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SUM MARY 
The simulated small-sample behaviours of several estimators of a common hazard ratio are compared. 
In most circumstances, a modified version of the empirical logit (Haldane 1955; Anscombe 1956) 
seems to be the analytic technique of choice. The performance of the Standardized Mortality Ratio 
(SMR) is indistinguishable from that of the ML estimator when the denominator experience is much 
larger than that of the numerator experience. When many cells have small expectations, then the 
empirical logit becomes biased, and a variant of the Mantel-Haenszel estimator (Mantel and 
Haenszel, 1959) is the most widely reliable non-iterative estimator. 

Keywords: Hazard ratio; Small samples 

1. Introduction 

Accumulated times at risk (person-years of experience) in cohort studies are commonly assigned 
to strata within which a reasonable approximation is to assume a uniform hazard (or incidence) 
function. The stratifying variables may be fixed (such as gender) or time dependent (such as age); 
they determine the baseline stratum-specific hazards and thus define the context within which the 
effect of any further characteristics (such as an industrial exposure) can be examined. Often the 
ratio of hazard rates in the presence vs. absence of the additional characteristic under study is 
taken to be fixed, conditionally on stratifying variables, and the analytic goal is to estimate the 
common hazard ratio over strata. Maximum likelihood estimates of common hazard ratios can be 
readily obtained with mathematical modelling programmes that take into account the Poisson 
structure of the likelihood function (Clayton, 1982; Berry, 1983) but these may be unavailable, 
or cumbersome when the object is simply to analyse stratified data from simple tables. A review 
of current journals of epidemiology and industrial medicine, where cohort studies appear most 
often, suggests that non-iterative estimates are used far more commonly in practice than are maxi- 
mum likelihood procedures, and that there are many studies in which at least some cells contain 
few or no observed events. The purpose of this note then is to compare the theoretical and 
observed variances of several simple, consistent estimators of the common hazard ratio, with the 
intent of identifying situations in which such estimators are most useful, and of signalling some 
data configurations in which they might provide misleading results. 

2. Estimators 
For each stratum i = 1, 2, ... , k let there be ai events in a total observation time Ci (including 

both censored and non-censored individuals) and bi events in a total observation time Di. The 
two observed incidence or hazard rates are Ili = ailCi and I2i = bilDi. Let Xli and X2i be the 
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corresponding paramneters with X1/X242i= for all i, and let I=in (). The stratum-specific 
estimates of 4 are 4i = I1,/I21. Although C1 and Di are random variables, the ai and bi can be 
analysed as if they were independently Poisson with parameters Oli = Xi1C1 and ,Bi X2 1Di for two 
reasons: the first two moments of the distributions of I1 i and I2i are identical to those that would 
be obtained if indeed C1 and Di were fixed, and the kernel of the likelihood for the count and 
person-time observations is identical to that for the count alone with fixed person-time (Breslow, 
1977, 1978, Clayton, 1982; Berry, 1983). 

The most studied non-iterative estimator which could be applied to such data is the empirical 
logit, coupled with an offset to account for varying levels of Ci and Di over strata. The empirical 
logit for stratum i, modified so as to avoid undefined values (Haldane, 1955; Anscombe, 1956; 
Cox, 1970), is 

oi = In [(ai + 0.5)/(b1 + 0.5)] - ln (C1/D1), 
whose variance (Gart and Zweifel, 1967) is estimated by 

V?,,. = (ni + 1) (n1 + 2)! [ni(ai + 1) (bi + 1)], 
where ni = ai + bi. 

An estimator of the common hazard ratio across strata is then 

hLGT =exp (LGT) = exp [(E2 V- 'i)/I V-'], 
with summations (here and below) taken over i= 1 to k. An estimate of the variance of the 
empirical logit is 

VLGT = ( 1 (1) 

Use of the empirical logit is infrequent in contemporary epidemiologic analysis. 
Commonly used estimators, and two new ones, can be derived as information-weighted averages 

of the stratum specific hazard ratios. Nurminen (1981) has shown that a common ratio estimate 
obtained as a weighted average of stratum specific estimates is asymptotically efficient, provided 
that the weights are asymptotically proportional to the inverse of the variance of the stratum 
specific estimates. The variance of the weighted average approaches the Cram6r-Rao lower bound, 
given by the inverse of the sum of stratum-specific Fisher informations. Estimators derived by this 
device have the attractive property of yielding 4= 4' when the 4, are identical across strata. 

