanation
» Adjustment for ‘confounding' variables

Technical Meaning
« [originally] simply aline of 'best fit' to data points

* [nowadays] Regression lineisthe LINE that connects the CENTRES of
the distributions of Y's at each X value.

* not necessarily a straight line; could be curved, as with growth charts

* not necessarily my|x 's used as CENTRES; could use medians etc.

« dgtrictly speaking, haven't completed description unless we characterize
the variation around the centres of the Y distributions at each X

 inference not restricted to the distributions of Y's for which we make
some observations; it applies to distributions of Y's at all unobserved X
valuesin between.

Examples (with appropriate cavests)
 Birthweight (Y) in relation to gestational age (X)
 Blood pressure (Y) in relation to age (X)
» Cardiovascular mortality (Y) in relation to water hardness (X) ?

Cancer incidence (Y) in relation to some exposure (X) ?
Scholastic performance (Y) visavisamount of TV watched (X)

Caveat: No guarantee that simple straight line relationship will be adequate.
Also, in some instances the relationship might change with the type of X
and Y variables used to measure the two phenomenabeing studied; also the
relationship may be more artifact than real - see later for inference.)

Age. Tot.

wk

25

4000g

3000g

2000g

1000g

MALES

N. _1oth

BIRTH WEIGHT
BIRTH WEIGHT

50t h

%ile; weight,g

-90th

Tot.

No.

73

216

DISTRIBUTION) MALES
MEDIAN) FEMALES

® Median (50th %ile) for MALES
O Median (50th %ile) for FEMALES

.

FEMALES

%ile; weight,g

Live singleton births, Canada 1986
Source: Arbuckle & Sherman CMAJ 140 157-161, 1989

GESTATIONAL AGE (week)

30

32
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Simple Lineart Regression
(one X) (straight line)

Equation
. _ D m X _ : "ri%"
Myx=a+bX or _LDX b U
In Practice:

one rarely sees an exact straight line relationship in health science
applications;

1- Whilephysicists are often able to examine the relationship between Y
and X in alaboratory with all other things being equal (ie controlled or
held constant) medical investigators largely are not. The universe of
(X,Y) pairsisvery large and any 'true’ relationship is disturbed by
countless uncontrollable (and sometimes un-measurable factors. 1n any
particular sample of (X,Y) pairs these distortions will surely be
operating.

2 - Thetruereationship (even if we could measure it exactly) may not be a
simple straight line.

3- Themeasuring instruments may be faulty or inexact (using
'instruments’ in the broadest sense).

One always tries to have the investigation sufficiently controlled that the
'real’ relationship won't be 'swamped' by factors 1 and 3 and that the
background "noise" will be small enough so that alternative models (eg
curvilinear relationships) can be distinguished from one another.

T Linear here meanslinear in the parameters. The equation

y = BxC can be made linear in the parameters by taking logs

i.e. log[y] =log[B] + x log[C]; y = at+bex+cex2 isaready linear
in the parameters ab and c. The following model cannot be made
linear in the parametersa b g:

1-a

proportion dying =a + oo Toerdosa]

Fitting astraight line to data- L east Squares Method

The most common method is that of Least Squares. Note that least
squares can be thought of asjust a curve fitting method and doesn't have
to be thought of in a statistical (or random variation or sampling
variation) context. Other more statistically-oriented methods include
the method of minimum Chi-Square (matching observed and expected
counts according to measure of discrepancy) and the Method of
Maximum likelihood (finding the parameters that made the data most
likely). Each has adifferent criterion of "best-fit".

Least Squares Approach:

e Consider acandidate sope (b) and intercept (a) and predict that the
Y value accompanying any X=x is§/\ =a+ bex. The observedy
value will deviate from this " predicted” or "fitted" value by an
amountd =y - 3’/\

We wish to keep this deviation as small as possible, but we must
try to strike a balance over all the data points. Again just like
when calculating variances, it is easier to work with sguared
deviations! :

P=(y-9)2
Weweight all deviations equally (whether they be the onesin the

middle or the extremes of the x range) using S =S (y- ¥ ) 2
to measure the overall (or average) discrepancy of the points from

theline.

