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Abstract

The effects of collinearity on the behavior and reliability of the coefficients

estimated from a multiple linear regression are an important and

challenging topic in regression courses. Textbooks, authors, and teachers

have used a variety of methods – algebraic and graphical – to explain these

effects. To complement existing efforts, we employ a variety of static tools

(tabular display, by algebra, graphical display), and provide an applet

created in Excel which allows teachers to illustrate the statistical behaviors

associated with collinearity in a dynamic and interactive way.

Key Words: animation; simulation; instability; knife-edge; tightrope

walking; Excel

i



1 Introduction

Textbooks, authors, and teachers use a variety of methods to describe the

effects of collinearity on the behavior of the coefficients estimated from a mul-

tiple linear regression model. Their aim is to give an intuitive understanding

as to why, for example, when two regressor variables are positively correlated,

the estimates of the corresponding regression coefficients are negatively cor-

related, or why the standard errors can be larger than those obtained from

two simple linear regressions.

Some take the algebraic approach, while some prefer a geometrical thus

more visual, approach. Previously, those who used the latter had to rely

on static diagrams, such as those in Swindel (1974), Hocking and Pendleton

(1983), and Neter (1996, p289). Although collinearity was not his primary

focus, Franklin (1992) used his final dataset (of 4 observations) and the corre-

sponding 3-D figure to produce seemingly contradictory findings when there

is a high degree of collinearity.

The features available in Excel and in R allow teachers to use animation

to illustrate the instability and other statistical behaviors associated with

collinearity. We use a simple example to show how this can be done. Even

if the data are ‘generated’, and the dataset is too small to yield very precise

estimates, we believe it is important that variables have real names – not
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just the Y,X1, X2 often used in textbooks – and that the research context is

genuine.

2 Example

Each of two researchers, interested on the effect of working in a noisy work-

place on hearing loss, has a budget to measure hearing loss in only n = 9

workers who have been exposed to a noisy work environment for different

numbers of years. They use two different sampling schemes. One randomly

selects 3 workers aged 45, another 3 aged 55, and another 3 aged 65, in the

hope of obtaining a sample with a sufficiently wide spread in the numbers

of years worked in a noisy environment. However, because many workers

began working at around the same age, the range of these ages=(45, 45, 45,

55, 55, 55, 65, 65, 65), should approximate the corresponding range of the

numbers of years worked. We call this the “unbalanced” design, and show

examples of the joint distribution of these two variables, both measured in

years, in the righthand column of Figure 1. The other researcher selects 3

workers from each of the 3 age groups – 1 who has worked 10, another 1 who

has worked 20, and 1 who has worked 30 years. That is, age=(45, 45, 45,

55, 55, 55, 65, 65, 65) and work=(10, 20, 30, 10, 20, 30, 10, 20, 30). We

call this the “balanced” design, and show examples in the lefthand column

of Figure 1. The mean age and the mean numbers of years worked are the
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same in both designs; the variance in the years worked is similar in both,

while the variance in age is identical. Whereas the main concern of Hocking

and Pendleton (1983) was prediction, the focus of these researchers will be

on isolating the amount of hearing loss ‘due to’ the time spent working in a

noisy workplace. They measure it as decibels per year, i.e., as a regression

‘slope’.

Since n is small, the possible estimates depend on the ‘luck of the draw’.

In practice, a researcher would never know from the sample selected whether

the estimate it produced was an over- or under-estimate. In this didactic

piece, we use our privileged position to obtain estimates from several simu-

lated samples. We first report the results in a table, before considering some

other heuristics.

2.1 Estimates, presented as numbers

We begin with 8 samples that might have arisen from the balanced design.

The estimates from these are shown in the leftmost half of Table 1. For

each sample, three sets of estimates are reported. Since it is known that

hearing loss is a function of age, even for persons who are never exposed

to occupational noise, many analysts would use a multiple linear regression

involving both age and work as covariates. The pair of fitted coefficients from

this analysis is shown in the first of the three columns. Other analysts might
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reason that since the investigator had arranged that the age distribution

was the same in those with 10, 20, and 30 years of work, age does not

‘confound’ the work-hearing loss relationship. Thus, they might consider it

more appropriate to report the coefficient from a simple linear regression

involving only work, shown in the second column. Although not the focus of

this study, the coefficient from a simple linear regression involving just age

is shown in the third column for didactic purposes.

