The REG procedure fits linear regression models by least-squares. Subsets of independent variables that ~best~ predict the dependent or response variable can be determined by various model-selection methods.

PROC REG performs the following regression techniques with flexibility: (some omitted here, $\mathsf{jh})$

- provides nine model-selection methods
- generates scatter plots of data and various statistics
- "paints" or highlights scatter plots
- produces partial regression leverage plots
- computes collinearity diagnostics
- prints predicted values, residuals, studentized residuals, confidence limits, and influence statistics and can output these items to a SAS data set
- performs weighted least-squares regression.

Nine model-selection methods are available in PROC REG. The simplest method is also the default, where REG fits the complete model you specify. The other eight methods involve various ways of including or excluding variables from the model. These methods are specified with the SELECTION= option in the MODEL statement. The methods are identified below and explained in detail in **Model-Selection Methods** later in this chapter.

NONE	no model selection. This is the default. The complete model specified in the MODEL statement is fit to the data.
	forward calaction. The method starts with no variables in the model

- FORWARD forward selection. The method starts with no variables in the model and adds variables.
- BACKWARD backward elimination. The method starts with all variables in the model and deletes variables.
- STEPWISE stepwise regression. This is similar to FORWARD except that variables already in the model do not necessarily stay there.
- MAXR forward selection to fit the best one-variable model, the best two-variable model, and so on. Variables are switched so that R2 is maximized.
- MINR similar to MAXR, except that variables are switched so that the increase in R2 from adding a variable to the model is minimized.
- RSQUARE finds a specified number of models with the highest R2 in a range of model sizes.
- ADJRSQ finds a specified number of models with the highest adjusted R2 in a range of model sizes.
- CP finds a specified number of models with the lowest Cp in a range of model sizes.

Model Selection and Details of Selection	
model selection	SELECTION =
specify maximum number of variables selected	BEST=
print summary statistics at each step	DETAI LS
provide names for groups of variables	GROUPNAMES =
include first n variables in the model	INCLUDE=
set criterion for entry into model	SLE=
set criterion for staying in model	SLS =
specify number of variables in model to	
begin the comparing and switching process	START=
stop selection criterion	STOP=

Options for RSQUARE, ADJRSQ, and CP Model Selection

compute adjusted RSQUARE	ADJ RSQ
compute AKAIKE's information criterion	AIC
compute parameter estimates for each model	В
compute Sawa's Bayesian information criterion	BIC
compute Mallow's CP statistic	CP
compute estimated MSE of prediction	
assuming multivariate normality	GMSEP
compute JP, the final prediction error	JP
compute MSE for each model	MSE
compute Amemiya's prediction criterion	PC
print root MSE for each model	RMSE
compute the SBC statistic	SBC
specify the true standard deviation of error term	
for computing CP and BIC	SIGMA=
compute SP statistic for each model	SP
compute error SS for each model	SSE

The following options are available in the MODEL statement after a slash (/): ...

SELECTION = name specifies the method used to select the model, where name can be FORWARD (or F), BACKWARD (or B), STEPWISE, MAXR, MINR, RSQUARE, ADJRSQ, CP, or NONE (use the full model). The default method is NONE. Only one method can be specified in a MODEL statement. If you want to use several methods, you must use separate model statements for each method. See **Model-Selection Methods** for a description of each method.

SLENTRY=value

. . .

. . .

SLE =value

specifies the significance level for entry into the model used in the FORWARD and STEPWISE methods. The defaults are 0.50 for FORWARD and 0.15 for STEPWISE.

SLSTAY=value

SLS =value

specifies the <u>significance</u> level for <u>staying</u> in the model used in the BACKWARD and STEPWISE methods. The defaults are 0.10 for BACKWARD and 0.15 for STEPWISE.

Options in the MODEL statement after a slash (/): continued...

BEST=

is used with the RSQUARE, ADJRSQ, and CP model-selection methods. If SELECTION= CP or SELECTION= ADJRSQ is specified, the BEST= option specifies the maximum number of subset models to be printed or output to the OUTEST= data set. For SELECTION= RSQUARE, the BEST= option requests the maximum number of subset models for each size.

If the BEST= option is used without the B option (printing estimated regression coefficients), the variables in each MODEL are listed in order of inclusion instead of the order in which they appear in the MODEL statement.

If the BEST= option is omitted and the number of regressors is fewer than 11, all possible subsets are evaluated. If the BEST= option is omitted and the number of regressors is greater than ten, the number of subsets selected is at most equal to the number of regressors. A small value of the BEST= option greatly reduces the CPU time required for large problems.

СР

computes Mallows' Cp statistic for each model selected (Mallows 1973; Hocking 1976). This option is available in the RSQUARE, ADJRSQ, and CP model-selection methods only.

DETAILS

produces a table of statistics for entry and removal for each variable at each step in the model-building process. This option is available only in the BACKWARD, FORWARD, and STEPWiSE methods. The statistics produced include the tolerance, R^2 , and F statistic that results if each variable is added to the model, or the partial and model R^2 that results if the variable is deleted from the model.

INCLUDE =n

forces the first n independent variables listed in the MODEL statement to be included in all models. The selection methods are performed on the other variables in the MODEL statement. The INCLUDE= option is not available with SELECTION=NONE.

STOP= s

causes REG to stop when it has found the ~'best" s-variable model, where s is the STOP value. For the RSQUARE, ADJRSQ, and CP methods, STOP=s specifies the largest number of regressors to be reported in a subset model. For the MAXR and MINR methods, STOP=s specifies the largest number of regressors to be included in the model.The default setting for the STOP= option is the number of variables in the MODEL statement. This option can only be used with the MAXR, MINR, RSQUARE, ADJRSQ and CP methods.

Model-Selection Methods

The nine methods of model selection implemented in PROC REG are specified with the SELECTION= option in the MODEL statement. Each method is discussed below.

Full Model Fitted (NONE)

This method is the default and provides no model selection capability. The complete model specified in the MODEL statement is used to fit the model. For many regression analyses, this may be the only method you need.

