G&S Cł	hapter 2	: Simple	Linear	Regression
--------	----------	----------	--------	------------

- see my notes on G&S Chapter 2
- see my notes on M&M Chapters 2/9

Parameters of interest	Estimates of these	
1. ₀	b ₀ ± t SE[b ₀]	
2. ₁	b ₁ ± t SE[b ₁]	

3.
$$y|X$$
 $\sqrt{\frac{(y_i - [b_0 + b_1 x_i])^2}{n - 2}}$

("Root Mean Squared Error")

4*.
$$\mu_{Y|X} = 0 + 1 X$$
 $b_0 + b_1 X$
± t SE[b_0 + b_1 X]

5*.
$$Y_{|X| = 0} + _1 X + b_0 + b_1 X + t SE[b_0 + b_1 X +]$$

Notes / Practicalities:

- Finding these on printouts
- Assumptions see notes
- Notation for Residual variation
 - MSE = average squared "error"
 - Root Mean Squared Error = MSE
 - = square root of average squared error
 - = "average" error (roughly!)
 - = "average" residual
- why n-2 df? see notes
- Precision of parameter estimates
 what factors affect it

4* and 5*

Not covered in G&S1 (see next page)

Covered in G&S2

- Confidence interval for the Line of Means (p37)
- Confidence interval for an Observation (p38-9)

"Estimate of mean Y at specific X_0 value"

"Estimate of **individual** Y at specific X₀ value" (X₀ value not necessarily in dataset)

- Estimate of $\mu(Y \mid \text{specific } X_0 \text{ value})$
 - SE of estimate (and thus width of CI) is larger the further X_0 is from \overline{x} , the mean of x values in dataset.
 - Cl's are for $\mu(Y)$ at a specific X₀ value not for entire line (see Neter)
- "Prediction" of "new" Y value at $X = X_0$
 - best (point) estimate is estimate of $\mu(Y \mid \text{specific value of X})$

BUT...

- Y is an INDIVIDUAL value (contains an)!
- not influenced by size (n) of dataset used to estimate $\mu(Y\mid X_0)$
- will vary around true $\mu(Y\mid X_0)$ according to the SD of possible $\$'s, i.e., the SD of INDIVIDUAL Y's at X=X_0 $\$

SO...

Uncertainty re "new" Y is amalgam of

- SD of INDIVIDUALS
- uncertainty in estimate of $\mu(Y \mid X_0)$ and is (almost) independent of n used to estimate $\mu(Y \mid X_0)$
- Obtaining these CI's from packages
- Examples:

Alcohol and Eye Movement

Noninvasive prediction (see "Appropriate use of prediction bands" letter to NEJM ... on web page under Resources)

"CENTERED" version of regression equation

ANALYSIS of VARIANCE TABLE;

R² ... F test ...

Method Comparisons

- DON'T use correlation or regression (see article on Method Agreement)