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The association between increased risk of coronary heart disease and elevated levels of serum
cholesterol and systolic blood pressure is well known. Several questions about the magnitude of this
association remain unanswered, however. Thus, are there critical values of serum cholesterol (or blood
pressure) below which no relation between disease risk and cholesterol value exists, but which when
exceeded are accompanied by abrupt elevations in risks? If no critical value exists is it nevertheless
true that a given elevation is associated with a larger "effect" when added to a high rather than a low
level? Does the apparent effect of serum cholesterol persist when levels of systolic blood pressure
are held constant, and does the apparent blood pressure effect persist when serum cholesterol is held
constant? If they do, are the effects independent of each other or do they, in the sense of the
pharmacologist, potentiate each other?

Answers to these and related questions offer no difficulty in principle. They require continued
observation of the frequency with which coronary heart disease develops in a well-defined
population, for each member of which measurements of the magnitudes of possible risk factors have
been made. Several such longitudinal studies are now in progress. The present analysis is based on the
long-term follow-up study of heart disease in Framingham, Massachusetts (2). The results discussed
were obtained from clinical examination of a sample of 1,329 of the male population (aged 40-59) of
the town carried out from September 1948 through August 1952 and from their subsequent follow-up
over a 6-year period. During this period 92 of the original sample developed clinically manifest
coronary heart disease (myocardial infarction or angina pectoris). The combination of these two
conditions into a single category is not, of course, intended to imply that they necessarily have the
same etiology.

Table 1 shows the ratio of number of new events to number of men exposed for different
combinations of serum cholesterol and systolic blood pressure after 6 years of follow-up. Certain
qualitative conclusions emerge from an examination of this table. Thus, for those with serum
cholesterols below 200 mg/100 cc the associated disease risk increases from 2 new cases in 6 years
out of 119 exposed at systolic blood pressures below 127 mm Hg to 4 out of 26 at pressures above
167 mm Hg. A similar increase in risk with increasing blood pressure is suggested for the other levels
of serum cholesterol shown. In the same way for those with blood pressures below 127 mm Hg the
6-year risk increases from 2/µg for those with cholesterol levels below 200 to 7/74 for those with
cholesterol levels above 260. A similar increase in risk with increasing cholesterol level is suggested
for each of the other blood pressure groups shown.

Simple inspection of the results is thus sufficient to suggest certain qualitative conclusions – the
absence of a critical value for either cholesterol or blood pressure and the persistence of at least some
association with each variable when the value of the other is held constant within broad limits. The
thinness of the data nevertheless imposes a clear limit to the kinds of conclusions that this form of
analysis will support. Inspection of the coarse groupings of Table I is, for example, hardly sufficient
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to indicate the way in which the effects of cholesterol level and blood pressure combine to influence
the risk of the disease. Because of these limitations and because additional information will
accumulate only slowly, one is led to seek a more searching form of analysis than simple inspection.
The use of a mathematical model which summarizes the observations in a small number of disposable
parameters seems to offer the only present hope of obtaining quantitative answers to questions of
interest.

The model that we use is that of discriminant functions (1, 4), but because our objective is not that of
discriminating between two populations, it is useful to start with a brief description of the method,
emphasizing those aspects most important for the present application.

We begin with the case of one variable and consider as two separate populations those who did
(CHD) and did not (NCHD) experience a new coronary event during the study period. Each of these
populations is characterized by a frequency distribution with respect to the variable being considered.
Thus, the CHD frequency distribution is such that the estimated proportion with serum cholesterols
below 200 mg is 12/92 whereas NCHD frequency distribution is such that the estimated proportion
with serum cholesterols below 500 mg is 307/1237. The essential characteristic of the method of
discriminant functions is that for the observed frequencies one substitutes a mathematical formula
describing a theoretical frequency distribution. The particular theoretical distribution used should, of
course, be compatible with the observations and should be completely characterized by the values of
a small number of disposable parameters, such as the mean or standard deviation.