Forward Selection (FORWARD)

The forward-selection technique begins with no variables in the model. For each of the independent variables, FORWARD calculates F statistics that reflect the variable's contribution to the model if it is included. The p-values for these *F* statistics are compared to the SLENTRY= value that is specified in the MODEL statement (or to 0.50 if the SLENTRY= option is omitted). If no *F* statistic has a significance level greater than the SLENTRY= value, FORWARD stops. Otherwise, FORWARD adds the variable that has the largest *F* statistic to the model. FORWARD then calculates *F* statistics again for the variables still remaining outside the model, and the evaluation process is repeated. Thus, variables are added one by one to the model until no remaining variable produces a significant *F* statistic. Once a variable is in the model, it stays.

Backward Elimination (BACKWARD)

The backward-elimination technique begins by calculating statistics for a model, including all of the independent variables. Then the variables are deleted from the model one by one until all the variables remaining in the model produce F statistics significant at the SLSTAY= level specified in the MODEL statement (or at the 0.10 level if the SLSTAY= option is omitted). At each step, the variable showing the smallest contribution to the model is deleted.

Stepwise (STEPWISE)

The stepwise method is a modification of the forward-selection technique and differs in that variables already in the model do not necessarily stay there. As in the forward-selection method, variables are added one by one to the model, and the F statistic for a variable to be added must be significant at the SLENTRY= level. After a variable is added, however, the stepwise method looks at all the variables already included in the model and deletes any variable that does not produce an *F* statistic significant at the SLSTAY= level. Only after this check is made and the necessary deletions accomplished can another variable be added to the model. The stepwise process ends when none of the variables outside the model has an *F* statistic significant at the SLENTRY= level and every variable in the model is significant at the SLSTAY= level, or when the variable to be added to the model is the one just deleted from it.

Model-Selection Methods ... continued

Maximum R² Improvement (MAXR)

The maximum R^2 improvement technique does not settle on a single model. Instead, it tries to find the "best" one-variable model, the ~best~ two-variable model, and so forth, although it is not guaranteed to find the model with the largest R^2 for each size.

The MAXR method begins by finding the one-variable model producing the highest R^2 . Then another variable, the one that yields the greatest increase in R^2 , is added. Once the two-variable model is obtained, each of the variables in the model is compared to each variable not in the model. For each comparison, MAXR determines if removing one variable and replacing it with the other variable increases R^2 . After comparing all possible switches, MAXR makes the switch that produces the largest increase in R^2 . Comparisons begin again, and the process continues until MAXR finds that no switch could increase R^2 . Thus, the two-variable model achieved is considered the "best" two-variable model the technique can find. Another variable is then added to the model, and the comparing-and-switching process is repeated to find the "best" three-variable model, and so forth.

The difference between the STEPWiSE method and the MAXR method is that all switches are evaluated before any switch is made in MAXR. In the STEPWISE method, the ~worst~ variable can be removed without considering what adding the ~best~ remaining variable might accomplish. MAXR may require much more computer time than STEPWISE.

Minimum R² Improvement (MINR)

The MINR method closely resembles MAXR, but the switch chosen is the one that produces the smallest increase in R^2 . For a given number of variables in the model, MAXR and MINR usually produce the same ~best~ model, but MINR considers more models of each size.

R² Selection (RSQUARE)

The RSQUARE method finds subsets of independent variables that best predict a dependent variable by linear regression in the given sample. You can specify the largest and smallest number of independent variables to appear in a subset and the number of subsets of each size to be selected. The RSQUARE method can efficiently perform all possible subset regressions and print the models in decreasing order of R^2 magnitude within each subset size. Other statistics are available for comparing subsets of different sizes. These statistics, as well as estimated regression coefficients, can be printed or output to a SAS data set.

The subset models selected by RSQUARE are optimal in terms of R^2 for the given sample, but they are not necessarily optimal for the population from which the sample was drawn or for any other sample for which you may want to make predictions. If a subset model is selected on the basis of a large R^2 value or any other criterion commonly used for model selection, then all regression statistics computed for that model under the assumption that the model is given a priori, including all statistics computed by REG, are biased.

While the RSQUARE method is a useful tool for exploratory model building, no statistical method can be relied on to identify the ~true~ model. Effective model building requires substantive theory to suggest relevant predictors and plausible functional forms for the model. italics added by j.h. and a.n.

The RSQUARE method differs from the other selection methods in that RSQUARE always identifies the model with the largest R^2 for each number of variables considered. The other selection methods are not guaranteed to find the model with the largest R^2 . RSQUARE requires much more computer time than the other selection methods, so a different selection method such as STEPWISE is a good choice when there are many independent variables to consider.

Adjusted R² Selection (ADJRSQ)

This method is similar to RSQUARE, except that the adjusted R^2 statistic is used as the criterion for selecting models, and the method finds the models with the highest adjusted R^2 within the range of sizes.

Mallows' Cp Selection (CP)

This method is similar to ADJRSQ, except that Mallow's Cp statistic is used as the criterion for model selection.

Additional Information on Model-Selection Methods

If the RSQUARE or STEPWISE procedure (as documented in SAS User's Guide: Statistics, Version 5 Edition) is requested, PROC REG with the appropriate model-selection method is actually used.

Reviews of model-selection methods by Hocking (1976) and Judge et al. (1980) describe these and other variable-selection methods.

Criteria Used in BACKWARD, FORWARD, and STEPWISE Model-Selection Methods

When many significance tests are performed, each at a level of, say 5 percent, the overall probability of rejecting at least one true null hypothesis is much larger than 5 percent. If you want to guard against including any variables that do not contribute to the predictive power of the model in the population, you should specify a very small significance level. In most applications many of the variables considered have some predictive power, however small. If you want to choose the model that provides the best prediction using the sample estimates, you need only guard against estimating more parameters than can be reliably estimated with the given sample size, so you should use a moderate significance level, perhaps in the range of 10 percent to 25 percent.

In addition to R², the Cp statistic is printed for each model generated in the model-selection methods. Cp was proposed by Mallows (1973) as a criterion for selecting a model. It is a measure of total squared error defined as

 $Cp = (SSE_p / s^2) - (N-2^*p)$

where s^2 is the MSE for the full model, and SSE_p is the error sum of squares for a model with p parameters including the intercept, if any. If Cp is plotted against **p**, Mallows recommends the model where Cp first approaches **p**. When the right model is chosen, the parameter estimates are unbiased, and this is reflected in Cp near p. For further discussion, see Daniel and Wood (1980).

