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W o  different analytic concerns motivate the division of data into strata: 
one is the need to evaluate and remove confounding; the other is to eval- 
uate and describe effect modijication. Because stratification is the pre- 
ferred means of dealing with both of these analytic issues, the beginning 
student is apt to become bewildered in the attempt to distinguish between 
the aims and procedures involved in considering these two aspects of ep- 
idemiologic data analysis. 

Effect modification refers to a change in the magnitude of an effect 
measure according to the value of some third variable (after exposure and 
disease), which is called an effect mod@er. Effect modification differs from 
confounding in several ways. The most central difference is that, whereas 
confounding is a bias that the investigator hopes to prevent or, if necessary, 
to remove from the data, effect modification is an elaborated description 
of the effect itself. Effect modification is thus a finding to be reported 
rather than a bias to be avoided. Epidemiologic analysis is generally aimed 
at eliminating confounding and discovering and describing effect modifi- 
cation. 

It is a useful contrast to think of confounding as a nuisance that may or 
may not be present depending on the study design. Of course, confound- 
ing originates from the interrelation of the confounding factors and study 
variables in the source population from which the study subjects are se- 
lected. Nevertheless, restriction in subject selection, for example, can pre- 
vent a variable from becoming a confounding factor in a situation in which 
it otherwise would be confounding. Effect modification, on the other 
hand, rather than being a nuisance the presence of which depends on the 
specifics of the study design, is a natural phenomenon that exists indepen- 
dently of the study. It is a phenomenon that the study is intended to divulge 
and describe if at all possible. Whereas the existence of confounding with 
respect to a given factor depends on the design of a study, effect modifi- 
cation has a conceptual constancy that tra'nscends the study design. 

Although effect modification is a constant of nature, in its most general 
sense it cannot correspond to any biologic property because there is one 
aspect of the concept that is not absolute: Effect modification in its most 
general context includes modification of an effect without specifying 
which effect measure is modified. Since there are two effect measures, the 
difference and ratio measures, that are commonly used in epidemiology 
as well as others that are used less often, the concept of effect modification 
without further specification is too ambiguous to be useful as a description 
of nature. 

In Figure 12-1, age can be considered a modifier of the effect of expo- 
sure, since the incidence rate difference between exposed and unexposed 
increases with increasing age. On the other hand, the ratio of incidence 
among exposed to incidence among unexposed is constant over age. Thus, 
age modifies the effect of exposure with regard to the difference measure 
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Fig. 12-1. Dise%B fncia%cece by'expanoe and a& . . indicating a constant ratio of 
inciderzce with age. . . 

/ .  

of effea but not with regard to the ratio .measure. The opposite situation 
is describe'd in ~ i ~ u k . 1 2 - 2 :  The d ~ e r e n c e  in incidence rate between ex- 
posed and' unexposed is constant over age,. but the ratio of incidence 
among exposed to incidence among unexposed,declines with age. These 
diagrams. illustrate why effect modification should be described only in 
relation to' a specific effect measure. If effect modification is absent with 
regard to: either the difference measure or the ratio measure, it will be 
presknt wjth regard to the other measure unless the disease rate among 
the unexposed is unasSociated wih the potential effect modifier. 

  his chapter presents the fundamend analytic strategies for dealing 
with confounding ancl.effect modification in a stratified analysis. The bio- 
logic And. public health interpretations of effect modification are consid- 
ered in Chgpter 15. . .  . 

. . .  . . 

EVALUATION AND CONTROL OF CONFOUNDING 
Confounding is a distortion in an effect measure that results from the effect 
of another .v&iable' that is associated with the .exposure under study. In 
Chapter 7, confounding"was defined,. and the general characteristics of 
confounding factors were discussed. To review, a confounding factor must 

1. Be risk factor for :the' disease among the. nonexposed. 
2. Be associated with the exposure variable in ttie population from which 

the.cases derive. . . .  . 

Fig. 12-2. Disease incidence by q o s u r e  and age indiating a constant 
dzj%rence of incidence with age. 

3. Not be an intermediate step in the causal path between the exposure 
and the disease. 

The case-control data in Example 12-1 demonstrate confounding by age. 
If the effect of oral contraceptives on the risk of myocardial infarction is 
estimated from the crude data, the odds ratio estimate is 2.2. If the data 
are divided, however, into two age categories, the odds ratio estimate in 
each category is 2.8, which corresponds to a 50 percent greater effect than 
the estimate of 2.2 (L2.8 - 1]/[2.2 - 11 = 1.5). 