By a first order Taylor series expansion, it can be shown that the variance of the stratum- 
specific estimate 4i is approximately equal to 

V4 ( = 0K (o +jp-l). (2) 

After substitution of observed counts for the parameters in this expression, an average of the 4i, 
weighted according to the inverse of the variances, simplifies to 

A Y2a3 D1/(Cini) 

The variance of the natural logarithm of 4'i, found again by a first order Taylor series expansion, 
iS 

A 2a2 (a. + 4bi) Di/(ni CQ2) 2aibi (a? + bi)/n"4 22a3 b,(a. - 2bi)D,/(n? Ci) 
VAl + )2 + 3 fIV [a[2DI/(Cini)] 2 (aibi/n,)2 (2atD,/C,ni) (Zaib/lni) 

The numeric value of this cumbersome expression is in most instances very close to 
[Z(a[' + bf')] -1 

The stratum-specific variance of equation (2) can be reparameterized to 

Vqi = 42 (4 1 Di + Ci)/(iCi). (4) 
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When (4) is used as a basis for deriving weights, the leading term (42) cancels out. Substituting 
bi for j3i and 1 for the 4 within the parentheses, one obtains a simple estimate of 4 first proposed 
by Rothman and Boice (1979) (RB hereafter), as an analogue of the Mantel-Haenszel (Mantel 
and Haenszel, 1959) estimate of the common odds ratio over a series of 2 x 2 tables: 

^ -aiDilTi 
4,RB = 

YbiClTi 

where Ti = Ci + Di. The variance of the natural logarithm of the expression is approximately 
A _ Sa1(Da/Tj)2 Y2bi(CI/T)2 
VRB (2a1D/Tj)2 (2b5C/T)) 

When the Di are all much larger than the Ci, then expression (4) becomes 

Vv,i = ,lDi (3iCi)'. (6) 

Substituting, as above, bi for ,i and weighting the 4i according to the inverse of (6), one obtains 
the standardized mortality ratio 

A lai 
h,MR = ____ 

Y,bilCiDi 

the variance of the logarithm of which is 

V?kSMR = (Ea{) -+ (b C/D+)2 (7) 

Any consistent estimate ; of 4 substituted into equation (4) will lead with inverse-variance 
weighting to an asymptotically efficient "two-step" estimator, 

, 2aiDi1/(,'D1 + CQ) (8) 
S 

b1Ci1/(_7'Di + CQ) 
Generally 4 is taken as 4RB. The efficiency of 4TS will be superior to that of 4RB as a conse- 
quence of using a more accurate estimate of 4 in the weighting function. 

Clayton (1982) has pointed out that recursive solution of equation (8) leads to the maximum 
likelihood estimate, 4ML. It follows immediately that when Ci/Di is a constant, H, across strata, 
then the pooled estimate 

{'p = (lai) (H'Zbi)-l 

is the maximum-likelihood estimate of 4. The pooled estimate is also, for constant H, equal to 
4RB, 4TS, and 4SMR. Because it does not allow discrimination among the various estimators, 
constant H will be considered a degenerate case and avoided in the comparisons of the following 
section. 

3. Simulated Behaviour 
In order to test the performance of the measures presented in Section 2, a series of simulations 

have been carried out. Each analysis consisted of 10 000 random replications of a two-stratum, 
two-sample study comparing the incidence rates shown in Table 1. The complete series consisted 
of 10 distinct distributions of "large" and "small" expected numbers over the four cells, large 
for this purpose being taken as 30 and small as 3, except where adjustment was necessary to avoid 
a constant Cq/D1 across strata. For each study, a set of expected counts was chosen for a 1, b 1, a2, 
and b2; person times at risk (C1, D1, C2, D2) were chosen so as to produce the expected incidence 
rates of Table 1. Each random replication was generated using the expected counts as the para- 
meters of four separate Poisson distributions. All uninformative strata (ai +bi = 0) were re- 
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TABLE 1 
Inzcidence rates underlying the randomizations in Table 2, 

expressed in events per 1000 person-years 

Stratum lpii X2i i 

1 0.3 0.1 3.0 
2 1.2 0.4 3.0 

p = 3 In (p) = 1.099 

randomized. Replications for which laibi = 0 were replaced with new ones; replacement was 
necessary by this criterion for from 0 to 1 per cent of all samples, depending on the study, and is 
therefore unlikely to have affected the simulations in any important way. The random counts were 
combined with the fixed times at risk and analysed by each of the techniques of Section 2. 