The adjusted R^2 statistic is an alternative to R^2 that is adjusted for the number of parameters in the model. The adjusted R^2 statistic is calculated as

 $ADJRSQ = 1 - [((n - i)(1 - R^2)) / (n - p)]$

where n is the number of observations used in fitting the model, and i is an indicator variable that is 1 if the model includes an intercept, and 0 otherwise.

Limitations in Model-Selection Methods

The use of model-selection methods can be time-consuming in some cases because there is no built-in limit on the number of independent variables, and the calculations for a large number of independent variables can be lengthy. The recommended limit on the number of independent variables for the MINR method is 20+i, where i is the value of the INCLUDE= option.

For the RSQUARE, ADJRSQ, or CP methods, with a large value of the BEST= option, adding one more variable to the list from which regressors are selected may significantly increase the CPU time. Also, the time required for the analysis is highly dependent on the data and on the values of the BEST=, START=, and STOP= options.

EXAMPLE

EVAP

46

34.60

14.6

1.0

54.0

```
data a;
   INFILE 'kkm12_23.dat';
   INPUT Obsn MONTH DAY MAXST MINST
                                          AVST
         MAXAT MINAT
                       AVAT MAXH MINH
                                           AVH
         WIND EVAP ;
The data set WORK.A has 46 observations and 14 variables.
proc reg;
model EVAP=
            MAXST MINST AVST MAXAT MINAT AVAT
                                          DETAILS
            MAXH MINH
                           AVH
                                   WIND /
   SELECTION = FORWARD SLENTRY = 0.10;
                                               see page 5
proc reg;
model EVAP=
            MAXST MINST AVST
                                MAXAT MINAT AVAT
            MAXH MINH
                           AVH
                                   WIND /
                                           DETAILS
                          SLSTAY = 0.10;
   SELECTION = BACKWARD
                                               see page 6
proc reg;
model EVAP=
          MAXST MINST
                         AVST
                                MAXAT MINAT AVAT
          MAXH MINH
                         AVH
                                WIND / DETAILS
   SELECTION = STEPWISE SLENTRY = 0.10 SLSTAY = 0.15;
                                                   see page 7
proc reg;
    model EVAP=
          MAXST MINST
                        AVST
          MAXAT MINAT
                         AVAT
          MAXH MINH
                         AVH
                                WIND
                                      /
    SELECTION = CP BEST = 5 ;
                                      see page 7 (bottom right)
Variable
         Ν
             Mean
                   Std Dev
                            Min
                                    Max
MONTH
         46
               6.4
                      0.5
                              6.0
                                    7.0
DAY
         46
              14.8
                      7.6
                             1.0
                                   30.0
MAXST
         46
              87.5
                      6.0
                             73.0
                                   96.0
MINST
         46
              71.2
                      3.2
                             65.0
                                   76.0
AVST
         46
             173.5
                     20.0
                            131.0 202.0
MAXAT
         46
              90.7
                      5.0
                             77.0
                                   97.0
MINAT
         46
              70.0
                      3.6
                            59.0
                                   76.0
AVAT
         46
             190.5
                      20.9
                            147.0 215.0
              94.7
                                  98.0
MAXH
                      1.2
                            93.0
         46
MINH
         46
              48.5
                     10.0
                            24.0
                                  73.0
AVH
         46
             396.9
                     29.4
                            345.0 478.0
             277.6
                    149.0
                            72.0 663.0
WIND
         46
```