Deferring the choice of distribution momentarily, suppose that the proportion of CHD individuals
with serum cholesterols between Y and Y + h can be adequately described by some simple function
which we denote by f1(Y)h, when h is reasonably small, while that for the NCHD population is f0
(Y)h. Denote the proportion of the combined populations who belong to the CHD population by p
(= 92/1329). Finally, introduce the risk function, P(Y), which denotes the proportion of individuals
with serum cholesterol of Y who belong to the CHD population. Then elementary algebraic
manipulation, or an application of Bayes' formula (3), is sufficient to show that

P(Y) =1/[1 + (1 - p) f0 (Y) / p f1 (Y)] (1)

Thus, if theoretical frequency distributions can be found which adequately characterize the CHD and
NCHD populations, then the risk function can be deduced from equation t. An excellent description
of both Framingham CHD and NCHD distributions with respect to cholesterol is provided by the log
normal distribution. That is to say, in both populations log cholesterol has a normal distribution (Fig.
1 of ref. 1).

If f0 and f1 in equation 1 are replaced by appropriate expressions for normal frequency distributions
with different means but the same standard deviation, it is easy to show that

P(Y) = 1/[1 + exp{-( X)}] (2)

where

X = log10 cholesterol
β = (µ1 - µ0)/σ

2

µ1 = mean log10 cholesterol for the CHD population
µ0 = mean log10 for the NCHD population
σ2 = the common variance of log10 cholesterol
α = -loge (1 - p)/p - β[(µ0 + µ1)/2]
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The curve (2) is S shaped, starting at P = 0 and increasing up to a level of P = 1. In the range of
observations made up to now, e.g., with P less than one-fourth, the full sigmoid appearance is not
apparent and the curve appears exponential. For many purposes it is convenient to express equation
2 in the linear form:

loge P/(1 - P) =  + X (3)

The effect of inequality of the variances in the two populations, an inequality not suggested by
present Framingham results, is to add a third term to the right-hand side of equation 3 of the form
γX2, where

 = 1/2 [(1/ 0
2) - 1/ 01

2)] (4)

(and to change the value of α).

TABLE I . Ratio of Number of New Events in 6 Years to Number Exposed to Risk: by Initial Systolic
Blood Pressure and Scrum Cholesterol

Blood Pressure, mm Hg
Serum

Cholesterol,
mg/100 cc

Total <127 127-146 147-166 167+

Total 92/1329 20/408 28/555 20/224 24/142

<200 12/319 2/119 3/124 3/50 4/26
200-219 8/254 3/88 2/100 0/43 3/23
220-259 31/470 8/127 11/220 6/74 6/49

260+ 41/286 7/74 12/111 11/57 11/44

The same analysis applies to the single variable, systolic blood pressure, except that the frequency
distribution of log blood pressure is not quite normal. This can be seen by plotting on probability
paper the cumulative frequencies against log blood pressure. The curve is not linear, as it would be if
normality applied. The plot against the logarithm of (blood pressure –75) is linear, however, so that if
Y denotes blood pressure log10 (y– 75) has a normal frequency distribution for both CHD and
NCHD populations.

To consider both the cholesterol and systolic blood pressure variables simultaneously, it is sufficient
to find frequency distributions in the two variables which characterize both CHD and NCHD
populations. If a frequency distribution in a single variable is thought of as a curve in which
frequency is plotted against X, then a bivariate frequency distribution can be thought of as a surface
in which the frequency is plotted against the values of both variables, say X1 and X2. Empirical
analysis of the Framingham results indicates that both CHD and NCHD populations are described by
bivariate normal frequency functions in log10 cholesterol and log10 (blood pressure –75) with
differing means but having equal variances and correlation coefficient (section 9 of ref. 1 ).

The equivalent of equation 2 is then:
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P =1/[1 + exp{ -(  + 1X1 + 2X2) } ] (5)

where

X1 = log10 cholesterol
X2 = log10 (blood pressure - 75)

and α , 1 and  1 are easily computed functions of the means of log cholesterol and log (blood
pressure –75) of the CHD and NCHD population, and of the variances of the two variables and
correlation coefficient between them. The linear version of equation 5 is

loge P/(1 - P) =  + 1X1 + 2X2 (6)

Formulas for approximate confidence limits on the coefficients 1 and  2  are available (formula 7.8
of ref. 1). The right-hand side of equation 6 is usually referred to as the discriminant function (α is
often omitted), since its numerical value may discriminate between those likely and unlikely to
become members of the CHD population. Our present interest is not in discrimination in this sense,
but in using equation 6 to study the quantitative nature of the dependence of risk on serum
cholesterol and systolic blood pressure levels. If the variances and correlation coefficients of the CHD
and NCHD populations had been unequal three terms would have been added to the right-hand side
of equation 6 of the form γ1X1

2 + γ2X2
2 + γ3X1X2.

