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Correlation and Regression

references: A&B Ch 5,8,9,10; Colton Chapter 6,
M&M Chapters 2 (descriptive) and 9 (inference)

    Similarities
• Both involve relationships between pair of numerical variables X & Y.

• Both: "predictability",  "reduction in uncertainty"; "explanation".

• Both involve straight line relationships [can get fancier too].

    Differences
• Correlation is     Symmetric;    Regression is     Directional.

• Correlation involves sampling pairs of (X,Y) points;
regression may involve choosing X values and sampling Y values to
form  the (X,Y) pairs or it may involve sampling pairs, but regards
the X values as 'fixed';  x taken to be without error (not always so).

• Regression can be extended to relationships that are more complicated
than just a straight line and can relate Y to multiple X variables.

Correlation   [Pearson Product Moment Correlation
Coefficient]

    Loose        Definition:   
Degree to which, in observed (x,y) pairs, y value tends to be larger than
average when x is larger (smaller) than average; extent to which larger
than average x's are associated with larger (smaller) than average y's

     Mathematically:   

for (x,y) sample pairs,  rxy  =  
 Σ{xi –  x

–
 }{y i –  y

–
 }

(  Σ{xi –  x
–
 }2  )  (  Σ{yi –  y

–
}2  )  

  

"universe" of pairs:   xy   =   
E{ (X – µ X ) (Y –  µ Y)  }

E{ (X – µ X ) 2 }   E{  (Y –  µ Y)2 }
  

    Positive        Correlation:     Large X's with large Y's and small X's with small Y's
    Negative        Correlation:    Large X's with small Y's and small X's with large Y's
    No          Correlation:    Large X's with either large Y's or small Y's.
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How r ranges from -1 (neg correln.) through 0 (zero correln.) through +1
(positive correln.) (r not tied to x or y scale).
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2 i s  a  measure  o f  how much the  var iance  o f  Y i s  reduced  by
k n o w i n g  w h a t  t h e  v a l u e  o f  X  i s  ( o r  vice versa) See article (by
Chatillon) on "Balloon Rule" for visually estimating r.

Var( Y | X ) = Var( Y ) • ( 1 – ρ2 ) ρ2  : "coefficient of determination"
Var( X | Y ) = Var( X ) • ( 1 – ρ2 )

Large  ρ2  (i.e. ρ  close -1 or +1)  - > close linear association of X and Y
values; far less uncertain about value of one variable if told value of other.
If X and Y scores are standardized to have mean=0 and unit SD=1 it can be
seen that ρ  is like a "rate of exchange" ie the value of a standard deviation's
worth of X in terms of PREDICTED standard deviation units of Y.
If we know observation is ZX SD's from µX, least squares prediction of
observation's ZY value is given by   predicted ZY =   •  ZX
Notice the    regression       towards        mean   :  ρ is always less than 1 in absolute
value, and so will make the predicted   ZY closer to 0 (or equivalently make
Y closer to to µY ) than the ZX was to 0 (or X was to µX ).

Inferences re  [based on sample of n (x,y) pairs]
Naturally, the observed r in any particular sample will not exactly match the 
in the population (i.e. the coefficient one would get if one included
   everybody   ). The quantity r varies from one sample of n to another sample of
n. i.e. r is subject to sampling fluctuations about  .

1. A common question asked of one's data is     whether       there       is       evidence       of       a
   non-zero       correlation    between 2 variables.  To test this, one sets up a null
hypothesis that    is zero and determines  the probability, calculated under
this null hypothesis that in fact    =  0  , of obtaining an r  more extreme
than we observed. If the null is true, r would just be "randomly diffrent"
from zero, with the amount of the random variation governed by n.

This discrepancy of r from zero is measured as   
r   n  –  2  

 1  –  r2  
   and should, if

the null hypothesis of   =  0  is true, follow  t distribution with n-2 df.
[Colton's table A5 gives the smallest r which would be considered evidence
that  i s  no t  equa l  to  0 .  For example, if n=20, so that df = 18, an
observed correlation of 0.44 or higher, or between -0.44 and -1 would be
considered statistically significant at the P=0.05 level (2-sided). NB: the t-

test assumes that the pairs are from a Bivariate Normal distribution. Also,
it is valid only for testing   =  0 ,  no t  for  t e s t ing  any  o ther  va lue
of 

2. Other common questions: given that r is based only on a sample, what
   confidence interval    should I put around r so that there is a good chance (say
95%) that the interval will include the "true" coefficient   ?

