Session 5: Outline
Chapter 11: Interaction(Effect Modification) in Regression
Preamble

- Should not be in same chapter with confounding...
- a very different topic ! ! (can have both, but... see diagram)

Definitions ...
Interaction (statistical)

- "Non-additivity" of "effects" in regression
- need for product term in regression analysis (osm)
- scale dependent
(Effect) Modification (epidemiological)
- Inconstancy of a parameter of a relation over other subject characteristic (osm)
- Different slopes for different folks (jh)
"Modifier (of a relation)
- A characteristic (of individuals) on which a parameter of a relation depends (osm)

Equation for Ideal Weight as function of Height

- modification by Gender

Average Earnings as function of Education / Age

- modification by Gender

Decline in Bone Density with Age

- Different in $19 t h$ and 20th Centuries
?Can hit further with aluminum than wood baseball bat?
- Difference depends on where on bat one hits ball

Changes over time in injury rates

- Different in intervention and reference areas?

Translating these into regression equations...

- relation between Y and X
- "modifier" variable M $\mathrm{E}[\mathrm{Y} \mid \mathrm{X}, \mathrm{M}]=\mathrm{B} 0+\mathrm{B} 1 . \mathrm{X}+\mathrm{B} 2 . \mathrm{M}+\mathrm{B} 3 .(\mathrm{M} . \mathrm{X})$
- Special cases..

X binary, M Binary

Meaning of the coefficients

X continuous, M Binary

- helpful ways of rewriting the equation

$$
\mathrm{E}[\mathrm{Y} \mid \mathrm{X}, \mathrm{M}]=\mathrm{B} 0+\mathrm{B} 2 . \mathrm{M}+(\mathrm{B} 1+\mathrm{B} 3 . \mathrm{M}) . \mathrm{X}
$$

Special issues

- mathematical symmetry of equation

$$
\begin{aligned}
E[Y \mid X 1, X 2]= & B 0+B 1 . X 1+B 2 . X 2+B 3 .(X 1 . X 2) \\
= & B 0+B 2 . X 2+(B 1+B 3 . X 2) . X 1 \\
& X 2 \text { modifies the } Y<->X 1 \text { relation } \\
= & B 0+B 1 . X 1+(B 2+B 3 . X 1) . X 2 \\
& X 1 \text { modifies the } Y<->X 2 \text { relation }
\end{aligned}
$$

- to a regression program, X1.X2 product terms are just like any other terms.. but
they tend to be correlated (collinear) with the components from which they are made, so...
*** user should "center" the components before *** *** making (or having computer make) products ***
(will see example in injury prevention study)

Translating equations back into lines...

- If M is binary...
start with the $M=0$ case

```
                B0 + B1.X + B2.M + B3. (M.X)
= B0 + B1.X + B2.0 + B3.(O.X)
= B0 + B1.X
    ===> straight line in X with intercept BO and slope B1
```

"turn on" the $M=1$ toggle...

$$
\begin{aligned}
& B 0+B 1 \cdot X+B 2 \cdot M+B 3 \cdot(M \cdot X) \\
= & B 0+B 1 \cdot X+B 2 \cdot 1+B 3 \cdot(1 \cdot X) \\
= & B 0+B 1 \cdot X+B 2+B 3 \cdot X
\end{aligned}
$$

collect terms that do not involve $X \&$ those that do..

$$
(B 0+B 2)+(B 1+B 3) \cdot X
$$

===> straight line in X with intercept ($B O+B 2$) and slope (B1 + B3)

- If M is continuous... as above with several M values