Table 2 presents the randomization parameters chosen, the Cram6r-Rao lower bound to the 
variance of ( (i.e. ln (4)), calculated from the parameters, and (for each technique) the mean 
value of , the expected variance (as derived from substituting parameter values into equations (1), 
(3), (5) and (7)), the observed variance of 5, the observed coefficient of skewness (the third 
moment about the mean divided by 1.5th power of the variance), and the mean square error 
(observed variance plus the square of the observed bias). Of the four non-recursive estimators 
on the log scale, OLGT appears to be the least biased over the range of circumstances examined; 
it has furthermore small observed variances, and uniformly the lowest mean square error. Of some 
interest is that the variance of kLGT iS frequently less than the asymptotic estimate provided by 
the Crarn6r-Rao lower bound, most notably when small cells predominate. qRB is only slightly 
more biased on the average, and performs better than OLGT in some circumstances. Over the range 
of simulations, the direction and magnitude of the observed bias in ORB correlates very closely 
with its coefficient of skewness, suggesting that the variations in the average observed estimates are 
closely tied to efficacy of the logarithmic transformation in rendering the distribution of q"ORB 
symnmetrical. 'iv lhas a positive bias which becomes non-negligible as the small cells predominate. 
OSMR has largest variance in most circumstances, and by and large a more skewed sampling 
distribution than the other log estimates, although in the important circumstances of large bi and 
Di, its performance is, as expected, indistinguishable from the MLE. 

The recursive estimators, the OTS and the MLE, are closely similar with observed variances 
close to the lower bound, and mean values which tend slightly closer to the log parameter than 
ORB As with ORB, deviations in the mean estimate appear to be principally a function of skewness 
in the log distributions. 

Departures from log symmetry follow a regular pattern for all the estimators. Within the range 
of examples studied, small counts in ai coupled with large corresponding bi result in distributions 
skewed negatively on the log scale, and large ai together with small corresponding bi give distri- 
butions skewed positively. In mixed data sets the effect of a positive skewness seems to predom- 
inate, and in data sets with ai and bi similar for all i, the observed sampling distributions are very 
nearly symmetric. 

When counts from cells with small expected values play an important role in the estimates, the 
distribution of the latter can become not only skew but also polymodal, particularly in the longer 
tail, as the discreteness of the small cell distributions becomes dominant. As an example, in the 
most commonly encountered estimation problem from Table 2 (all ai small, all bi large), two 
secondary peaks containing over 3.0 per cent of the probability mass for TRB, qSMR, and 
VML lie beyond the estimate corresponding to the null hypothesis, despite the fact that I 
is ln (3)/(0.181)1/2 = 2.58 standard errors below the parameter. 

When randomizations were extended to larger numbers of strata and proportionately smaller 
counts in the small cells, the relative performance of the various estimators remained the same, 
with the exception of the empirical logit. Although optimal when the expected counts in the small 



TABLE2 
Performance of estimators of a common hazard ratio in 10 000 random repetitions 

Lower Observed Expected Observed Coefficient Mean square 
Randomization parameters bound Method mean variance variance of skewness error 

et B1 2 B2 

4 3 3 3 0.311 IV 1.300 0.311 0.413 0.219 1.300 
RB 1 112 0.312 0.408 0.018 a.408 
StMR 1.114 0.313 0.410 0.030 0.410 
LGT 1.082 0.273 0.258 -0.021 0.258 
TS 1.111 0.406 0.006 0.406 
MLE 1.111 0.406 0.006 0.406 

30 3 3 3 0.237 IV 1 275 0 237 0.302 0.626 1.275 
RB 1 199 0.249 0.335 0.963 0.345 
SMR 1.266 0.309 0.543 1.577 0.571 
LGT 1.037 0.194 0.196 0.422 0.199 
TS 1 158 0.277 0.676 0.280 
MLE 1.170 0.282 0.668 0.287 