Or (answerable by the same technique): one observes a certain  r1 ; in
another population, one  observes a value r2 . Is there evidence that the 's

in the 2 populations we are studying are unequal?

From our experience with the binomial statistic, which is limited to {0,n}
or {0,1}, it is no surprize that the r statistic, limited as it is to {-1,1}, also
have a pattern of sampling variation that is    not be symmetric    unless  is
right in the middle, i.e. unless  = 0. The following    transformation    of r
will lead to a statistic which is approximately normal even if the ρ('s) in
the population(s) we are studying is(are) quite distant from 0:

  
1
2
   ln { 

1 + r
1 – r

  }   [where  ln  is log to the base e or natural log].

It is known as Fisher's  transformation of r; the observed r, transformed to
this new scale, should be compared against a Gaussian distribution with

     mean =  
1
2
   ln { 

1  +  
1  –  

   }  and SD = 
1

n – 3
  .

   e.g. 2a   :  H0 :   =  0 .5 ; r=0.4 in sample of n=20. To test H0, compute

 
1
2
  ln { 

1 + 0.4
1 – 0.4

 }  –  
1
2
  ln { 

1  +  
1  –  

 }   

 
1

n – 3
 .

   and compare with

Gaussian (0,1) tables. Extreme values of the standardized Z are taken as
evidence against H0 . Often, the alternative hypothesis concerning  is 1-

sided, of the form  > some quantity.
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   e.g. 2b   : testing H0 :   =  .   r1 & r2 in independent samples of n1 & n2

Remembering that "variances add; SD's do not", compute  the test statistic

 

  
1
2
  ln {

1 + r1

1 – r1
} –  

1
2
  ln {

1 + r2

1 – r2
}   –  [  0  ]  

 
1

n1 –  3
 +  

1
n2 –  3

 .

   

and compare with Gaussian (0,1) tables.

   e.g. 2c   :  100(1–α)% CI( )  from r=0.4 in sample of n=20.

By solving the double inequality

– zα/2    ≤  
 
1
2
  ln { 

1 + r
1 – r

 }  –  
1
2
  ln { 

1  +  
1  –  

 }   

 
1

n – 3
 .

    ≤   zα/2

so that the middle term is , we can construct a CI for .

With a little re-arranging, it turns out to be  [lower, upper]

     =  
1 + r – {1 – r} e [ ± 2 zα/2 / Sqrt[n-3] ]

1 + r + {1 – r} e [ ± 2 zα/2 / Sqrt[n-3] ] 

     Worked e.g.     95% CI( )  based on r=0.55 in sample of n=12.

With  α=0.05, so that  zα/2   = 1.96, we have lower & upper bounds for :

=  
1 + 0.55 – {1 – 0.55} e

 [  ±  2  •  1 .96 /  sqrt[9] ]

1 + 0.55 + {1 – 0.55} e 
[  ±  2  •  1 .96 /  sqrt[9] ]

 

=   
1.55 – 0.45 e

 [  ±  2  •  1 .96 /  sqrt[9] ]

1.55 + 0.45 e 
[  ±  2  •  1 .96 /  sqrt[9] ]

 

 =   
1.55 – 0.45 e 

± 1.307

1.55 + 0.45 e 
± 1.307

   =

=   
1.55 – 0.45 • 3.69
1.55 + 0.45 • 3.69

    ,  
1.55 – 0.45 / 3.69
1.55 + 0.45 / 3.69

    =  –0.04  to

0 .84

This CI, which overlaps zero,  agrees with the test of  =0  described above.

For if we evaluate   0.55  12  –  2  

 1 – 0.552  
    ,  we get a value of 2.08,

which is not as extreme as the tabulated t10 ,0.05(2-sided) value of 2.23.
    Note   : There will be some slight discrepancies between the t-test of  =0 and
the z-based CI's. The latter are only approximate. Note also that    both
   assume we have data which have a  bivariate Gaussian distribution   .