From the Table, one can see that no matter which of the 8 possible samples

was selected from the balanced work × age grid, the coefficient for work in

the multiple regression indicates that those with longer exposure to noisy

work have greater hearing loss: the estimated effect is reasonably consistent

across the possible samples, and ranges from approximately 0.2 to 0.4 units

of hearing loss per year of work. The values of the age coefficient are slightly

larger, but have a similar spread.

Incidentally, the balanced samples show that, no matter whether age is

or is not included in the model, one obtains the same estimate for the effect

of work. What is not well appreciated is that while including it does not

make the comparison ‘fairer’, doing so – in a standard multiple regression –

does make it ‘sharper’ (Hanley, 1883).

We turn now to 8 samples that might have arisen from the unbalanced
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design. The corresponding estimates are shown in the rightmost half of Table

1. For this sampling scheme, all analysts would agree that a naive simple

regression analysis tends to over-estimate the effect of work, since a compar-

ison among those with approximately 10, 20 and 30 years of occupational

exposure is also a comparison between the younger and the older workers

– a classic case where age confounds the relationship between exposure and

outcome. Thus, they would all fit a multiple linear regression involving both

age and work. The coefficients from this model are shown in the first of the

three columns on the right half of the table. The coefficients from a simple

linear regression involving work alone, and age alone, are shown for didactic

purposes.

It is readily apparent that the coefficients for work in the multiple re-

gression model are far more variable in the imbalanced than in the balanced

samples. Some unbalanced samples yielded very large work coefficients, while

others yielded very small coefficients, even negative ones. The pattern of the

eight pairs of numbers in the table tells us that in the multiple regression,

if the work coefficient from a sample is larger than average, then the age

coefficient from the same sample tends to be lower than average, and vice

versa.

The coefficient for work (or age) from a simple linear regression is close

to the sum of the two coefficients estimated simultaneously from a multi-
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ple regression, given that work or age are positively correlated and are on

the same scale. This is not surprising, since, in effect, there is only one

explanatory variable – experience; it reflects the cumulation of hearing loss

caused by both work and non-work exposure. With the exposure variation

limited to this one dimension (experience), the task of reliably isolating the

separate effects of work and non-work experience from such a small dataset

becomes virtually impossible. The same collinearity-curse applies in many

dietary studies. For example, if, as one of our colleagues put it, “I like to

have sausages with my eggs”, then even if Spence et al (2012) had collected

data on both, and (as the letters to the journal asked about) on the ‘carbs’

and other food items that often accompany them, they would have been

hard-pressed to reliably isolate their separate effects.

2.2 Estimates: algebraic ‘heuristics’

For those who understand best by ‘doing the algebra’, the unstable behavior

in the unbalanced case becomes obvious from the mathematical link between

the work and age variables (in our unbalanced examples, rage,work = 0.94).

We simulated the relationship between hearing loss and {work, age} as

hearing loss | age, work ∼ N(µ = βwork × work + βage × (age− 25), σ),

where βwork = 0.3, βage = 0.4, and σ = 2. In the extreme case, where all

subjects started work at age 25, so that rage,work = 1, then the expected
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hearing loss can be written as either {βwork + βage} × (age− 25) or {βwork +

βage} × work. The less age and work are positively correlated, the smaller

will be the negative correlation between the estimates βwork and βage.

2.3 Estimates: displayed graphically

Figure 1 shows the fitted multiple regressions from four samples of each

design, corresponding to the first four rows in Table 1. Each fitted regres-

sion can be depicted as a plane, whose gradient in the ‘West-East’ direction

represents the coefficient for work and that in the ‘South-North’ directions

represents the age coefficient. One quickly notices that the estimates from

the four balanced samples are reasonably stable, whereas those from the

imbalanced ones are unstable.