1 there are also several theoretical advantages to least squares estimates
over others based for example on least absolute deviations: - they are
the most precise of all the possible estimates one could get by taking
linear combinations of y's.
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From all the possible candidates for slope (b) and intercept (a) , we
choose the particular values a and b which make this sum of squares
(sum of sgquared deviations of ‘fitted' from 'observed' Y's) aminimum.
ie we search for the aand b that give us the least squaresfit.
Fortunately, we don't have to use trial and error to arrive at the 'best’ a
and b . Instead, it can be shown by calculus or algebraically that the a

and b which minimize S are:

bo b o= SoXHYi-yd o

Stx — X }2 x

rxy ° Sy

a=a =y -bx

[Note that a least-squares fit of the regression line of X on Y would
give a different set of values for the slope and intercept: the slope

fxy ® S
of thelineof x ony is XX one needs to be careful when

using a calculator or computer program to specify which is the
explanatory variable (X) and which is the predicted variable (Y)].

Meaning of intercept parameter (a):

Unlike the slope parameter (which represents the increase/decrease
in myx for every unit increase in x), the intercept does not always
have a'natural’ interpretation. It depends on where the x-valueslie
in relation to x=0, and may represent part of what isrealy the
mean Y. For example, the regression line for fuel economy of cars
(Y) inrelation to their weight (x) might be

My jweight = 60 mpg — 0.01-weight in Ibs [0.01 mpg/Ib]

but there are no cars weighing 0 Ibs. It would be better to write the
equation in relation to some 'central’ value for weight e.g. 3500

Ibs; then the same equation can be cast as
My jweight — 25 = 0.01+(weight — 3500)

It is helpful for testing whether there is evidence of a non-zero slopeto
think of the simplest of all regression models, namely that whichisa
horizontal straight line

Myx =a + 0 X = theconstant a .
Thisis are-statement of the fact that the sum of squared deviances
around a constant horizontal line at height 'a’ is smallest when'a' =

the mean .

[We don't dways use the mean as the best 'centre’ of a set of numbers.
Imagine waiting for one of several elevators with doorsin arow along
one wall; you do not know which one will arrive next, and so want to
stand in the 'best’ place no matter which one comes next. Where to
stand depends on the criterion being optimized: if you want to minimize
the maximum distance, stand in the middle between the one on the

extreme left and the extreme right; if you wish to minimize the average

distance, where do you stand?, If, for some reason, you want to
minimize the average squared distance, where to stand? If the elevator

doors are not equally spaced from each other, what then?|
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The anatomy of a slope: some re-expressions

Consider the formula: slope=b = S{x — xbar}{y — ybar}
S{x — xbar} 2

Without loss of generality & for simplicity, assume ybar=0.
If we have 3 x's, 1 unit apart (eg.x;=1; X, =2; X3 =3),
then...

X, —xbar =-1; x, —xbar =0; xz3—xbar=+1

{-1lys + {O}y, + { + 1}ys
{-12+{0}2+{+1)2

soslope=b=

i.e. aweighted average of the dope from datapoints 1 and 4
and that from datapoints 2 and 3, with weights proportional to the

squares of their distanceson x axis{xs — X1}2 and {xz — Xo}2

Y3 — VY1

i.e. slope=
X3 — X1

Notethat y, contributesto ybar and thusto an estimate
of the averageyy (i.e. level) but not to the dope.

If 4 x's1unitapart (e.g.x;=1; X, =2; X3 =3; X4 =4), then,...