Statistics for Entry: Step 1 DF = 1,44

Varial	ole Tolera	nce R	**2	F	Prob	>F
MAXST	1.000	000 0.5	917 6	3.7741	0.00	01
MINST	1.000	000 0.2	909 1	8.0470	0.00	01
AVST	1.000	000 0.4	727 3	9.4466	0.00	01
MAXAT	1.000	000 0.5	229 4	8.2291	0.00	01
MINAT	1.000			5.4696	0.02	
AVAT	1.000			4.8827	0.00	
MAXH	1.000			1.6128	0.21	
MINH	1.000			6.2427	0.00	
AVH	1.000			4.1366	0.00	
WIND	1.000			0.1102	0.74	
Step 1	Variable AV	H Entered	R-sq = (0.681 C	2(p) = 30	.5
	DF Sum	of Sq Mea	n Sq	F Pr	rob>F	
Regression	n 1 657	0.8 657	0.85 94	.14 0.	.0001	
Error	44 307	1.2 6	9.80			
Total	45 964	2.1				
Pa	arameter S	tandard T	ype II			
Variable	Estimate	Error Su	m of Squar	es F	Prob>F	
				137.79	0.0001	
	197.36	16.813 9	618.18	131.19		
INTERCEP	197.36 -0.40		618.18 570.85 	94.14		
INTERCEP AVH 	-0.40 Statistics f	0.042 6	570.85 Step 2 D	94.14 F = 1,43	0.0001	
INTERCEP AVH Variable	-0.40 Statistics f Tolerance	0.042 6 or Entry: R**2	570.85 Step 2 D F	94.14 F = 1,43 Pr	0.0001 3 <u>cob>F</u>	
INTERCEP AVH Variable MAXST	-0.40 Statistics f <u>Tolerance</u> 0.426871	0.042 6 or Entry: <u>R**2</u> 0.7302	570.85 Step 2 D F 7.77	94.14 F = 1,43 Pr 43	0.0001 3 <u>cob>F</u> 0.0079	
INTERCEP AVH Variable MAXST MINST	-0.40 Statistics f <u>Tolerance</u> 0.426871 0.768023	0.042 6 or Entry: <u>R**2</u> 0.7302 0.7076	570.85 Step 2 D F 7.77 3.84	94.14 F = 1,43 Pr 43 57	0.0001 3 <u>cob>F</u> 0.0079 0.0564	
INTERCEP AVH Variable MAXST MINST AVST	-0.40 Statistics f <u>Tolerance</u> 0.426871 0.768023 0.538289	0.042 6 or Entry: <u>R**2</u> 0.7302 0.7076 0.7113	570.85 Step 2 D F 7.77 3.84 4.43	94.14 F = 1,43 Pr 43 57 50	0.0001 3 <u>cob>F</u> 0.0079 0.0564 0.0411	
INTERCEP AVH Variable MAXST MINST AVST MAXAT	-0.40 Statistics f <u>Tolerance</u> 0.426871 0.768023 0.538289 0.570359	0.042 6 or Entry: <u>R**2</u> 0.7302 0.7076 0.7113 0.7396	570.85 Step 2 D F 7.77 3.84 4.43 9.59	94.14 F = 1,43 Pr 43 57 50 30	0.0001 3 <u>cob>F</u> 0.0079 0.0564 0.0411 0.0034	
INTERCEP AVH Variable MAXST MINST AVST MAXAT MINAT	-0.40 Statistics f <u>Tolerance</u> 0.426871 0.768023 0.538289 0.570359 0.995732	0.042 6 or Entry: <u>R**2</u> 0.7302 0.7076 0.7113 0.7396 0.7594	570.85 Step 2 D F 7.77 3.84 4.43 9.59 13.93	94.14 F = 1,43 Pr 43 57 50 30 03	0.0001 <u>cob>F</u> 0.0079 0.0564 0.0411 0.0034 0.0006	
INTERCEP AVH Variable MAXST MINST AVST MAXAT MINAT AVAT	-0.40 Statistics f <u>Tolerance</u> 0.426871 0.768023 0.538289 0.570359 0.995732 0.712105	0.042 6 or Entry: <u>R**2</u> 0.7302 0.7076 0.7113 0.7396 0.7594 0.7821	570.85 Step 2 D F 7.77 3.84 4.43 9.59 13.93 19.85	94.14 F = 1,43 Pr 43 57 50 30 03 43	0.0001 <u>cob>F</u> 0.0079 0.0564 0.0411 0.0034 0.0006 0.0001	
INTERCEP AVH MAXST MINST AVST MAXAT MINAT AVAT MAXH	-0.40 Statistics f <u>Tolerance</u> 0.426871 0.768023 0.538289 0.570359 0.995732 0.712105 0.925976	0.042 6 or Entry: <u>R**2</u> 0.7302 0.7076 0.7113 0.7396 0.7594 0.7821 0.6829	570.85 Step 2 D F 7.77 3.84 4.43 9.59 13.93 19.85 0.19	94.14 F = 1,43 Pr 43 57 50 30 03 43 57	0.0001 <u>cob>F</u> 0.0079 0.0564 0.00411 0.0034 0.0006 0.0001 0.6604	
INTERCEP AVH MAXST MINST AVST MAXAT MINAT AVAT MAXH MINH	-0.40 Statistics f 0.426871 0.768023 0.538289 0.570359 0.995732 0.712105 0.925976 0.169767	0.042 6 or Entry: <u>R**2</u> 0.7302 0.7076 0.7113 0.7396 0.7594 0.7821 0.6829 0.7193	570.85 Step 2 D F 7.77 3.84 4.43 9.59 13.93 19.85 0.19 5.79	94.14 F = 1,43 9 Pr 43 57 50 30 03 43 57 31	0.0001 <u>cob>F</u> 0.0079 0.0564 0.00411 0.0034 0.0006 0.0001 0.6604 0.0205	
Variable AVH MAXST MINST AVST MAXAT MINAT AVAT MAXH MINH	-0.40 Statistics f <u>Tolerance</u> 0.426871 0.768023 0.538289 0.570359 0.995732 0.712105 0.925976	0.042 6 or Entry: <u>R**2</u> 0.7302 0.7076 0.7113 0.7396 0.7594 0.7821 0.6829	570.85 Step 2 D F 7.77 3.84 4.43 9.59 13.93 19.85 0.19	94.14 F = 1,43 9 Pr 43 57 50 30 03 43 57 31	0.0001 <u>cob>F</u> 0.0079 0.0564 0.00411 0.0034 0.0006 0.0001 0.6604	
INTERCEP AVH MAXST MINST AVST MAXAT MINAT AVAT MAXH MINH WIND	-0.40 Statistics f <u>Tolerance</u> 0.426871 0.768023 0.538289 0.570359 0.995732 0.712105 0.925976 0.169767 0.950307	0.042 6 or Entry: 2 0.7302 0.7076 0.7113 0.7396 0.7594 0.7821 0.6829 0.7193 0.7391 AT Entered	570.85 Step 2 D F 7.77 3.84 4.43 9.59 13.93 19.85 0.19 5.79 9.49 R-sq =	94.14 F = 1,43 Pr 43 57 50 30 03 43 57 31 74	0.0001 3 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	
INTERCEP AVH MAXST MINST AVST MAXAT MINAT AVAT MAXH MINH WIND	-0.40 Statistics f <u>Tolerance</u> 0.426871 0.768023 0.538289 0.570359 0.995732 0.712105 0.925976 0.169767 0.950307	0.042 6 or Entry: 2 0.7302 0.7076 0.7113 0.7396 0.7594 0.7821 0.6829 0.7193 0.7391	570.85 Step 2 D F 7.77 3.84 4.43 9.59 13.93 19.85 0.19 5.79 9.49 R-sq =	94.14 F = 1,43 Pr 43 57 50 30 03 43 57 31 74 0.782	0.0001 3 5 5 5 5 5 5 5 5 5 5 5 5 5	
INTERCEP AVH Variable MAXST MINST AVST MAXAT MINAT AVAT MAXH MINH WIND Step 2 Regression	-0.40 Statistics f <u>Tolerance</u> 0.426871 0.768023 0.538289 0.570359 0.995732 0.712105 0.925976 0.169767 0.950307 Variable AV <u>DF</u> n 2	0.042 6 or Entry: 5 <u>R**2</u> 0.7302 0.7076 0.7113 0.7396 0.7594 0.7594 0.7821 0.6829 0.7193 0.7391 AT Entered <u>Sum of Se</u> 7540.992	570.85 Step 2 D F 7.77 3.84 4.43 9.59 13.93 19.85 0.19 5.79 9.49 R-sq = q Mean 5 3770.	94.14 F = 1,43 Pr 43 57 50 30 03 43 57 31 74 0.782 Squ 497	0.0001 3 5 5 5 5 5 5 5 5 5 5 5 5 5	9.6
INTERCEP AVH Variable MAXST MINST AVST MAXAT MINAT AVAT MAXH MINH WIND Step 2 Regression	-0.40 Statistics f <u>Tolerance</u> 0.426871 0.768023 0.538289 0.570359 0.995732 0.712105 0.925976 0.169767 0.950307 Variable AV <u>DF</u> n 2 43	0.042 6 or Entry: 3 <u>R**2</u> 0.7302 0.7076 0.7113 0.7396 0.7594 0.7821 0.6829 0.7193 0.7391 AT Entered <u>Sum of Se</u> 7540.999 2101.11	570.85 Step 2 D F 7.77 3.84 4.43 9.59 13.93 19.85 0.19 5.79 9.49 R-sq = q Mean 5 3770. 3 48.	94.14 F = 1,43 Pr 43 57 50 30 03 43 57 31 74 0.782 Squ	0.0001 <u>cob>F</u> 0.0079 0.0564 0.0011 0.0006 0.0001 0.6604 0.0205 0.0036 C(p) = <u>F P</u>	9.6 <u>rob>F</u>
INTERCEP AVH Variable MAXST MINST AVST MAXAT MINAT AVAT MAXH MINH WIND Step 2 Regression Error	-0.40 Statistics f <u>Tolerance</u> 0.426871 0.768023 0.538289 0.570359 0.995732 0.712105 0.925976 0.169767 0.950307 Variable AV <u>DF</u> n 2	0.042 6 or Entry: 5 <u>R**2</u> 0.7302 0.7076 0.7113 0.7396 0.7594 0.7594 0.7821 0.6829 0.7193 0.7391 AT Entered <u>Sum of Se</u> 7540.992	570.85 Step 2 D F 7.77 3.84 4.43 9.59 13.93 19.85 0.19 5.79 9.49 R-sq = q Mean 5 3770. 3 48.	94.14 F = 1,43 Pr 43 57 50 30 03 43 57 31 74 0.782 Squ 497	0.0001 <u>cob>F</u> 0.0079 0.0564 0.0011 0.0006 0.0001 0.6604 0.0205 0.0036 C(p) = <u>F P</u>	9.6 <u>rob>F</u>
INTERCEP AVH Variable MAXST MINST AVST MAXAT MINAT AVAT MAXH MINH WIND Step 2 Regression Error	-0.40 Statistics f <u>Tolerance</u> 0.426871 0.768023 0.538289 0.570359 0.995732 0.712105 0.925976 0.169767 0.950307 Variable AV <u>DF</u> n 2 43	0.042 6 or Entry: 3 <u>R**2</u> 0.7302 0.7076 0.7113 0.7396 0.7594 0.7821 0.6829 0.7193 0.7391 AT Entered <u>Sum of Se</u> 7540.999 2101.11	570.85 570.85 F 7.77 3.84 4.43 9.59 13.93 19.85 0.19 5.79 9.49 $R-sq = \frac{q}{Mean}$ 5 3770. 3 48.	94.14 F = 1,43 Pr 43 57 50 30 03 43 57 31 74 0.782 Squ 497	0.0001 <u>cob>F</u> 0.0079 0.0564 0.0011 0.0006 0.0001 0.6604 0.0205 0.0036 C(p) = <u>F P</u>	9.6 <u>rob>F</u>
INTERCEP AVH MAXST MINST AVST MAXAT MINAT AVAT MAXH MINH WIND Step 2 Regression Error Total	-0.40 Statistics f <u>Tolerance</u> 0.426871 0.768023 0.538289 0.570359 0.995732 0.712105 0.925976 0.169767 0.950307 Variable AV DF h 2 43 45	0.042 6 or Entry: 3 <u>R**2</u> 0.7302 0.7076 0.7113 0.7396 0.7594 0.7594 0.7821 0.6829 0.7193 0.7391 AT Entered <u>Sum of Se</u> 7540.999 2101.11 9642.105	570.85 Step 2 D F 7.77 3.84 4.43 9.59 13.93 19.85 0.19 5.79 9.49 R-sq = <u>q Mean</u> 5 3770. 3 48. 8 Type II	94.14 F = 1,43 57 50 30 03 43 57 31 74 0.782 Squ 497 863	0.0001 <u>cob>F</u> 0.0079 0.0564 0.0411 0.0034 0.0006 0.0001 0.6604 0.0205 0.0036 C(p) = <u>F F</u> 77.16	9.6 <u>rob>F</u> 0.0001
INTERCEP AVH MAXST MINST AVST MAXAT MINAT AVAT MAXH MINH WIND Step 2 Regression Error Total	-0.40 Statistics f <u>Tolerance</u> 0.426871 0.768023 0.538289 0.570359 0.995732 0.712105 0.925976 0.169767 0.950307 Variable AV DF n 2 43 45 Parameter	0.042 6 or Entry: 3 <u>R**2</u> 0.7302 0.7076 0.7113 0.7396 0.7594 0.7594 0.7821 0.6829 0.7193 0.7391 AT Entered <u>Sum of Se</u> 7540.99 2101.11 9642.100 Standard	570.85 Step 2 D F 7.77 3.84 4.43 9.59 13.93 19.85 0.19 5.79 9.49 R-sq = <u>q Mean</u> 5 3770. 3 48. 8 Type II	94.14 F = 1,43 57 50 30 03 43 57 31 74 0.782 Squ 497 863	0.0001 cob>F 0.0079 0.0564 0.0411 0.0034 0.0006 0.0001 0.6604 0.0205 0.0036 C(p) = F F 77.16 Prob	9.6 <u>rob>F</u> 0.0001 <u>>>F</u>
INTERCEP AVH MAXST MINST AVST MAXAT MINAT AVAT MAXH MINH WIND Step 2 Regression Error Total Variable	-0.40 Statistics f <u>Tolerance</u> 0.426871 0.768023 0.538289 0.570359 0.995732 0.712105 0.925976 0.169767 0.950307 Variable AV DF n 2 43 45 Parameter Estimate	0.042 6 or Entry: 3 <u>R**2</u> 0.7302 0.7076 0.7113 0.7396 0.7594 0.7594 0.7821 0.6829 0.7193 0.7391 AT Entered <u>Sum of Sc</u> 7540.99 2101.11 9642.100 Standard <u>Error</u>	570.85 Step 2 D F 7.77 3.84 4.43 9.59 13.93 19.85 0.19 5.79 9.49 R-sq = <u>q Mean</u> 5 3770. 3 48. 8 Type II <u>Sum of Sq</u>	94.14 F = 1,43 57 50 30 03 43 57 31 74 0.782 Squ 497 863 F 19.2	$\begin{array}{c} 0.0001 \\ \hline \\ \hline \\ 0.0079 \\ 0.0564 \\ 0.0411 \\ 0.0034 \\ 0.0006 \\ 0.0001 \\ 0.6604 \\ 0.0205 \\ 0.0036 \\ C(p) = \\ \hline \\$	9.6 <u>rob>F</u> 0.0001 <u>>F</u> 01