A partial nomogram for 100(1– )% i.e. 95% CI's for   i s
given on web page . It is based on Fisher's transformation of r. In
addition to reading it vertically to get a CI for   (vertical axis) based on an
observed r (horizontal axis), one can also use it to test whether an observed r
is compatible with, or significantly different at the α = 0.05 level, from
some specific   value, 0   say, on the vertical axis: simply read across
from   = 0   and see if the observed r falls within the horizontal range
appropriate to the sample size involved.  Note that this test of a    nonzero    
is not possible via the t-test. Books of statistical tables have fuller
nomograms.
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Spearman's (Non-parametric) Rank
Correlation Coefficient

    How        Calculated:
• (i) replace the raw x's and y's by their ranks 

(1=smallest to n=largest)

(ii) calculate Pearson correlation on the ranks.

    Advantages
• Easy to do manually (if ranking not a chore);

rSpearman = 1 – 
6Σd2

n{n2-1}
 

{ d = ∆  in ranks on X & Y for each obsn.}

• Less sensitive to outliers (x -> rank
==> variance  fixed (for a given n).

Extreme  {xi – x
–
  } or {yi – y

–
 }  can exert

considerable influence on rPearson.

• Picks up on non-linear patterns  e.g. the
rSpearman for the following data is 1, whereas
the rPearson. is less.

       y

                   °

                  °

                 °

                      °

             °

          °

       °

    ____________________

x

Correlations --  obscured and artifactual

+ =

+ =
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Regression
    Uses

• Curve fitting
• Summarization  ('model')
• Description
• Prediction
• Explanation
• Adjustment for 'confounding' variables

    Technical         Meaning
• [originally] simply a line of 'best fit' to data points

• [nowadays] Regression line is the LINE that connects the CENTRES of
the distributions of Y's  at each X value.

• not necessarily a straight line;  could be curved, as with growth charts

• not necessarily  µY|X 's used as CENTRES ; could use medians etc.

• strictly speaking, haven't completed description unless we characterize
the variation around the centres of the Y distributions at each X

• inference not restricted to the distributions of Y's for which we make
some observations; it applies to distributions of Y's at all unobserved X
values in between.

    Examples       (with       appropriate       caveats)
• Birth weight (Y) in relation to gestational age (X)
• Blood pressure (Y) in relation to age (X)
• Cardiovascular mortality (Y) in relation to water hardness (X) ?
• Cancer incidence (Y) in relation to some exposure (X) ?
• Scholastic performance (Y) vis a vis amount of TV watched (X)

Caveat:  No guarantee that simple straight line relationship will be adequate.
Also, in some instances the relationship might change with the type of X
and Y variables used to measure the two phenomena being studied;  also the
relationship may be more artifact than real - see later for inference.)

              MALES                       FEMALES
Age. Tot.    %-ile; weight,g     Tot.    %-ile; weight,g

wk    N.       10th         50th         90th      No.       10th          50th         90th   

25    100       651          810          950         73       604          750          924   

30    257     1 156        1 530        2 214        216     1 040        1 485        2 001   

31
32
33
34
35  1 840     2 060        2 570        3 140      1 454     1 950        2 460        3 040   

36
37
38
39
40 68 102     3 020        3 570        4 160     67 149     2 900        3 430        4 000   

41
42 10 309     3 200        3 770        4 390      9 636     3 060        3 610        4 190

2000g

1000g

3000g

4000g

GESTATIONAL AGE (week)

36 383230 4034

BIRTH WEIGHT (DISTRIBUTION) MALES
BIRTH WEIGHT (MEDIAN) FEMALES

Median (50th %ile) for MALES 
Median (50th %ile) for FEMALES 

Live singleton births, Canada 1986
Source: Arbuckle & Sherman CMAJ 140 157-161, 1989
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S i m p l e  L i n e a r †  R e g r e s s i o n 
   (one X)    (straight line)

   Equation   

•  µY|X = α + β X or  
∆ µY|X 

∆ X   = β  =  "rise"
"run" 

   In Practice:
one    rarely    sees an    exact    straight line relationship in health science
applications;

1 - While physicists are often able to examine the relationship between Y
and X in a laboratory with    all other things being equal    (ie controlled or
held constant) medical investigators largely are not.  The universe of
(X,Y) pairs is very large and any 'true' relationship is    disturbed    by
   countless uncontrollable    (and sometimes    un-measurable factors.     In any
particular    sample    of (X,Y) pairs these distortions will surely be
operating.