X1 —xbar =-1.5 X2 —xbar = — 0.5
X3 —Xbar = +0.5 x4 —xbar = + 1.5

and so
. {-15}y; + { =0.5}y, + { + 0.5}ys+ { + 1.5}y,
slope=b =
{-152+{-05}2+{05}2+{ +1.5)2
. 15y, -y} 0.5{ ys -y}
i.e. slope= +
5 5

3 1

>¥a =yt 5{vys —vy2}
i.e. slope= +

2%, - X3} 2{xs - x3)

3 4 1 1 3 2
. ~ 9 {Va —yi} 1 {ys -y}
i.e. slope=— —_

— + —
10 {x¢s — xi} 10 {xs — x3}

Another way to think of the slope:

S{x —xbar}{y — ybar}

Rewrite b=
S{x—xbar}2
Sy 2 {y-—ybar} g L {y —ybar}
o a{x—xbar} X — xbar} ) a weight X — xbar}
a{x —xbar} 2 aweight
weight {x—xbar}zfor estimate % of slope
Y et another way to think of the slope:

. i - Yi Y]

b is a weighted average of all the pairwise slopes ﬁ

with weights proportional to {% — X 12,

eg. If 4 x's1 unit apart
denote by by ¢ , the lope abtained from {x,y,} & {X1,y1}, €etc...

_ L1bigy + 4.bigg + 9.D1gq + 1.D1gs + 4bogs + 1.Dsey

b 1+4+9+1+4+1=20

jh 6/94
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Inferences regarding Simple Linear Regression

How reliableare

(i) the (estimated) slope

(i) the (estimated) intercept

(i) the predicted mean Y at agiven X

(iv) the predicted y for a (future) individual with agiven X

when they are based on data from a sample? i.e. how much would these
estimated quantities change if they were based on a different random
sample [with the same x values]?

We can use the concept of sampling variation to (i) describe the

'uncertainty’ in our estimates via CONFIDENCE INTERVALS or (ii)
carry out TESTS of significance on the parameters (slope, intercept,

predicted mean).

We can describe the degree of reliability of (or, conversely, the degree of
uncertainty in) an estimated quantity by the standard deviation of the
possible estimates produced by different random samples of the same
size from the same x's. We call this (obviously conceptual) S.D. the
standard error of the estimated quantity (just like the standard error of the
mean when estimating ). helpful to think of slope as an average
differencein meansfor 2 groupsthat are 1 x-unit apart.

The size of the standard error will depend on

1. how 'spread apart' the x'sare

2. How good afit the regression linereally is (i.e. how small is
the unexplained variation about the line)

3. How large the sample size, n, is.

Factors affecting reliability (in more detail)

1. Thespread of the X's: The best way to get a reliable estimate of
the slopeisto take Y readings at X's that are quite a distance from
each other. E.g. in estimating the "per year increase in BP over the
30-50 yr. age range", it would be better to take X=30,35, 40, 45,

50 than to take X =38, 39, 49, 41, 42. Any individual fluctuations
will 'throw off' the slope much less if the X's are far apart.

8P (@) gp O

AGE AGE

I I I [ [ [
30 40 50 30 40 50

thick line: real (true) relation between average BP at age X and X : thin
lines: possible apparent relationships because of individual variation when
we study 1 individual at each of two ages (a) spaced closer together (b)
spaced further apart.

Notes

Regression line refers to the relationship between the average Y at a
diven Xto the X, andnot toindividual Y'svs X. Obviously of course if
theindividual Y's are close to the average Y, so much the better!

The above argument would suggest studying individuals at the
extremes of the X values of interest. We do thisif we are sure that the
relationshipisalinear one. If we are not sure, it iswiser -- if we have
a choice in the matter -- to take a 3-point distribution.

There isa common misapprehension that a Gaussian distribution of X
valuesis desirable for estimating a regression slope of Y on X. In fact,
the 'inverted U' shape of the Gaussian is the |east desirable!
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Factors affecting reliability (continued)

NOTE: For unweighted regression, should have roughly same spread

2. The(vertical) variation about the regression line: Again, consider of Y's at each X.
BP and age, and suppose that indeed the average BP of all persons
aged X + 1 isb units higher than the average BP of all persons Factors affecting reliability (continued)

aged X, and that this linear relationship
3. Sample Size (n) Larger nwill make it more difficult for the types of
averageBPof personsagedx = a + b« X extremes and misleading estimates caused by 1) poor X spread and 2)
(averageof Y'sat a given X =intercept + lope* X) large variationin Y about Hyx , to occur. Clearly, it may be possible

to spread the x's out so as to maximize their variance (and thus reduce
holds over the age span 30-50. the n required) but it may not be possible to change the magnitude of

the variation about My |x (unless there are other known factors
Obviously, everybody aged x=32 won't have the exact same BP,

some will be above the average of 32 yr olds, some below.
Likewise for the different ages x=30,...50. In other words, at any x
there will be a distribution of y's about the average for age X.
Obviously, how wide this distribution is about a + beX will have
an effect on what slopes one could find in different samples
(measure vertical spread around theline by s)

