Preamble / Motivation / ...

- Easy to carry out (just click!)
- Easy to be "glib" about what it accomplishes
- BUT ... WHY use it ??? HOW to explain to father-in-law?
- If interested in separate contributions of each of several variables...
are there any situations where one can assess them one at a time? i.e.
assess a particular X while ignoring the others ... assess a different X while ignoring the others ... ?
or does one have to assess them simultaneously ?
- If interested in ("net") contribution of ONE particular variable...
are there situations where one can assess it while ignoring the others ...?
or does one always have consider the other X 's as well ?

Answers ... Illustrated by examples

- birthweight as function of gestational age and gender
- weight in relation to age and height
- breast milk and subsequent IQ in children born preterm
- increase in heating costs after adding a room to a house
- decrease in longevity if greater amount of sexual activity

Multiple Regression Equation

$$
\begin{aligned}
Y_{X 1} \times 2 \ldots= & \mu_{Y \mid X 1 \times 2} \ldots+\varepsilon \\
& \mu_{Y \mid X 1 \times 2 \ldots}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots
\end{aligned}
$$

How to describe it ...

in words / symbols
$\mu_{Y \mid \times 1 \times 2}$.. as a function of X1 X2 .. (don't forget the ε 's with SD σ about μ 's)
geometrically
"plane" or "surface" of means (in case of $2 \times$'s) without leaving "2-D"
as contour map (cf web page)
using links to simpler procedure..
as a sequence of simple linear regressions (but be careful: see my notes on Ch 2/9 of M\&M)

Meaning of β_{i}

$$
\beta_{i}=\frac{\delta \mu_{Y \mid X_{1} 1 \times 2} \ldots}{\delta X_{i}}
$$

difference in μ_{Y} for a 1 unit difference in X_{i} but no difference in other X ' s, i.e. all other X ' s held "constant"

Main Purposes

- Summarization / Description
- Adjustment (Bias Reduction)
- Increased Precision of estimates of specific β_{i} 's
(by removing extraneous variation)
- Prediction
- Interpolation / Smoothing
"borrowing strength" (e.g. estimates of outcome of prostate cancer if sparse data in some age-histologic grade "cells")
- Polynomial Regression
(several powers of 1 X -- each power is a term in regression; can also have other X's in equation)

Assumptions

see G\&S page 54 [page 58 in 2nd ed]; see also comments in my notes on ch. 3

Parameters

1. β_{0}
2. β_{i}
3. $\sigma_{Y \mid X 1 X 2}$...
$\sqrt{\frac{\sum\left(y_{i}-\left[b_{0}+b_{1} x_{i}+b_{2} x_{2} \ldots\right]\right)^{2}}{n-\# \text { of } b^{\prime} \text { fitted }}}$
("Root Mean Squared Error")
4. $\mu_{Y \mid X 1 X 2} \ldots$
5. $Y_{\mid X 1 ~ X 2 ~} \ldots$
$b_{0}+b_{1} X_{1}+b_{2} X_{2}+\ldots$ $\pm t$ SE[thereof]
$b_{0}+b_{1} x_{1}+b_{2} x_{2}+\ldots$ $\pm t S E\left[b_{0}+b_{1} x_{1}+b_{2} X_{2}+\ldots+\varepsilon\right]$
(Interval for $\mathbf{Y} \mid \mathbf{X}$ wider than for $\boldsymbol{\mu}_{\mathbf{Y} \mid \mathbf{X}}$)

Multiple Correlation Coefficient

- a helpful way to look at least squares estimate (scalar)
R_{Y} and best linear combination of X 's