2 - The true relationship (even if we could measure it exactly) may not be a
simple straight line.

3 - The measuring instruments may be faulty or inexact (using
'instruments' in the broadest sense).

One always tries to have the investigation sufficiently controlled that the
'real' relationship won't be 'swamped' by factors 1 and 3 and that the
background "noise" will be small enough so that alternative models (eg
curvilinear relationships) can be distinguished from one another.
------------------------------------------------------------------------------------------------------

----------------------------------------------

† Linear here means linear in the parameters. The equation
y = BxC  can be made linear in the parameters by taking logs
i.e. log[y] = log[B] + x log[C]; y = a+b•x+c•x2 is already linear
in the parameters a b and c. The following model cannot be made
linear in the parameters α β γ:

proportion dying = α +  
1-α

1+exp{β–γ log[dose]} 

    Fitting       a       straight       line       to       data       -        Least        Squares         Method

The most common method is that of     Least Squares   .  Note that least
squares can be thought of as    just a curve fitting    method and doesn't have
to be thought of in a statistical (or random variation or sampling
variation) context.  Other more statistically-oriented methods include
the method of minimum Chi-Square (matching observed and expected
counts according to measure of discrepancy) and the Method of
Maximum likelihood (finding the parameters that made the data most
likely).  Each has a different criterion of "best-fit".

    Least        Squares        Approach:

• Consider a candidate slope (b) and intercept (a) and predict that the

Y value accompanying any X=x is ŷ  = a + b•x.  The    observed    y

value will deviate from this "   predicted   " or "fitted" value by an

amount d = y -  ŷ  

We wish to keep this deviation as     small    as    possible   , but we must

try to strike a    balance    over all the data points.  Again just like

when  calculating variances, it is easier to work with    squared   

deviations1 :

d2 = (y -  ŷ  ) 2

We     weight all deviations equally    (whether they be the ones in the

middle or the extremes of the x range) using  Σ d2 = Σ (y -  ŷ  ) 2

to measure the overall (or average) discrepancy of the points from

the line.

                                    
1 there are also several theoretical advantages to least squares estimates
over others based for example on least absolute deviations: - they are
the most precise of all the possible estimates one could get by taking
linear combinations of y's.
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• From all the possible candidates for  slope (b) and intercept (a) , we

choose the particular values a and b which make this sum of squares

(sum of squared deviations of 'fitted' from 'observed' Y's) a minimum.

ie we search for the a and b that give us the least squares fit.

• Fortunately, we don't have to use trial and error to arrive at the 'best' a

and b .  Instead, it can be shown by calculus or algebraically that the a

and b which minimize  Σ d2 are:

b =  β^   =  
 Σ{xi –  x

–
 }{y i –  y

–
 }

 Σ{xi –  x
–
 }2    

    =  
rxy  •  sy

sx
 

a =  α^   =  y–  – b  x
–
   

[Note that a least-squares fit of the regression line of     X       on        Y     would
give a    different    set of values for the slope and intercept:  the slope

of the line of x on y is   
rxy  •  sx

sy
  . one needs to be careful when

using a calculator or computer program to specify which is the
explanatory variable (X) and which is the predicted variable (Y)].

