Preamble / Motivation / ...

- Easy to carry out (just click!)
- Easy to be "glib" about what it accomplishes
- BUT ... WHY use it ??? HOW to explain to father-in-law?
 - If interested in separate contributions of each of several variables...

are there any situations where one can assess them one at a time? i.e.

assess a particular X while ignoring the others ... assess a different X while ignoring the others ... ?

or does one have to assess them simultaneously ?

• If interested in ("net") contribution of ONE particular variable...

are there situations where one can assess it while ignoring the others ... ?

or does one always have consider the other X's as well ?

Answers ... Illustrated by examples

- birthweight as function of gestational age and gender
- weight in relation to age and height
- breast milk and subsequent IQ in children born preterm
- increase in heating costs after adding a room to a house
- decrease in longevity if greater amount of sexual activity

Multiple Regression Equation

$$Y_{X1 \ X2 \dots} = \mu_{Y \ | \ X1 \ X2 \dots} + \mu_{Y \ | \ X1 \ X2 \dots} = 0 + 1 \ X_1 + 2 \ X_2 + \dots$$

How to describe it ...

in words / symbols

 $\begin{array}{ll} \mu_{|Y||X1|X2} \ .. \ as \ a \ function \ of \ X1|X2|.. \\ (don't \ forget \ the \ 's \ with \ SD \ about \ \mu's \) \end{array}$

geometrically

"plane" or "surface" of means

(in case of 2 X's) without leaving "2-D"

as contour map (cf web page)

using links to simpler procedure ..

as a sequence of simple linear regressions (but be careful: see my notes on Ch 2/9 of M&M)

()	page 2)	
Meaning of i	Parameters	Estimates of these (by computer!)
$i = \frac{\mu_{Y \mid X1 X2 \dots}}{X_i}$	1. ₀	$b_0 \pm t SE[b_0]$ [β_0 seldom of interest]
difference in μ_Y for a 1 unit difference	2. i	b _i ± t SE[b _i]
in X_i but no difference in other X 's , i.e. all other X 's held "constant"	3. Y X1 X2	$\sqrt{\frac{(y_i - [b_0 + b_1 x_i + b_2 x_2])^2}{n - \# \text{ of b's fitted}}}$
Main Purposes		("Root Mean Squared Error")
 Summarization / Description Adjustment (Bias Reduction) Increased Precision of estimates of specific i 's 	4. μ _{Υ X1 X2}	b ₀ + b ₁ X ₁ + b ₂ X ₂ + ± t SE[thereof]
 by removing extraneous variation) Prediction 	5. Y _{X1 X2}	$b_0 + b_1 X_1 + b_2 X_2 +$ ± t SE[$b_0+b_1X_1+b_2X_2 + + \varepsilon$]
 Interpolation / Smoothing "borrowing strength" (e.g. estimates of outcome of prostate cancer if sparse data in some age-histologic grade "cells") 		(Interval for Y X wider than for $\mu_{Y X}$)
 Polynomial Regression (several powers of 1 X each power is a <i>term</i> in regression; can also have other X's in equation) 	Multiple Correla	ation Coefficient
Assumptions	- a helpful way to look at least squares estimate (scalar)	
see G&S page 54 [page 58 in 2nd ed] ; see also comments in my notes on ch. 3	R_{Y} and best linear combination of X's	