The reason becomes clear if one imagines the fitted plane as a tightrope

walker. If the plane/walker is supported (by data points) at all four corners,

its general orientation is not greatly affected by the placement of one point,

whereas if is only supported by a long but narrow base/tightrope in the

Southwest-Northeast direction, it is quite unstable and likely to be capsized

by the slightest individual perturbance at the Southeast or Northwest corner.

Hocking and Pendleton (1983) did not give a name to the plane, but to the

support for the plane, likening the observed responses in their Figure 1 to
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“pickets along a not-so-straight fence row”. The task of fitting of the multiple

regression equation was thus like “balancing a plane on these pickets”.

Despite the narrow base, however, the overall South-West to North-East

response gradient can be reliably estimated. This phenomenon is also evident

from the last two columns of the table: with data from the imbalanced

design, the coefficient from each simple regression is close to the sum of the

simultaneously estimated coefficients from a multiple regression.

3 The Excel Applet: animation

Rather than use a table and static figures, we prefer to illustrate the “tightrope

walking” in realtime, i.e. interactively and dynamically. We made an ap-

plet using an Excel spreadsheet. Figures 2 and 3 show the applet, with a

switch (0/1) to toggle between the balanced(1) and unbalanced(0) designs.

By repeatedly pressing (or holding down) the F9 key, or the equivalent key-

combination for ‘manual re-calculation’ in the MacOS version, the user can

observe the sampling distribution of {β̂work, β̂age}, the fitted plane, and the

coefficients β̂∗
work and β̂∗

age from the two simple regressions.

Both the Excel spreadsheet and R code, which can be easily modified to

suit other examples, are available from the corresponding author’s website.

http://www.epi.mcgill.ca/hanley/Software.
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4 Discussion

Some students are more the ‘algebra type’, so will respond to the ‘same-

data-different-estimates’ story and the accompanying algebra on page 288 of

Neter’s text. Others, more visual, will prefer the two planes shown on page

289 of the same text.

Some teachers have described collinearity using images such as ‘data rest-

ing on a knife-edge’, or a small (air)plane that crashed and came to rest

precariously on a sharp ridge of a mountain, or tightrope walking as we

mentioned. Others have tried to be more proximal, and used a large and

unwieldy sheet of paper, and imaginary data supports jutting up from the

classroom floor, to illustrate the benefits of a wide support for the fitted re-

gression plane. Many are too young to remember Hocking and Pendleton’s

“picket fence characterization of multi-collinearity”. The older of the present

authors likens the statistical behaviour to that of a hammock; it reminds the

younger authors of the instability encountered when stepping into a canoe

or grabbing onto the edge of a life raft.

It is not the purpose of this note to replace existing images and props.

Rather, it is to add one more prop, easily built with widely available soft-

ware, where one can include randomness, and thus impart a better sense of

sampling variation in two dimensions. The flexibility and speed of Excel or
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R allow one to easily animate sampling variation in many other statistical

data-analysis contexts.
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Table 1: Coefficients (units of hearing loss/year) from multiple {β̂work , β̂age}
and separate simple – β̂∗

work and β̂∗
age – linear regression models applied to

hearing loss data gathered using balanced and unbalanced designs.

Balanced Unbalanced

sample {β̂work , β̂age} β̂∗
work β̂∗

age {β̂work , β̂age} β̂∗
work β̂∗

age

1 0.25 , 0.48 0.25 0.48 0.05 , 0.64 0.66 0.69
2 0.29 , 0.42 0.29 0.42 -0.47 , 1.26 0.74 0.79
3 0.34 , 0.20 0.34 0.20 0.16 , 0.40 0.55 0.56
4 0.20 , 0.48 0.20 0.48 0.68 , 0.20 0.87 0.88
5 0.24 , 0.42 0.24 0.42 0.71 , 0.07 0.78 0.78
6 0.30 , 0.57 0.30 0.57 -0.03 , 0.66 0.60 0.62
7 0.36 , 0.46 0.36 0.46 -0.50 , 1.03 0.49 0.53
8 0.38 , 0.38 0.38 0.38 0.57 , 0.07 0.65 0.65
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work and age: 0.25 & 0.48 [work: 0.25  age: 0.48 ]