Variable	Tolerance	R**2	F	Pro	b>F	
MAXST	0.180754	0.7830	0.1831	0.0	5709	
MINST	0.327889	0.7965	2.9728	0.0)920	
AVST	0.179863	0.8044	4.7811			
MAXAT	0.187592	0.7832	0.2085	0.6	5503	
MINAT	0.210278	0.7821	0.0059	0.9	9391	
MAXH	0.910728	0.7821	0.0014	0.9	9699	
MINH	0.120726	0 7829	0 1565	0.6	5944	
WIND	0.863893	0.8050	0.1565 4.9410	0.0)317	
Step 3	Variable WIN	D Entered	R-sq = 0.	805 C(p)	= 6.3	
	DF Su	um of Sq	Mean Sq	F	Prob>F	
Regression	ı 37	762.159	2587.386	57.80	0.0001	
Error	42 1	879.949	44.760			
	45 9					
	Parameter					
Variable	Estimate	Error	Sum of Sq	F	Prob>F	
INTERCEP	123.9017	24.6244	1133.236	25.32	0.0001	
AVAT	0.2227	0.0591	635.678	14.20	0.0005	
AVH	-0.3429	0.0427	2876.508	64.26	0.0001	
WIND	0.0159	0.0071	221.164	4.94	0.0317	
S	statistics for	Entry: St	cep4 DF =	1,41		
Variable	Tolerance	R**2	F	Pro	b>F	
MAXST	0.175268	0.8050	0.0041	0.9	9490	
MINST	0.324093	0.8159	2.4241	0.1	272	
AVST	0.163746	0.8169	2.6548	0.1	109	
MAXAT	0.169303	0.8053	0.0489	0.8	3260	
MINAT	0.178793	0.8099	1.0434	0.3	3130	
MAXH			0.3471			
MINH			0.0140			