(a) )
BP BP

influencing BP). Thus the need for reasonably stable estimated )’/\
[i.e.estimate of My X ]

AGE AGE

I I | I I
30 40 50 30 40 50

thick line: real (true) relation between average BP at age X and X :
thin lines: possible apparent relationships because of individual
variation when we study 1 individual at each of two ages when the
within-age distributions have (a) a narrow spread (b) awider spread
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Standard Errors

S

\/S{xi —x}2 |

1 X2
R —
S{xi— x}2

SE(b) = SE(b ) =

SE(a)= SE(a ) = s

(Note: thereisa negative correlation between a and b).

Wedon't usually know s so we estimate it from the data, using scatter of
the y'sfrom the fitted linei.e. SD of the residuals)

If examinethe structure of SE(b), see that it reflects the 3 factors discussed
above: (i) alarge spread of the x's makes contribution of each observation to

S{x — X }? large, and since thisisin the denominator, it reduces the SE

(if) asmall vertical scatter isreflected inasmall s and sincethisisin the
numerator, it also reduces the SE of the estimated slope (iii) alarge sample

sizemeansthat S{x — x }2islarger, and like (i) this reduces the SE.

The formula, as written, tends to hide this last factor; note that

S{x — X }2iswhat we use to compute the spread of a set of x's -- we

simply divide it by n—1 to get a variance and then take the square root to get
the sd. To make the point here, simplify n-1 to n and write

S{x — X }2 » nevar(x), sothat \/S{x — X }2 »\Vn « sd(x)

and the equation for the SE simplifies to (approx)
S _ SDy|x | SDx
Vi « sd(x) Vn

SE(b) »

with \/?1 initsfamiliar place in the denominator of the SE (even in more
complex SE's, thisiswhere\/a isusually found!)

The structure of SE(a) : In addition to the factors mentioned above, all
of which comein again in the expected way, there is the additional

factor of X 2; sincethisisin the denominator, it increases the SE .

Thisisnatural in that if the data, and thus x , are far from x=0, then
any imprecision in the estimate of the slope will project backwardsto a
large imprecision in the estimated intercept. Also, if one uses 'centered'

X's, sothat X =0, the formulafor the SE reduces to

SE() = s\/_% = %
n

and we recognize this as SE(y ) -- not surprisingly, sincey isthe
'intercept’ for centered data.

Cl's& Testsof Significance for o and/[% arebased on
t—distribution (or Gaussian Z's if n large)

o o * th—2 ¢ SE( o )
o — o
Ho: o =ao th2=—=x"
SE(a)
p B ttho2°SE( P )
Ho: B =PBo tn—2=B_,[\50
SE(B)
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Standard Error for Estimated uyx or ‘averageY at X'

N N
Weestimate'average Y at X' or My |x by a + b <X .Sincethe

estimate is based on two estimated quantities, each of which is subject to
sampling variation, it contains the uncertainty of both:

: _ 1, {X- x}?
SE(estimatedaverage Y at X) = s p + —
S{x - x}?

N
Again, we must use an estimate s of s .

First-time users of this formula suspect that it has amissing S or an x

instead of an xbar or something. There is no typographical error, and indeed
if one examinesit closely, it makes sense. X refersto the x-value at which
oneis estimating the mean -- it has nothing to do with the actual x'sin the
study which generated the estimated coefficients, except that the closer X is

to the center of the data, the smaller the quantity {X — x } and thusthe
quantity {X — X }2, and thus the SE, will be. Indeed, if we estimate the
average Y rightat X = x , the estimateis simply

y (sincethe fitted line goes through [ x, y] ) and its SE will be

1:s

1 X — x}2 -
s\/ﬁ+ _ E—— or s p ? =SE(y ).
S{x - x} n

Confidence Interval for individual Y at X

A certain percentage P% of individuals are withintp e s of the mean

myx = a + b« X, wheretpisamultiple, depending on P, from thet

or, if nislarge, the Z table. However, we are not quite certain where
exactlythemean a + be X is--thebest wecandois estimate,