     Meaning       of       intercept       parameter       (a):

Unlike the    slope    parameter (which represents the increase/decrease

in µY|X for every unit increase in x), the intercept does not always

have a 'natural' interpretation.  It  depends on where the x-values lie

in relation to x=0, and may represent part of what is really the

mean Y. For example, the regression line for fuel economy of cars

(Y) in relation to their weight (x) might be

µY|weight = 60 mpg – 0.01•weight in lbs   [0.01 mpg/lb]

but there are no cars weighing 0 lbs. It would be better to write the

equation in relation to some 'central' value for weight e.g. 3500

lbs; then the same equation can be cast as

µY|weight – 25 =  0.01•(weight – 3500)

It is helpful for testing whether there is evidence of a non-zero slope to

think of the simplest of all regression models, namely that which is a

horizontal straight line

µY|X = α + 0 • X =  the constant α .

This is a re-statement of the fact that the sum of squared deviances

around a constant horizontal line at height 'a' is smallest when 'α ' =

the mean .

[We don't always use the mean as the best 'centre' of a set of numbers.

Imagine waiting for one of several elevators with doors in a row along

one wall; you do not know which one will arrive next,  and so want to

stand in the 'best' place  no matter which one comes next. Where to

stand depends on the criterion being optimized: if you want to minimize

the     maximum     distance,  stand in the middle between the one on the

extreme left and the extreme right; if you wish to minimize the    average   

distance , where do you stand?, If, for some reason, you want to

minimize the    average squared     distance, where to stand? If the elevator

doors are not equally spaced from each other, what then?]
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    The anatomy of a slope: some re-expressions    

Consider the formula: slope = b = 
Σ{x – xbar}{y – ybar}

Σ{x – xbar}2
 

Without loss of generality & for simplicity,  assume ybar=0.

If we have 3 x's,  1 unit apart  (e.g. x1=1;  x2 =2;  x3 =3),

   then...      x1 – xbar = –1;   x2 – xbar = 0;   x3 – xbar = +1

   so slope = b = 
{ – 1}y1  +  {0}y2  +   {  +  1}y 3

{ – 1}2 +  {  0  }2 + {  + 1}2
 

   i.e.  slope =  
y3  –   y 1

x3  –   x 1
 

Note that   y2  contributes to ybar and thus to an estimate
of the average y (i.e. level) but not to the slope.

If 4 x's 1 unit apart  (e.g. x1=1;  x2 =2;  x3 =3;  x4 =4), then,...

x1 – xbar = –1.5 x2 – xbar =  – 0.5
x3 – xbar = +0.5 x4 – xbar =  + 1.5

   and so

   slope = b = 
{ – 1.5}y1  +   {  –  0 .5}y2  +   {  +  0 .5}y3+  { + 1.5}y4

{ – 1.5}2 + { – 0.5}2  + { 0.5 }2 + { + 1.5}2
 

   i.e.  slope =  
1.5{ y4  –  y 1}

5
  +  

0.5{ y3  –  y 2}

5
 

   i.e.  slope =  

3
2
 {y4  –  y 1}

5
3
 {x4  –   x 1}

  +  

1
2
 {  y3  –  y 2}

5
1
 {x3  –   x 2}

 

   i.e.  slope = 
 9
10

  
{y4  –  y 1}

{x4  –   x 1}
  +  

 1
10

  
{ y3  –  y 2}

{x3  –   x 2}
 

i.e.   a weighted average of the slope from datapoints 1 and 4
and that from datapoints 2 and 3, with weights proportional to the
squares of their distances on x axis {x4  –  x1}2 and {x3  –  x2}2

Another way to think of the slope:

Rewrite  b = 
Σ{x – xbar}{y – ybar}

Σ{x – xbar}2
    as

b  =  
∑{x – xbar} 2   {y – ybar}

{x – xbar}

∑{x – xbar} 2
        =    

∑ weight   {y – ybar}
{x – xbar}

∑weight
 

weight  {x – xbar}2 for estimate  
{y – ybar}
{x – xbar}   of slope

Yet another way to think of the slope:

b is a weighted average of all the pairwise slopes   
yi – yj
xi – xj

   

with weights proportional to  {xi  –  xj }2 .

   e.g.     If 4 x's 1 unit apart

denote by b1&2 the slope obtained from {x2,y2} & {x1,y1}, etc...

b  =  
1.b1&2  +  4.b1&3   +  9.b1&4  +  1.b1&3  +  4.b2&4  + 1.b3&4

1+ 4  +  9  +  1  +  4  +  1  =  20
 

jh 6/94
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Inferences regarding Simple  Linear  Regression

    How       reliable    are

(i) the (estimated)    slope   
(ii) the (estimated)    intercept   
(ii) the    predicted        mean        Y       at       a       given        X    
(iv) the    predicted       y       for       a       (future)       individual        with       a       given        X

when they are based on data from a sample?  i.e. how much would these
estimated quantities change if they were based on a different random
sample [with the same x values]?