Statistics for Entry: Step 3 DF = 1,42

No other variable met the 0.10 significance level for entry into the model.

Summary: Forward Selection Procedure for Dep. Var. EVAP

Step	Variable Entered			C(p)	F	Prob>F
1 2	AVH AVAT		0.6815 0.7821			
3	WIND	_	 0.8050			

Step 0 Al	l Variables	Entered	R-sq = 0.8	46 C(p) = 11.0	
	DE O		Maam Om		Decelse E	Variable
Dogradion	DF Su	$\frac{1111}{111}$ OL SQ	Mean Sq	10 27	0 0001	INTERCEP MAXST
Error	35 1	482 27	42 35	19.27	0.0001	AVST
Total	45 9	642.10	815.98 42.35			MAXAT
						AVAT
	Parameter	Standard	Type II			MAXH
Variable	Estimate	Error	<u>Sum of Sq</u>	F	Prob>F	MINH
INTERCEP	-54.074	130.720	7.24	0.17	0.6816	AVH WIND
MAASI MINST	0 204	1 104	1 45	4.94	0.0328	WIND
AVST	-0.742	0.349	191.06	4.51	0.0408	
MAXAT	0.501	0.568	32.84	0.78	0.3845	
MINAT	0.304	0.788	6.29	0.15	0.7022	Stat
AVA'I'	0.092	0.218	7.56	0.18	0.6750	
MAAH	0 751	0 487	100 51	2 37	0.3341	Variable
AVH	-0.556	0.161	501.85	11.85	0.0015	
WIND	0.008	0.009	Type II Sum of Sq 7.24 209.31 1.45 191.06 32.84 6.29 7.56 40.62 100.51 501.85 40.07	0.95	0.3373	MAXST
			 ep 1 DF			MAXAT AVAT
Deacid	CICD IOI NO	lilovar be	cp i Di	- 1,55		MAXH
	Partial					MINH
Variable	R**2	R**2				AVH
MAXST	0 0017	0 0046				WIND
MINST	0.0217	0.8246				Step 3
AVST	0.0190	0.0205				
MAXAT	0.0034 0.0007 0.0008	0.8429				
MINAT	0.0007	0.8456				Variable
AVAT MAXH		0.8455				INTERCEP
MINH	0.0104	0.8358				MAXST
AVH	0.0520	0.8358 0.7942 0.8421				AVST
WIND	0.0042	0.8421				MAXAT MAXH
Step 1 M	TNST Remove	d R-so	= 0.846 C	(n) = 9	0	MINH
						AVH
	Parameter	Standard	Type II Sum of Sq			WIND
Variable	Estimate	Error	<u>Sum of Sq</u> 5.87 210.71 339.33 34.09 6.86 7.22 39.26 99.34 537.81 47.18	F	Prob>F	
INTERCEP	-45.673	120.965	5.87	0.14	0.7080	
AVST	-0.696	0.970	210.71	8 23	0.0299	Stati
MAXAT	0.509	0.559	34.09	0.83	0.3691	
MINAT	0.316	0.775	6.86	0.17	0.6855	
AVAT	0.089	0.214	7.22	0.18	0.6780	Variable
MAXH	1.080	1.106	39.26	0.95	0.3355	MAXST
AVH	-0.546	0.473	537 81	13 05	0.1293	MAXST AVST
WIND	0.009	0.008	47.18	1.14	0.2917	MAXAT
						MAXH
						MINH AVH
Stati	stics for F	emoval: S	tep 2 DF	= 1 36		WIND
Deace	bereb for i	Cenio Var - D		- 1,50		
	Partial R**2	Model				Step 4
Variable	R**2	R**2				
MAXST	0 0219	0 8243				
AVST	0.0352	0.8109				Variable
MAXAT MINAT	0.0035	0.8426				INTERCEP
MINAT	0.0007	0.8454				MAXST
AVAT	0.0007	0.8454				AVST
MAXH MINH	0.0041	0.8358				MAXH
AVH	0.0558	0.7903				MINH
WIND	0.0219 0.0352 0.0035 0.0007 0.0007 0.0041 0.0103 0.0558 0.0049	0.8412				AVH WIND