N N
with a certain P% confidence, that itiswithintpr SE(a + b X))

N N
of the point estimate a + b *X. The uncertainty concerning the mean
and the natural variation of individuals around the mean -- wherever itis
-- combine in the expression for the estimated P% range of individual
variation, which is as follows:

N N
a+b X

I+

w12
t'S\/l‘F %+_{X;i(}_
S{x - x}2

Both the CI for the estimated mean and the CI for individuals (ie the
estimated percentiles of the distribution) are bow-shaped when drawn as

afunction of X. They are narrowest at X = x , and fan out from
there. One needs to be careful not to confuse the much narrower CI for
the mean with the much wider CI for individuals. If one can see the raw
data, it is usually obvious which iswhich -- the CI for individualsis
almost as wide as the raw data themselves.

cf. data on slegping through the night; alcohol levels and eye speed.
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Community Fluoride and Cavities Analysis via MYSTAT

Descriptive statistics

DVETX100 (Y)  FLPPM (X) XY
N OF CASES 21 21 21
MEAN 537. 381 0. 700 228. 038
VAR ANCE 59236. 648 0.556  30254. 578
STANDARD DEV 243. 386 0. 746 173. 938
SUM 11285. 000 14.700  4788. 800

Regression analysis

DEP VAR DWFTX100 N 21 MALT R 0.857 SQUARED MLT. R 0.734

ADJUSTED R?: 0. 721 STANDARD ERRCR OF ESTI MATE: 128. 667

VAR ABLE COCEFFICIENT STD ERROR  STD OCEF T P(2 TAIL)

CONSTANT 733.198 38. 959 0.000  18.820 0. 000
FLPPM -279. 739 38. 585 -0.857 -7.250 0. 000

ANALYSI S OF VAR ANCE

SORCE SUMCOF-SQUARES DF MEAN-SQUARE  F-RATIO P
REGRESSI ON 870184. 756 1 870184. 756 52.563 0.000

Analysis via SAS

DATA A;
INPUT CITY 5- 6 DMFTX100 10-13  FLPPM 18-20 1 ;
CARDS;

PROC PRINT;
aBS aTy DVFTX100 FLPPM

1 1 236 1.9
2 2 246 2.6
20 20 823 0.1
21 21 1037 0.1
PROC MEANS; VAR DMFTX100 FLPPM;
VAR ABLE N MEAN  STD MN MX SID ERRR

DEWN VALUE VALLE CF MEAN
DWTX100 21 537.38 243.3858 236.00 1037.0 53.111
FLPPM 21 0.70 0. 7456 0.00 2.6 0.162

PROC G.M MCDEL DMFTX100 = FLPPM

GENERAL LI NEAR MCDELS PROCEDURE - DEP. VAR ABLE DMFTX100

RES| DUAL 314548. 196 19 16555. 168
1500
D
M
F [
T 1000
1 2
0 \
0
500 :
i [ ]
[ ]
$° o, .
0
-1 0 1 2
FLPPM

SQURCE DF  SUMCF SQ  MEAN SQUARE F VALUE
MCDEL 1 870184.75 870184.75 52. 56
ERRCR 19  314548.19 16555. 16 PR>F
OCRRECTED TOTAL 20 1184732.95 0. 0001

R SQUARE C V. ROOr MSE DVFTX100 MEAN

0. 734499 23.9433 128. 66688857 537. 38095238

SOURCE DE TYPEIIl SS FVAWE PR>F
FLPPM 1 870184. 75629497 52.56  0.0001

T FOR HO: PR>|T| STDERRCR CF
PARAMETER  ESTI MATE  PARAMETER=0 ESTI MATE
I NTERCEPT  733. 1983 18. 82 0. 0001 38. 959
FLPPM -279. 7392 7.25 0. 0001 38.584
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