We can use the concept of    sampling        variation    to (i)    describe    the
'uncertainty' in our estimates via CONFIDENCE INTERVALS or (ii)
carry out     TESTS       of       significance    on the parameters (slope, intercept,
predicted mean).

We can describe the degree of reliability of (or, conversely, the degree of
uncertainty in) an estimated quantity by the standard deviation of the
possible estimates produced by different random samples of the same
size from the same x's.  We call this (obviously conceptual) S.D. the
   standard error of the estimated quantity    (just like the    standard error of the
    mean    when estimating µ). helpful to think of slope as an average
difference in means for 2 groups that are 1 x-unit apart.

The size of the standard error will depend on

1. how 'spread apart' the x's are
2. How good a fit the regression line really is (i.e. how small is

the unexplained variation about the line)
3. How large the sample size, n, is.

Factors affecting reliability (in more detail)

1.     The       spread       of       the        X's:     The best way to get a reliable estimate of
the slope is to take Y readings at X's that are quite a distance from
each other.  E.g. in estimating the "per year increase in BP over the
30-50 yr. age range", it would be better to take X=30,35, 40, 45,

50 than to take X =38, 39, 49, 41, 42.  Any individual fluctuations
will 'throw off' the slope much less if the X's are far apart.

30 40 5030 40 50

BP BP

AGE AGE

(b)(a)

thick l ine :      real    (true) relation between    average        BP       at       age        X     and     X     : thin
lines:   possible    apparent    relationships because of individual variation when
we study 1 individual at each of two ages (a) spaced closer together (b)
spaced further apart.

    Notes

Regression line refers to the relationship between the     average Y at a
    given X      to the      X      , and     not    to    individual Y's     vs X.  Obviously of course if
the individual Y's are close to the average Y, so much the better!

The above argument would suggest studying individuals at the
extremes of the X values of interest.  We do this if we are sure that the
relationship is a linear one. If we are not sure, it is wiser -- if we have
a choice in the matter -- to take a 3-point distribution.

There is a common misapprehension that a Gaussian distribution of X
values is desirable for estimating a regression slope of Y on X. In fact,
the 'inverted U' shape of the Gaussian is the least desirable!
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Factors affecting reliability (continued)

2.     The (vertical) variation about the regression line:     Again, consider
BP and age, and    suppose    that indeed the average BP of    all    persons
aged X + 1 is β units higher than the average BP of all persons

aged X, and that this linear relationship

  average BP of persons aged x  =      α    +   β    •  X
 (average of Y's at  a  given    x  = intercept + slope •  X)

holds over the age span 30-50.

Obviously,    everybody    aged x=32     won't    have    the       exact       same    BP,
some will be above the average of 32 yr olds, some below.
Likewise for the different ages x=30,...50. In other words, at any x
there will be a distribution of y's about the average for age X.
Obviously, how wide this distribution is about α + β•X will have
an effect on what slopes one could find in different samples
(measure vertical spread around the line by σ)

30 40 5030 40 50

BP BP

AGE AGE

(a) (b)

thick l ine :      real    (true) relation between    average        BP       at       age        X     and     X     :
thin lines:   possible    apparent    relationships because of individual
variation when we study 1 individual at each of two ages when the
within-age distributions have (a) a narrow spread (b) a wider spread

     NOTE:     For     unweighted     regression, should have roughly     same        spread
    of         Y's        at        each         X.