Step 2 MINAT Removed R-sq = 0.845 C(p) = 7.1

	Darameter	Standan	d Type II		
Variable	Parameter Estimate	Error	d Type II Sum of Sq 1.34 212.97 368.44 33.81 30.62 32.39 95.14 564.39 76.14	F	Prob>F
INTERCEP	-18.178	99.342	1.34	0.03	0.8558
MAXST	2.046	0.890	212.97	5.29	0.0272
AVST	-0.653	0.216	368.44	9.15	0.0045
MAXAT	0.506	0.553	33.81	0.84	0.3655
AVAT	0.144	0.165	30.62	0.76	0.3889
MAXH	0.889	0.991	32.39	0.80	0.3756
MINH	0.716	0.466	95.14	2.36	0.1328
AVH	-0.525	0.140	564.39	14.01	0.0006
WIND	0.010	0.007	76.14	1.89	0.1775
Stat	istics for R	emoval:	Step 3 Di	F = 1.37	
			<u>-</u>		
	Partial				
Variable	R**2	<u>R**2</u>			
MAXST	0.0221	0.8233			
AVST	0.0382	0.8072			
MAXAT	0.0035	0.8419			
AVAT	0.0032	0.8422			
MAXH	0.0034	0.8420			
MINH	0.0099	0.8355			
AVH	0.0585	0.7869			
WIND	$\begin{array}{c} 0.0221 \\ 0.0382 \\ 0.0035 \\ 0.0032 \\ 0.0034 \\ 0.0099 \\ 0.0585 \\ 0.0079 \end{array}$	0.8375			
Sten 3	AVAT Removed		- 0 842 C((n) - 5	2
DCEP J	AVAI Itemoveu	n by	= 0.012 C()	p) = 5	•
	Parameter	Standar	d Type II		
Variable			Sum of Sq	F	Prob>F
INTERCEP	-59.989	86.726	19.15	0.48	0.4933
MAXST	2.380	0.801	352.98	8.82	0.0051
AVST	-0.665	0.214	384.06	9.59	0.0037
MAXAT	0.720	0.494	85.01	2.12	0.1533
MAXH	1.314	0.861	93.29	2.33	0.1351
MINH	0.999	0.332	361.31	9.03	0.0047
AVH	-0.605	0.106	1295.30	32.36	0.0001
WIND	-59.989 2.380 -0.665 0.720 1.314 0.999 -0.605 0.012	0.007	110.57	0.48 8.82 9.59 2.12 2.33 9.03 32.36 2.76	0.1047
Stati	stics for Re	moval: S	tep 4 DF =	1,38	
	D	M 1 . 1			
	Partial R**2	Model			
Variable					
MAXST	0 0266	0 9056			
AVST	0.0300	0.8030			
MAXAT	0.0398	0.8024			
MAXH	0.0007	0.8326			
MINH	0.0375	0 8048			
AVH	0 1343	0 7079			
WIND	0.0366 0.0398 0.0088 0.0097 0.0375 0.1343 0.0115	0.8308			
Step 4	MAXAT Remove	d R-	sq = 0.833	C(p) =	5.9
	Parameter	Standard	Type II		
Variable		Frror	Sum of Sq	F	Prob>F
, at tabie					
INTERCEP	-52.989	87.831	14.99	0.36	0.5498
MAXST	2.761	0.768	531.99	12.92	0.0009
AVST	-0.608	0.214	332.17	8.07	0.0071
MAXH	1.539	0.214 0.859	132.17	3.21	0.0810
MINH	1.539 1.095	0.330	451.54	10.96	0.0020
AVH	-0.631	0.106	1455.46	35.34	0.0001
WIND	0.011	0.007	14.99531.99332.17132.17451.541455.4696.78	2.35	0.1334

Statistics for Removal: Step 5 DF = 1,39

			-		
		Model			
Variable	R**2				
MAXST	0.0552 0.0345 0.0137 0.0468 0.1509	0.7782			
AVSI	0.0345	0.7990			
MAXH	0.0137	0.8197			
MINH	0.0468	0.7866			
MINH AVH WIND	0.1509	0.6825			
		0.8234			
Step 5	WIND Remove	d R-sq	= 0.823 C(p) = 6.3	2
	Parameter Estimate	Standa	rd Type II	_	
Variable	Estimate	Error	Sum of Sq	F	Prob>F
INTERCEP	-46.405	89.194	11.52	0.27	0.6057
MAXST	3.190	0.727	818.20	19.22	0.0001
AVST	-0.722	0.204	532.35	12.50	0.0010
MAXH	1.377	0.867	107.42	2.52	0.1201
MINH	1.326	0.299	835.39	19.62	0.0001
AVH	-46.405 3.190 -0.722 1.377 1.326 -0.674	0.104	1780.19	41.81	0.0001
	atistics for				
Variable	Partial R**2	D**	2		
MAXST	0.0849	0.7385			
AVST	0.0552	0.7682			
MAXH	0.0111	0.8122			
MINH	0.0866	0.7367			
AVH	0.0849 0.0552 0.0111 0.0866 0.1846	0.6387			
Step 6	MAXH Remove	d R-sq =	0.812 C(p) = 6.7	
	Parameter	Standar	d Type II	_	
Variable	Estimate	Error	Sum of Sq	F	Prob>F
INTERCEP	74.345	47.516	108.09	2.45	0.1254
MAXST	74.345 3.028 -0.669 1.207	0.733	752.01	17.03	0.0002
AVST	-0.669	0.205	469.66	10.64	0.0022
MINH	1.207	0.295	738.42	16.72	0.0002
AVH	-0.622	0.100	1681.21	38.07	0.0001
Stat	istics for R	emoval:	Step 7 DF	= 1,41	
Variable	Partial R**2	Mod R**	el 2		
MAXST	0.0780	0.7342	_		
AVST	0.0780 0.0487	0.7635			
MINH	0.0766	0.7357			
AVH	0.1744	0.6379			
	0.1.11	0.0079			

All variables left in the model are significant at the 0.10 level.

