Idea of Larger ("Full") and Smaller ("Reduced") model
Concepts of variable added "IN ORDER" vs. "LAST"
Distinguish <u># of terms</u> from <u># of variables</u>
of terms > # of variables if adding higher powers of a continuous variable, or if a variable is categorical and represented by indicator terms.

Same ideas apply in logistic/Poisson regression later

G&S only deal with adding/deleting 1 term; if assessing the addition/deletion of a categorical variable, or a "block" of continuous variables, need a more general approach.

References

- G&Spp 65-68 and pp79-80 (models that differ by 1 term)
- NWNW § 7.1-7.3 or my Course 697 notes on these (use same username and password to access these)
- KKMN Ch 9 or my 1999 Course 678 notes on these

I suggest <u>Notes for NKNW Ch 7</u> -- more compact; NKNW have a good diagram for Extra Sums of Squares; my notes avoid notation for #s of variables in the larger & smaller models.

Below (because I had done the work anyway!) I summarize the KKMN chapter, using their notation, and with an annotated example.

Example followin	g KKMN presentatio	on / notation						
§ = section of KKMN	N Chapter 9							
Number of terms	Number of terms (not counting intercept):							
MODEL								
§ <u>Reduced</u> <u>Full</u>	Test Statistic	df						
2 0 k	F(model)*	k, (n-1 -k)						
("Overall F-test")							
3 p p + 1	t** or F(partial)	1, (n-1 - p-1)						
4 p p + k	F(partial)***	k, (n-1 - p-k)						
<u>TEST Statistic</u>	TEST Statistic obtained from							
*F(model)	1st line of summ	ary Anova table						
("Overall F-test")								
** t	$t = \frac{1}{p+1} / SE[$	+1]						
Diff	in Dog CC / k / - d	liff in # tormal						

= square of t if k = 1 additional term

Example	Type III Tests ("Partial-F" tests)			
Berkeley data: prediction of height at 18 HT18 (cm) from:- weight (kg) at age 2 WT2	Source DF Sum of Mean F Stat Prob > F Squares Square			
height (cm) at age 2 WT2	WT2 1 0.14 0.14 0.01 0.9363			
gender (1=girl, 0=boy) GENDER	test of β wt2 HT2 GENDER = 0			
Fitted Equation	HT2 1 726.07 726.07 33.22 0.0001			
HT18 = 61.84 + 0.04 WT2 + 1.33 HT2 - 12.00 GENDER	test of $\beta_{\text{HT2} \text{WT2 GENDER}} = 0$			
Summary	GENDER 1 1952.56 1952.56 <u>89.34</u> <u>0.0001</u>			
Mean of Response 172.72 R-Square 0.75	****			
Adj R-Sq 0.74	test of $\beta_{\text{GENDER}} \mid \text{WT2 HT2} = 0$			
Root MSE 4.68	Each F-test tests contribution of the TERM in question, GIVEN THAT THE OTHER TERMS ARE ALREADY INCLUDED i.e. TESTS its contribution as LAST TERM in model			
Analysis of Variance ("Overall-F" test)	Parameter Estimates			
^ SINGULAR	Variable DF Estimate Std T Stat Prob > T Error			
Source DF Sum of Mean F Stat Prob > F <u>Squares</u> <u>Square</u>	WT2 1 0.04 0.50 0.08 0.9363			
Model 3 3628.12 1209.37 55.33 0.0001	F = 0.01 = square of 0.08			
test of All 3 's = 0 versus	HT2 1 1.33 0.23 5.76 0.0001			

GENDER

G&S Chapter 3: Regression with ≥ 2 independent variables Comparing Models pp 65-68 [69-73 in 2nd] & pp79-80[82--3 in 2nd]

AT LEAST ONE is NOT 0

Error 54 1180.25 21.86 ------C Total 57 4808.38

F = 89.34 = square of -9.45

1 -12.00

Each is a "**TERM ENTERED LAST**" test. The order in which term is entered or "clicked" into model doesn't matter