Factors affecting reliability (continued)

3.     Sample Size (n)     Larger n will make it more difficult for the types of
extremes and misleading estimates caused by 1) poor X spread and 2)
large variation in Y about µ Y|X , to occur.  Clearly, it may be possible

to spread the x's out so as to maximize their variance (and thus reduce
the n required) but it may not be possible to change the magnitude of
the variation about µY|X  (unless there are other known factors

influencing BP).  Thus the need for reasonably stable estimated ŷ  
[i.e.estimate of  µY|X ]
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Standard Errors

SE(b) = SE( β̂ ) =  
 σ

 Σ{xi – x–  }2   
   ;

SE(a) = SE( α̂ ) = σ  
1
n + 

 x–2

Σ{xi –  x–  }2  
   

(Note:  there is a negative correlation between a and b).

     We       don't       usually       know      σ so we estimate it from the data, using scatter of
the y's from the fitted line i.e. SD of the residuals)

If examine    the structure of SE(b)   , see that it reflects the 3 factors discussed
above: (i) a large spread of the x's makes contribution of each observation to

Σ{xi –  x
–
  }2 large, and since this is in the denominator, it reduces the SE

(ii) a small vertical scatter is reflected in a small σ and since this is in the
numerator, it also reduces the SE of the estimated slope (iii) a large sample

size means that  Σ{xi –  x
–
  }2 is larger, and like (i) this reduces the SE.

The formula, as written, tends to hide this last factor; note that

Σ{xi –  x
–
  }2 is what we use to compute the spread of a set of x's -- we

simply divide it by n–1 to get a variance and then take the square root to get
the sd. To make the point here, simplify n-1 to n and write

Σ{xi –  x
–
  }2  ≈  n•var(x),  so that Σ{xi –   x

–
 }2    ≈ n  • sd(x)

and the equation for the SE simplifies to (approx)

SE(b) ≈  
 σ

  n • sd(x)   
   = 

 SDy|x /  SDx 

  n 
 

with  n   in its familiar place in the denominator of the SE (even in more

complex SE's,  this is where n   is usually found !)

T   he structure of SE(a)    : In addition to the factors mentioned above, all
of which come in again in the expected way, there is the additional

factor of  x
–
 2; since this is in the denominator, it increases the SE .

This is natural in that if the data, and thus  x
–
 , are far from  x=0, then

any imprecision in the estimate of the slope will project backwards to a
large imprecision in the estimated intercept. Also, if one uses 'centered'

x's, so that   x
–
  = 0, the formula for the SE reduces to

SE(a) =  σ  
1
n
    =   σ

n
    

and we recognize this as SE(y
–
 ) -- not surprisingly, since y

–
  is the

'intercept' for centered data.

CI's & Tests of Significance for ^   and ^   are based on
t–distribution (or Gaussian Z's  if n large)

 ^   ± tn–2 • SE(  ^  )

    H0:  tn–2 = 
^ – 

SE(^)
 

 ^   ± tn–2 • SE(  ^  )

    H0:  tn–2 = 
^ – 

SE(^)
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Standard Error for Estimated Y|X or 'average Y at X'

We estimate 'average Y at X' or  Y|X   by   α^   +   β^  •X  .  Since the

estimate is based on two estimated quantities, each of which is subject to
sampling variation, it contains the uncertainty of both:

SE(estimated average Y at X) = σ  
1
n
 +  

{X  –   x
–
}2

Σ{xi –   x
–
 }2  

 

Again, we must use an estimate  σ^  of  σ .

First-time users of this formula suspect that it has a missing Σ or an x
instead of an xbar or something. There is no typographical error, and indeed
if one examines it closely, it makes sense.  X  refers to the x-value at which
one is estimating the mean -- it has nothing to do with the actual x's in the
study which generated the estimated coefficients, except that the closer X  is

to the center of the data, the smaller the quantity  {X  –  x
–
 } and thus the

quantity  {X  –  x
–
 }2, and thus the SE, will be. Indeed, if we estimate the

average Y right at  X  =    x
–
 , the estimate is simply

y
–
  (since the fitted line goes through [ x

–
, y

–
] )  and its SE will be

  σ  
1
n
 +  

{ x
–
 –   x

–
}2

Σ{xi –   x
–
 }2  

     or    σ  
1
n
    =   σ

n
   = SE( y

–
  ).