TABLE 2. New CHD in 6 Years Follow-Up: Actual and Expected Number of Cases Among Men 40-
59

New CHD
Serum

Cholesterol,
mg/100 cc

Systolic Blood
Pressure, mm Hg Expected* Actual

Population at
Risk

200 Total
<117

117-126
127-136
137-146
147-156
157-166
167-186

187+ over

10.5
0.8
1.4
1.8
2.3
1.6
0.7
1.4
0.5

12
2

2
1
2
1
3
1

319
53
66
59
65
37
13
21
5
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200-209 Total
<117

117-126
127-136
137-146
147-156
157-166
167-186

187+ over

5.9
0.5
0.8
1.4
1.0
1.0
0.7
0.4
0.1

2

2

133
21
27
34
19
16
10
5
1

210-219 Total
<117

117-126
127-136
137-146
147-156
157-166
167-186

187+ over

6.9
0.4
0.9
1.0
1.5
0.4
0.9
1.1
0.8

6

1
2

3

121
15
25
21
26
6

11
11
6

220-244 Total
<117

117-126
127-136
137-146
147-156
157-166
167-186

187+ over

22.3
0.6
2.9
4.7
5.5
2.4
1.5
3.1
1.6

23

8
2
6
3
1
2
1

334
20
69
83
81
29
15
27
10

245-259 Total
<117

117-126
127-136
137-146
147-156
157-166
167-186

187+ over

11.6
0.5
1.3
2.3
2.0
1.9
1.3
0.7
1.5

8

3
2

2
1

136
14
24
33
23
19
11
5
7
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260-284 Total
<117

117-126
127-136
137-146
147-156
157-166
167-186

187+ over

16.0
1.0
1.4
2.1
3.5
1.9
1.7
2.7
1.5

23
1
5
2
2
4
2
6
1

156
22
22
26
34
16
13
16
7

285+ over Total
<117

117-126
127-136
137-146
147-156
157-166
167-186

187+ over

18.9
0.7
1.7
3.1
3.1
2.8
2.5
3.2
1.9

18

1
4
4
1
4
3
1

130
11
19
28
23
16
12
14
7

*Expected number of cases = (population at risk)/[1 + e^(23.13 - 6.14X1 - 3.29X2)].

Granting the bivariate normal model, all the data on which Table I is based can then be summarized in
the six constants α, β1, β2, γ1, γ2, and γ3, and the answers to any questions about the joint dependence
of risk on cholesterol and blood pressure levels are contained in them. Because of the near equality of
the observed variances and correlation coefficient in the two populations the last three constants can
be treated as zero. The estimates for the other three are: β1 = 6.14 (3.35 - 9.00), β2 = 3.29
(1.75-4.88), and α = 23.13, where the numbers in parentheses are 95% confidence limits. Table 2
compares the actual and expected number of new CHD cases obtained on this basis. The agreement
appears satisfactory.

The following approximation simplifies the subsequent discussion. When the value of P is small (say
< 1/5), log P/(1 – P) can be written as log P,* in which case it is easy to verify (remembering that logs
of cholesterol and blood pressure are to base 10) that

P = 0.0091 (Y1/100) 2.66 ([Y2 - 75]/100) 1.47 (7)

where Y1 and Y2 are serum cholesterol (in mg/ 100 cc) and systolic blood pressure (in mm Hg). The
confidence limits on the exponents are from 1.45 to 3.90 and 0.76 to 2.12.

* For some of the values of X1 and X2 observed, P considered as the 6-year risk is too large for this
approximation to be entirely accurate. For the l-year risk, which is one-sixth of the 6-year risk, the
approximation holds for all observed X1 and X2.

We may now return to the questions with which we started. It is clear first of all that the description
provided by equation 7 is incompatible with the idea of a critical value for either cholesterol or blood
pressure. Although the notion of decision values; e.g., of 260 mg for cholesterol or 160 mm Hg for
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systolic blood pressure, may be convenient clinically, these values are not associated with abrupt
changes in risks.