3 30 3 3 0 237 IV 1.225 0 .237 0.262 -0.235 1 225 
RB 1.042 0.243 0.295 -0.542 0.299 H 
SMR 1.053 0.258 0.312 -0.440 0.314 4 
LGT 1.161 0.194 0.193 -0.387 0.197 
TS 1.020 0.274 -0.634 0.280 
MLE 1.028 0.278 -0.637 0.283 

40 30 3 3 0 054 IV 1.131 0.054 0.057 0.135 1.131 
RB 1 103 0.054 0.057 0.133 0.057 
SMR 1.103 0 054 0.057 0.131 0.057 
LGT 1 099 0.052 0.053 0.121 0.053 
TS 1 103 0.057 0.134 0.057 
MLE 1.103 0.057 0.133 0.057 

40 3 30 3 0.181 IV 1.199 0.181 0.235 0.847 1.199 
RB 1.184 0.181 0.235 0.847 0.242 
SMR 1.186 0.184 0.239 0.859 0.247 
LGT 0.972 0.143 0.155 0.531 0.171 
TS 1.184 0.235 0.847 0.242 
MLE 1.184 0.235 0.847 0.242 



TABLE 2 (continued) 

Lower Observed Expected Observed Coefficient Mean square 
Randomization parameters bound Method mean variance variance of skewness error 

aI I1 2 62 

30 3 3 30 0 183 IV 1.212 0.183 0.189 0.008 1.212 
RB 1.169 0.214 0.255 0.427 0.260 
SMR 1.270 0.306 0.528 1.297 0.557 
LGT 1.098 0 145 0.156 -0.039 0.156 
TS 1.062 0.167 0.035 0.168 
MLE 1.098 0.174 -0.038 0.174 

3 40 3 30 0 181 IV 1.179 0.181 0.202 -0 524 1.179 
RB 1.008 0 181 0.234 -0.843 0.242 
SMR 1 008 0.181 0.234 -0.843 0.242 
LGT 1 221 0.143 0.154 -0.526 0.169 
TS 1 008 0.234 -0.844 0.242 
MLE 1.008 0.234 -0.844 0.242 

3 30 30 30 0 0 6 IV 1 138 0.056 0 .061 -0 .047 1.138 
RB 1.093 0.057 0.059 -0.074 0.060 
SMR 1.094 0.058 0.060 -0.062 0.060 
LGT 1.129 0.054 0.056 -0.078 0.057 
TS 1.091 0.059 -0.089 0.059 
MLE 1.092 0.059 -0.087 0.059 

30 3 30 30 0.056 IV 1 113 0.056 0 .056 0.100 1.113 
RB 1.109 0.059 0.061 0.130 0.061 
SMR 1.141 0.108 0.115 0.261 0.117 
LGT 1.066 0.054 0.054 0.089 0.056 
TS 1.102 0.057 0.097 0.057 
MLE 1.104 0.057 0.096 0.057 

40 30 30 30 0.031 IV 1.117 0.031 0.032 0.047 1.117 
RB 1.102 0.031 0.032 0.038 0.032 
SMR 1.102 0.031 0.032 0.041 0.032 
LGT 1.098 0.031 0.030 0.042 0.030 
TS 1.102 0.032 0.041 0.032 
MLE 1.102 0.032 0.038 0.032 
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cells were on the order of three, and the number of strata limited to two, the empirical logit 
became almost always more biased on the log scale than ORB, OSMR, or kTS with 10 strata and 
expected counts of 0.6 in the smallest cells. 
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Appendix 
An editor, in addition to offering many helpful suggestions which have been incorporated into 

the text, has pointed out that the estimators 4B, "'PSMR, and 4TS can all be derived from likeli- 
hood functions. Let Hi = Ci/Di. Then conditional on ni, ai - Binomial (ni, H1(1 + Hi)1). Setting 
the first derivative of the conditional likelihood equal to zero, one obtains 

;(ai - bi'Hi) (1 + "Hi)1 =0 

which suggests the recursive relation 

=a1 (1 + i/*Hi)l [Yb1H1(1 + p*H.)y] -1* 

Taking 4* = 0 gives the SMR, 4* = 1 gives the Rothman-Boice estimator, 4* = 4RB gives the two 
step estimator. 
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