Summary: Backward Elimination Procedure for EVAP

Step	Variable Removed	Numbe In	er Part: R**2	ial Mo R**2	odel C(p) F	Prob>F
2 3 4 5	MINST MINAT AVAT MAXAT WIND MAXH	9 8 7 6 5 4	0.0002 0.0007 0.0032 0.0088 0.0100 0.0111	0.846 0.845 0.842 0.833 0.823 0.812	9.0 7.1 5.9 5.9 6.2 6.7	0.0344 0.1667 0.7602 2.1236 2.3500 2.5232	0.8539 0.6855 0.3889 0.1533 0.1334 0.1201

Stepwise Procedure for Dependent Variable EVAP

Statistics for Entry: Step 1 DF = 1,44

	Model		
olerance	R**2	F	Prob>F
1.000000	0.5917	63.7741	0.0001
1.000000	0.2909	18.0470	0.0001
1.000000	0.4727	39.4466	0.0001
1.000000	0.5229	48.2291	0.0001
1.000000	0.1106	5.4696	0.0240
1.000000	0.5050	44.8827	0.0001
1.000000	0.0354	1.6128	0.2108
1.000000	0.4517	36.2427	0.0001
1.000000	0.6815	94.1366	0.0001
1.000000	0.0025	0.1102	0.7415
	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	1.000000 0.5917 1.000000 0.2909 1.000000 0.4727 1.000000 0.5229 1.000000 0.1106 1.000000 0.5050 1.000000 0.354 1.000000 0.4517 1.000000 0.4517	blerance R**2 F 1.000000 0.5917 63.7741 1.000000 0.2909 18.0470 1.000000 0.4727 39.4466 1.000000 0.5229 48.2291 1.000000 0.5106 5.4696 1.000000 0.5050 44.8827 1.000000 0.3544 1.6128 1.000000 0.4517 36.2427 1.000000 0.4515 94.1366

Step 1 AVH Entered R-square = 0.681 C(p) = 30.5

	Parameter	Standa	rd Type II		
Variable	Estimate	Error	Sum of Sq	F	Prob>F
INTERCEP	197.369	16.813	9618.18	137.79	0.0001
AVH	-0.409	0.042	6570.85	94.14	0.0001

Statistics for Entry: Step 2 DF = 1,43

		Model		
 Variable	Tolerance	R**2	F	Prob>F
MAXST	0.426871	0.7302	7.7743	0.0079
MINST	0.768023	0.7076	3.8457	0.0564
AVST	0.538289	0.7113	4.4350	0.0411
MAXAT	0.570359	0.7396	9.5930	0.0034
MINAT	0.995732	0.7594	13.9303	0.0006
AVAT	0.712105	0.7821	19.8543	0.0001
MAXH	0.925976	0.6829	0.1957	0.6604
MINH	0.169767	0.7193	5.7931	0.0205
WIND	0.950307	0.7391	9.4974	0.0036

Step 2 AVAT Entered R-sq = 0.782 C(p) = 9.6

	Parameter	Standard	Type II		
Variable	Estimate	Error	Sum of Sq	F	Prob>F
INTERCEP	107.634	24.565	938.05	19.20	0.0001
AVAT	0.262	0.058	970.14	19.85	0.0001
AVH	-0.309	0.041	2672.06	54.68	0.0001

Statistics for Removal: Step 3 DF = 1,43

Variable	Partial R**2	Model R**2
AVAT	0.1006	0.6815
AVH	0.2771	0.5050

Statistics for Entry: Step 3 DF = 1,42

		Model		
Variable	Tolerance	R**2	F	Prob>F
MAXST	0.180754	0.7830	0.1831	0.6709
MINST	0.327889	0.7965	2.9728	0.0920
AVST	0.179863	0.8044	4.7811	0.0344
MAXAT	0.187592	0.7832	0.2085	0.6503
MINAT	0.210278	0.7821	0.0059	0.9391
MAXH	0.910728	0.7821	0.0014	0.9699
MINH	0.120726	0.7829	0.1565	0.6944
WIND	0.863893	0.8050	4.9410	0.0317

Step 3	WIND Entered	R-sq = 0.805	C(p) =	6.3
--------	--------------	--------------	--------	-----

	Parameter	Standar	d Type II		
Variable	Estimate	Error	Sum of Sq	F	Prob>F
INTERCEP	123.901	24.624	1133.23	25.32	0.0001
AVAT	0.222	0.059	635.67	14.20	0.0005
AVH	-0.342	0.042	2876.50	64.26	0.0001
WIND	0.015	0.007	221.16	4.94	0.0317

Statistics for Removal: Step 4 DF = 1,42

	Partial	Model
Variable	R**2	R**2
AVAT	0.0659	0.7391
AVH	0.2983	0.5067
WIND	0.0229	0.7821

Statistics for Entry: Step 4 DF = 1,41

			Model		
Va	ariable '	Tolerance	R**2	F	Prob>F
M	AXST	0.175268	0.8050	0.0041	0.9490
M	INST	0.324093	0.8159	2.4241	0.1272
A	VST	0.163746	0.8169	2.6548	0.1109
M	AXAT	0.169303	0.8053	0.0489	0.8260
M	INAT	0.178793	0.8099	1.0434	0.3130
M	AXH	0.841911	0.8067	0.3471	0.5590
M	INH	0.113772	0.8051	0.0140	0.9065

All variables left in the model are significant at the 0.15 level.

No other variable met the 0.10 significance level for entry into the model.

Summary of Stepwise Procedure for Dependent Variable EVAP

Step	Variable Entered Removed		Partial R**2		C(p)	F	Prob>F
1	AVH	1	0.6815	0.6815	30.5	94.1	0.0001
2	AVAT	2	0.1006	0.7821	9.6	19.8	0.0001
3	WIND	3	0.0229	0.8050	6.3	4.9	0.0317

N = 46 Regression Models for Dependent Variable: EVAP

C(p)	R-sq Variables in Model		
		In	
3.75		5	
3.88	0.833	5	MAXST AVST AVAT AVH WIND
4.06	0.824	4	MAXST AVST AVAT AVH
4.64	0.839	6	MAXST AVST AVAT MINH AVH WIND
5.12	0.836	6	MAXST AVST MINAT MAXH MINH AVH