Rather than ask about critical values, however, we may ask how the change in risk associated with
changes in either variable depends on the level from which the change takes place. This includes the
question of critical values as a special case. It is important here to distinguish between absolute and
relative changes. Because both exponents in equation 7 exceed unity, a given absolute increase in
either variable will be associated with a larger absolute increase in risk when the change takes place
from a high rather than a low level. A given difference in milligrams per 100 cc of cholesterol will thus
be associated with a larger absolute difference in risk when added to a large rather than a small initial
level. A similar conclusion applies to systolic blood pressure, except that since the lower 95 %
confidence limit is below unity, it is less certain.

The conclusion is different, however, if one considers percentage changes. Because of the form of
equation 7 a given percentage difference in cholesterol is associated with the same percentage
difference in risk no matter what the level to which the difference is added. A 1 % difference in
cholesterol is associated with a 2.66 % difference in risk throughout the range of cholesterol values. If
one would lower cholesterol levels by a given amount, say 15 %, and if equation 7 describes not only
the association between risk and cholesterol level in Framingham, but also the change in risk that
would accompany an experimental alteration in serum cholesterol, then the relative risk would be
(.85)^2.66, or a reduction of about 35%. This would be true no matter what the level of cholesterol
from which the 15% reduction occurred.

Because of the subtractive 75 in systolic blood pressure, given percentage changes in blood pressure
are associated with larger percentage changes in risk when starting from low than from high blood
pressure. A 1 % difference in systolic blood pressure will be associated with a percentage difference
in risk of 1.47 Y/(Y – 75), where Y is the starting level. Thus, at a starting blood pressure of 110 mm
Hg a 1 % difference in blood pressure is associated with a 4.62 % difference in risk. This contrasts
with a starting level of 175 mm Hg; where a 1 % difference is associated with a 2.57 % difference in
risk.

For both cholesterol and blood pressure the form of equation 7 implies that the percentage effect on
risk of a given percentage change in either variables is independent of the level of the other variable.
No matter what the blood pressure a 1 % difference in cholesterol is associated with a 2.66 %
difference in risk. A 1 % increase in systolic blood pressure from 110 mm Hg is associated with a
4.62 % difference in risk no matter what the cholesterol level. Finally, from equation 7 the effect of
simultaneous differences in blood pressure and cholesterol on percentage differences in risk is
multiplicative. A simultaneous 1 % change in cholesterol and in blood pressure from a starting level of
110 mm Hg will result in a relative risk of (1 – .0266)(1 –.0462) %. A useful way of summarizing
these relations is by considering the percentage difference in risk associated with cholesterol values at
the 5th and 95th percentiles, with blood pressures at the 5th and 95th percentiles, and with both
cholesterol and blood pressure at their 5th as compared with their 95th percentiles. These are
summarized below:

Risk 95th Percentile
Relative to 5th Percentile
Cholesterol alone (166-301 mg) 4.8
Blood pressure alone (110-177 mg) 4.8
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Both 23.4

The population in the upper 5 % of either the cholesterol or blood pressure distribution has a risk
more than 4.8 times as large as that in the lower 5 %, while individuals who are in the upper 5 % with
respect to both (about 1/4 of 1% of the population) have a risk more than 23.4 times as large as those
who are in the lower 5% with respect to both.

Summary

1) Discriminant functions have been used to describe the relationships in the Framingham population
between risk of developing coronary heart disease, serum cholesterol level, and systolic blood
pressure.

2) Critical values of either variable, at which sharp increases in risk occur, were not found.

3) A 1% difference in serum cholesterol is associated with a 2.66% difference in risk at all levels of
serum cholesterol.

4) A 1 % difference in systolic blood pressure is associated with a 4.62 % difference in risk at blood
pressures of 110 mm Hg and of 2.57% at 175 mm Hg.

5) There is an almost fivefold difference in risk between the upper and lower 5% with respect to
serum cholesterol or systolic blood pressure alone, and an almost 25-fold difference between
those who are in the upper 5 % of the population with respect to both variables and those who
are in the lower 5% with respect to both.
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