Confidence Interval for individual Y at X

A certain percentage P% of individuals are within tP • σ  of the mean

µY|X =   α + β • X , where tP is a multiple, depending on  P, from the t

or, if n is large, the Z table. However, we are not quite certain where
exactly the mean  α  +   β • X  is -- the best we can do is estimate,

with a certain P% confidence, that  it is within tP• SE( α^   +   β^  •X  )

of the point estimate  α^ + β^  •X.  The uncertainty concerning the mean
and the natural variation of individuals around the mean -- wherever it is
-- combine in the expression for the estimated P% range of individual
variation, which is as follows:

α^ + β^  •X  ±   t • σ 1  +   
1
n
 +  

{X  –   x
–
}2

Σ{xi –   x
–
 }2  

   .

Both the CI for the estimated mean and the CI for individuals (ie the
estimated percentiles of the distribution) are bow-shaped when drawn as

a function of X . They are narrowest at X =   x
–
 , and fan out from

there. One needs to be careful not to confuse the much narrower CI for
the mean with the much wider CI for individuals. If one can see the raw
data, it is usually obvious which is which -- the CI for individuals is
almost as wide as the raw data themselves.

cf. data on sleeping through the night; alcohol levels and eye speed.
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Community Fluoride and Cavities     Analysis via MYSTAT

     Descriptive statistics    
                 DMFTX100 (Y)    FLPPM (X)         XY
  N OF CASES               21          21          21
  MEAN                537.381       0.700     228.038
  VARIANCE          59236.648       0.556   30254.578
  STANDARD DEV        243.386       0.746     173.938
  SUM               11285.000      14.700    4788.800

     Regression analysis

DEP VAR:DMFTX100  N:21 MULT R: 0.857 SQUARED MULT. R: 0.734

ADJUSTED R2: 0.721     STANDARD ERROR OF ESTIMATE: 128.667

   VARIABLE  COEFFICIENT  STD ERROR   STD COEF    T    P(2 TAIL)
CONSTANT     733.198     38.959      0.000   18.820    0.000
   FLPPM    -279.739     38.585     -0.857   -7.250    0.000

                      ANALYSIS OF VARIANCE

      SOURCE   SUM-OF-SQUARES   DF  MEAN-SQUARE   F-RATIO     P
 REGRESSION     870184.756    1   870184.756    52.563  0.000
   RESIDUAL     314548.196   19    16555.168
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1000 

1500 
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    Analysis via SAS

DATA A;
INPUT  CITY 5- 6  DMFTX100 10-13   FLPPM    18-20 1 ;
CARDS;

PROC PRINT;
               OBS    CITY    DMFTX100    FLPPM

                 1      1       236        1.9
                 2      2       246        2.6
                 .      .       ...        ...
                 .      .       ...        ...
                20     20       823        0.1
                21     21      1037        0.1

PROC MEANS; VAR DMFTX100 FLPPM;

 VARIABLE    N      MEAN     STD    MIN.   MAX   STD ERROR
                                DEVN  VALUE  VALUE   OF MEAN   
 DMFTX100   21  537.38  243.3858  236.00  1037.0  53.111
 FLPPM      21    0.70    0.7456    0.00     2.6   0.162

   PROC GLM; MODEL DMFTX100 = FLPPM;

GENERAL LINEAR MODELS PROCEDURE - DEP. VARIABLE: DMFTX100

    SOURCE           DF   SUM OF SQ.  MEAN SQUARE    F VALUE   
 MODEL             1   870184.75   870184.75      52.56

 ERROR            19   314548.19    16555.16     PR > F

 CORRECTED TOTAL  20  1184732.95                 0.0001

 R-SQUARE       C.V.          ROOT MSE     DMFTX100 MEAN

 0.734499    23.9433      128.66688857      537.38095238

    SOURCE           DF       TYPE III SS  F VALUE   PR > F   
 FLPPM             1   870184.75629497    52.56   0.0001

                        T FOR H0:   PR > |T|  STD ERROR OF
    PARAMETER   ESTIMATE   PARAMETER=0             ESTIMATE   
 INTERCEPT   733.1983     18.82      0.0001     38.959

 FLPPM      -279.7392      7.25      0.0001     38.584