F = 33.22 = square of 5.76

1.27 <u>-9.45</u> <u>0.0001</u>

Type I Tests

Again, "Partial-F" tests, but now **SEQUENTIAL !!**

Source	DF	Sum of Squares		F Stat	Prob > F
WT2	1	935.54	935.54	42.80	0.0001
	test	t of β wr	2		= 0

HT2	1	740.	02	740.	02	33.86	0.0001
	test	c of	β нт:	2	WT2		= 0

GENDER	1	19	952.	. 56	1952.56				
	tes	st	of	β	GENDER	WT2	HT2	= 0)

F-test tests contribution of TERM, GIVEN THAT TERMS **BEFORE IT IN THE LIST** ARE ALREADY INCLUDED

- Q: Can't remember Type I from Type III? (and software doesn't indicate which). How can one tell if partial F-tests are "variables entered last" tests or "variables entered in THAT PARTICULAR ORDER" tests?
- A: If Sums of Squares associated with the individual terms add up to the "model" or "Regression" Sums of Squares, the partial-F tests refer to variables entered in THAT ORDER

Sums of Squares associated with each "VARIABLE ADDED LAST" can add up to MORE, or to LESS, than the "Regression" Sums of Squares.

Can you think of when they might add up to LESS THAN, MORE THAN, or EXACTLY the Model SS?

Multiple Partial F Test (SINGULAR)

HT18	=		11.3			
		-	0.60	WT9		
		+	1.21	HT9		
		-	0.07	LG9	from age	9
		-	0.04	ST9		
		-	11.24	GENDER		
		+	0.76	WT2		
		+	0.19	HT2	from age	2

Mean Response: 172.72 ; R² 0.91;RMSE 2.89; Adj R² 0.90.

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Stat	Prob > F
Model	7	4389.93	627.13	74.94	0.0001
Error	50	418.44	8.37		
C Total	57	4808.38			

Type I Tests

Source	DF	Sum of Squares	Mean Square	F Stat	Prob > F
WT9 HT9	1 1	179.21 2304.17	179.21 2304.17	21.41 275.33	0.0001
LG9	1	20.62	20.62	2.46	0.1228
ST9 GENDER	1 1	248.66 1554.48	248.66 1554.48	29.71 185.75	0.0001 0.0001
WT2	1	74.34	74.34	8.88	0.0044
HT2	1 	8.44	8.44	1.01	0.3200
	2	82.78			

Value of age 2 data, once already have age 9 data:

F(2,50) table $F = \frac{82.78 / 2}{8.37} = \frac{41.39}{8.37} = 4.94 \frac{0.95}{3.18} 5.06 7.96$

G&S Chapter 3: Regression with \ge 2 independent variables Comparing Models pp 65-68 [69-73 in 2nd] & pp79-80[82--3 in 2nd] (page 4)

Type I Tests

Source	DF	Sum of Squares	Mean Square	F Stat	Prob > F
WT2	1	935.54	935.54	111.79	0.0001
HT2	1	740.02	740.02	88.43	0.0001
GENDER	1	1952.56	1952.56	233.31	0.0001
WT9	1	0.08	0.08	0.01	0.9238
HT9	1	749.24	749.24	89.53	0.0001
LG9	1	1.50	1.50	0.18	0.6736
ST9	1	10.99	10.99	1.31	0.2572
	4	761.81			

Value of age 9 data, once already have age 2 data:

				F(4 ,	,50) ta	ıble
						<u>0.999</u>
F	=	761.81 / 4 8.37	$= \frac{190.45}{8.37} = 22.75$	2.56	3.72	5.46

Double Check

Running the bigger & smaller models separately:

SS(regression)

with	Source	DF	Sum of Squares
all 7 terms	Model	7	4389.93
WT2 HT2 GENDER (earlier)	Model	3	3628.12
· · ·	ference	4	761.81