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X'X matrix

If model has p variables, or p+1 terms including the interecept term,
the X'X (pronounced “ X transpose X”) matrix isa(p+l) " (pt+l)
matrix; the entry in aparticular row/column isthe sum (over al n
observations) of the products of the two variablesin question. It is
not of any great help in and of itself...however, itsinverse is central
to inferences:. the entries of thisinverse matrix, multiplied by the
MeanSquare Error (Mean Square Residual) provides the estmated
variances and covariances of the p+1 parameter estimates.

Type | (Wald) Tests

Tests of sequential incrementa improvement as each effect is added
to the model (Variables Added in Order™). Order is order in which
variables are “clicked” or listed in mode.

Type lll (Wald) Tests

Tests of partial effects, after the inclusion of the other effectsin the
model. (“Variables Added Last”). The order in which variables are
“clicked” or listed in model does not matter, since the computation is
as though the variable in question were the last in the list.

The*Wald’ refersto tests based on the Mean Squares. They are the
same asthe Likelihood Ratio (LR) testsin the case of (measured)
Y’ s analyzed using Gaussian Errors.

Collinearity Diagnostics

(from SAS wording) When an explanatory variable is nearly alinear
combination of the other explanatory variablesin the model, the
affected estimates are unstable and have high standard errors. This
problem is called collinearity or multi-collinearity.

Draper and Smith (Applied Regression Analysis, 3rd Edition, page
369) complain that this use of the term collinearity istoo loose. To
them, there is collinearity when at least one of the X’ sislinearly
depndent on (alinearcombination of) the other X’s. They make a
distinction between this situation of “exact” collinearity and the “near
dependency” in the usage by many modern authors. Unless
calculations are programmed very carefully, near dependency (or
other ill-conditioned data --- such as having a variable in the model,
all of whose values are very close to zero) can create accuracy
problems because of the accumulation of rounding errors.
Moreover, and more serious statistically, (I'm quoting loosely from
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Graybill and lyer) the presence of multicollinearity, has the
following implications: results are highly sensitive to errorsin the
sample data; resulting parameter estimates cannot be taken serioudly,
even though overall predictions may be more accurate; and it is not
possible with the data at hand to separate the influences of the
predictors of the response. thiswill be reflected in large
standarderrorsfor the individual estimated parameter values
Whereas we may be able to find good prediction functions, we have
to choose arbitrarily from amomg severa sets of nearly equally good
prediction functions. Knowledge related to the field of application
can often guide usin making arational selection..

Collinearity Diagnostics...

TheTolerance and Variance Inflation Factor (VIF)
are printed by INSIGHT on same line as each parameter
estimate

Tolerance =1 - the R-square that results from the
regression of the the variable in question on the other X
variablesin the model. If all X variables are orthogonal to
each other (ie have zero correlation with each other) then
their tolerances are 1. At the other extreme, if avariableisa
perfect linear combination of the others, its tolerance is zero.

TheVariance Inflation Factor (VIF) associated with a
particular X variablein amodel isthereciprocal of the
Tolerance. One can think of it asthe extrasample size
needed to estimate --- to the same precision -- the betain
question, relative to that needed if the X in question were

uncorrelated with al linear combinations of the other X’sin
the modd!.

VIF=3 :Z tol. = 0.33 => variable in question has a
multiple R~ of 0.67 with the other X’ sin the model.

, 2
VIF=4=>tol. =0.25 => multiple R of 0.75;

, 2
VIF=5=>tol. =0.20 => multiple R~ of 0.80;
VIF=10 =>tol. = 0.90 => multiple R2 of 0.90 etc

But withwhich other X's???

Entriesin rows with high Condition
Indices give some clues..

Condition Index (printed if Collinearity Diagnostics
requested

Look for rows with condition indices above 100 (Grayhill
and lyer say an index above 30 is taken to indicate strong
collinearity).

In such rows (each row isa“principa axis’), examine the
“Variance Proportion” for each variable: the proportion isthe
proportion of the variance in the variable that is* explained
by” the principal axis. Variables with “Variance Proportions’
of say > 0.70 in arow (principa axis) with ahigh condition
index are taken as highly collinear.



An Annotated Guide to some of the Output and Plots from Regression Analyses (e.g. SAS INSIGHT) (p3)

Estimated Cov(ariance) Matrix

The estimated covariance matrix of the p+1 parameters; the standard
errors (SE’s) of the p+1 parameters are the square roots of the p+1
variances given by the diagona entries; the off diagonal entries are
the product of the SE’s of the two parameter estimates in question
and the correlation of the two estimates. These are useful if one
wished to compute the SE of alinear combination of two or more
parameter estimates, e.g.

SE(bq -by) = sart{ Var[bq] + Var[b,] - 2 CoVar[bq , by] }
Estimated Corr(elation) Matrix

The estimated correlation matrix of the p+1 parameters. The p+1
diagonal entriesare al 1, reflecting the perfect correlation of an
estimate with itself!.; each off diagona entry isthe correlation of the
two parameter estimates in question.estimates. These are quite
helpful in that they indicate how “ separable’ are the two parameter
estimates, given the the sample size and the degree of collinearity in
the“X” data.