 5 10 15 20 25 30 35

 5
10

15
20

25
30

35
40

45
50

55
60

65

work

ag
e

lo
ss

●
●

●

●
●

●

●

●

●

work and age: 0.05 & 0.64 [work: 0.66  age: 0.69 ]

 5 10 15 20 25 30 35

 5
10

15
20

25
30

35
40

45
50

55
60

65

work

ag
e

lo
ss

●

●
●

●●
●

●
●

●

work and age: 0.29 & 0.42 [work: 0.29  age: 0.42 ]
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work and age: −0.47 & 1.26 [work: 0.74  age: 0.79 ]
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Figure 1: Fitted response surfaces, along with estimates {β̂work , β̂age} [and

β̂∗
work and β̂∗

age], from samples with (left) balanced and (right) unbalanced
designs. Figure generated by R.
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hammock.xls

Effect of (X1,X2) distribution on estimated regression slopes
Output from Excel LINEST function

B_age B_work B_hat_work B_hat_age b_0_hat
0.4 0.3 ... you may change items in italics 0.36 0.35 -8.30

| SE = 0.10 0.10 5.66
Age Work balanced 1 (1=yes,0

=n0) r-square = 0.82 2.35 #N/A = SEy (=RMSE)

SD_e 2 r(age,work
)= 0.00 F = 13.71 6 #N/A = df

   hearing loss SSreg = 151.01 33.05 #N/A = SSresiduals
Age Work y yhat residual
45 10 11.6 10.9 0.7
45 20 13.4 14.6 -1.2
45 30 16.3 18.2 -1.9 "UNIVARIATE" SLOPES
55 10 17.9 14.4 3.5 0.36
55 20 17.8 18.0 -0.2 0.35
55 30 23.2 21.6 1.5
65 10 15.0 17.9 -2.9
65 20 20.3 21.5 -1.2
65 30 26.8 25.1 1.7

To generate NEW data, PRESS the F9 key

Age
Work 45 55 65

15 12.7 16.2 19.7
30 18.2 21.6 25.1
45 23.6 27.1 30.6

15
30

45 45

65
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30.0
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50

45 55 65

Age
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5.0
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Page 1

Figure 2: Estimates, {β̂work , β̂age} [and β̂∗
work and β̂∗

age], from a balanced de-
sign [Screenshot from Excel; 2-color plane (response surface) is

merely for visual effect.]
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hammock.xls

Effect of (X1,X2) distribution on estimated regression slopes
Output from Excel LINEST function

B_age B_work B_hat_work B_hat_age b_0_hat
0.4 0.3 ... you may change items in italics 0.76 -0.02 -1.06

| SE = 0.39 0.38 10.71
Age Work balanced 0 (1=yes,0

=n0) r-square = 0.85 3.08 #N/A = SEy (=RMSE)

SD_e 2 r(age,work
)= 0.94 F = 16.52 6 #N/A = df

   hearing loss SSreg = 313.39 56.91 #N/A = SSresiduals
Age Work y yhat residual
45 17 14.1 11.1 3.0
45 20 10.8 13.4 -2.6
45 26 17.8 17.9 -0.2 "UNIVARIATE" SLOPES
55 26 13.8 17.8 -4.0 0.74
55 30 24.3 20.8 3.5 0.68
55 31 21.7 21.6 0.1
65 38 29.8 26.7 3.0
65 40 27.1 28.3 -1.2
65 40 26.6 28.3 -1.6

To generate NEW data, PRESS the F9 key

Age
Work 45 55 65

15 9.6 9.4 9.2
30 21.0 20.8 20.6
45 32.4 32.2 32.1

15
30

45 45

65
0.0

10.0

20.0

30.0

40.0

Y

Work
Age

10

30

50

45 55 65

Age

Work

0.0

10.0

20.0

30.0

40.0

15 30 45

Work

Y

Page 1

Figure 3: Estimates from an unbalanced design [Screenshot from

Excel. Multi-color plane (response surface) is merely for

visual effect.]
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