Residual plots

Residual by Predicted
Self Explanatory

Residual Normal QQ Plot

Residuals from Gaussian distribution==> plot close to straight line
3

Plot of Partial Leverage Plots

(Called “Partial Regression Residud plots’ if run asan optionin
PROC REG in SAS Editor Window)

Onefor each X variable in the modd!...

Vertical Axis: Y residual after adjusting Y for other X’sin
model
i.e. Y - Yhat based onother X’s

Horizontal Axis: X residual after adjusting X for the other
X’sin model
i.e. X - Xhat based on other X’s

Used to assess strength and form of relationship between Y
and X after adjusting for other X’s[see earlier “Multiple
Regression as a series of simple regressions’]

For aparticular X, the slope of the regression line of the
Partial Y residuas on the partial X residualsis none other
than the beta_hat of that X in the multiple regression with
this and the other X’s.. Also, thisis a better way to decide
what to do next than to plot the regular Y residuals (from the
full model) against each X.
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Note that all of the following quantities are at the
observation level ... there are as many of them as there
are observations.

QuULpUL ¥ arabies
[1 Hat Diag
[ Prethctied Generolized Residugls:
8 Lineor Predictor
O Restdual O Deviorce Residual

[ Fesiduol Normol Quontile [J 5tondordized Oowionce Eosiduo
[ Stondordized Residuol [ %tuderrtlzed Deviance Eegidunl
[0 Studerrtized Residunl [0 Peorsce Residual

[ Partiol Leweroge X [ 5tondordized Peorson Residuol
[ Partial Leweroge ¥ [ Studorrlzad Poarzon Realdoal

[1 Cook'z= D [ Ancconbe Resldual

[ DFfLts [ Stondardized Anscombe Residun
B Covrotin 1 Studerti zed Anscombe Eesidunl
[ DFbetos

Hat diagonal

The hat (or leverage) value of an observation measures how typical
or atypical the X values of the observation are. Typical (central)
observations have less potential influence on thefitted value;
conversely atypica (extreme) observations have more influence.
The hat value isameasure of the distance -- in “ X space’ - between
the datapoint and the centroid (centre of gravity) of the X-space.

The hat value (leverage) is determined solely by the predictor
variables (the X’ s) and is not affected by the response variable Y.
Thusit isameasure of the potentia influence of an observation, and
can be calculated as soon as one knows the X values of al of then
observations, and before one knows their associated Y values.

Should worry about/investigate observations with hat values greater
than 2times # parameters/ n.

4

Residual
Observed Y minus Predicted Y
Residual Normal Quantile

The residuals are ranked from smallest (1) to largest (n). if they
were from a single Gaussian distribution, one would expect them to
be at approximately the (1/)n-th, (2/n)-th, ... (n/n)-th percentiles of
the corresponding Gaussian distribution. The Normal Quantile of
thei-th ordered residua is computed as the Z value corresponding to
the fraction (i-3/8)/(n+1/4) of the distribution. The plot of the
observed versus the theoretical (expected) Normal Quantiles should
be roughly a straight line.

Standardized Residual

Residual scaled by ameasure of its sampling variability. Residuas
associated with more extreme X data points have somewhat less
sampling variability (since thefitted line or plane is determined more
by -- and isthus closer to the Y values of -- the datapoints with
extreme X values). This standardization puts al residuals on the
same scale. The scaling is achieved by dividing the residua by {
RMSE times sgrt[1 - its hat or “leverage’ value]}.

Studentized Residual

Since the RMSE in the denominator of the standardized residual was
obtained by summinmg all n residuals, including the onein
guestion, the standardized residua has a complicated distribution
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(for at-ratio, the numerator and denominator have to be
independent). Moreover, if the observation in question isan
“outlier” with respect toits'Y value, itsresidual will be large, and
will make the RM SE in the denominator of the standardized residua
too large, and may make the scaled residual too small to be noticed!
To avoid these problems, one can estimate the residua (and the
RMSE) from the model that does not include the observation in
guestion. The scaled residual so obtained is called a“studentized” or
“studentized deleted” or “jackknife’ residual. It is sometimes
referred to as an “externally” studentized residual, since the scaling
uses a RM SE that isindependent of the actua residual in the
numerator. In contrast, the standardized residual is sometimes
referred to as“internally” studentized, since the RM SE includes the
contribution from the residual in the numerator.

Cook’s D(istance)

A (standardized) measure of the amount by which the estimates of
the beta parameters[or the fitted values] change if the observationin
guestion is deleted froim the analysis. It is an amalgam of the hat
value or leverage (potential to influence) and the actual value of the
Y residual.

Some authors recommend examining those observations for which
Cook’ s distance is greater than the median (50%) value of an F
variable with p and n-p degrees of freedom. Seetable A-10in
KKMN.

DFFitsS (DiFference in the FITted value --
Standardized)

Theinfluence of an individual observation can aso be assessed by
examining the amount by which the predicted Y value for the
observation in question changes when the observation itself is
excluded from the analysis. Again, it is a standardized measure,
with authors suggesting that absolute values greater than 2sgrt[p/n]
merit attention.

Dfbeta’s
(Standardized) measures (1 per term in the model) of the effect of

the observation on the estimated regression coefficients. Vaues
above 2 indicate influential observations.