It is clear that the variable "age" in Example 12-1 meets the criteria for 
a confounding factor. First, age is a risk factor for myocardial infarction 
among the nonexposed, that is, nonusers of oral contraceptives. We know 
in general that age is a strong risk factor for myocardial infarction; more 
directly, we can see that among the subjects in this particular study who 
are nonusers the proportion of subjects who are classified as cases is 
greater in the age category 40 to 44 (88/183 = 0.48) than in the age cate- 
gory < 40 (26185 = 0.31). These proportions do not represent any mean- 
ingful epidemiologic measure; because these are case-control data, these 
proportions reflect the overall case-control ratio arbitrarily chosen by the 
investigators. The proportions might be described as the "prevalence of 
disease among nonexposed study subjects," which, given the case-control 
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Example 12-1:. Case:mn,l e t a  deso-ibing rhe gect of or;! contraceptive me 
on risk . of rizypcardial . infdrctio~ . . with confounding'by age [Mann et a[, 19681 

. . 
, ' :'Age < 40 , ~ & 4 0 - 4 4  . Totals 

. . 
.User' Nonuser User Nonuser User Nonuser . . 

Myocardial infarction :21 26 . . 88 39 114 
cases . . . 

. . 
Controls '. i f . .  ' 5 9  7 95 . '  24 154 

Odds ratio estimate ' 2.8 2.8 2.2 

design, are not meaningful .prevalences. Nevertheless, for age to be con- 
founding, these proportions must vary by age. 

In addition, .for age Io be confounding, it must be associated with oral 
contraceptive use among the source population that gave rise to the cases. 
Looking ainong the controls, who are sampled from, that source popula- 
tion, we note.,that the proportion of oral contraceptive users is much 
greater (17176 = 0.22). among younger' dontrols than among older con- 
trols (7/102. = 0.07), indic-dfing that this conditiqn h& been fulfilled. 

Since age cannot be,construed as a causal link between oral contracep- 
tive use and myocardid infarction, it meets the criteria for a confounding 
factor in these, data. There..is a more direct method, however, by which 
confounding can be. assessed. It is possible to evaluate the magnitude of 
confounding by compaiing the esrimate of effect derived from the crude 
data with the estimate deiived from the stfatified data (provided that the 
potential confounder is judged not to be .a link in the causal path). Ignor- 
ing whatever residual age confounding there might b e  within these two 
age categ&es, we can baythat the estimate of the .incidence rate ratio of 
oral contraceptive us&on the risk bf, myocardial infarction unconfounded 
by age is 2.8, since ,the e s ~ m a t e  is 2.8.in each of the two age strata. The 
estfmate based on the-ciude data,'however, is 2.2. If these estimates were 
identical, the data would' indicate no confo'unding. The magnitude of con- 
founding in the data is esvmated,by the degree of discrepancy between 
the crude ahd unconfounded estimates. 

Some investigators have' attempted. to assess confounding through sta- 
tistical testi of significance, For example, in a clinical trial, the age distri- 
bution in the. trearment and comparison groups may be compared by a t 
test; if the test statistic'is ",significant," then age would be judged potentially 
confounding, whereas lack of "signific~ce': would imply that age is not 
confounding: There .is probably no more gievous routine misuse of sta- 
tistical testing than' in this common circum~tance. Since confounding is a 
bias that depends on the magnitude of two componknt associations, con- 
founder with'expoiui-e and confounder with disease, proper assessment 
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of confounding must be based on the magnitude ,of those associations. 
Statistical "significance" testing reflects a mixture of both magnitude of 
association and number of observations and therefore does not corre- 
spond to an assessment of magnitude of association alone. A large number 
of observations will produce statistical "significance" in situations in which 
the magnitude of one of the component associations of a potentially con- 
founding factor is puny and would preclude any substantial confounding. 
Conversely, strong associations that produce serious confounding might 
be judged "not significant" if the number of observations is sparse. Con- 
founding should therefore never be assessed by statistical tests. 

Although it is possible to obtain a general appreciation for the presence 
or absence of confounding in data by examining whether the potentially 
confounding factor is associated with disease among nonexposed and with 
exposure among nondiseased, the magnitude of the confounding in the 
data is difficult to assess in this way because the confounding represents a 
function of both of these component associations. Furthermore, when sev- 
eral factors are simultaneously confounding, the component associations 
should ideally be examined conditional on the other confounding factors, 
thereby complicating the problem. The preferred method of assessing 
confounding is direct comparison of the crude and unconfounded esti- 
mates of effect. (An exception would be the unusual situation in which 
prior knowledge outweighs the evidence in the data about confounding, 
as discussed in Chapter 7, or when the potential confounder is judged to 
be a link in the causal pathway.) This comparison clearly and unambigu- 
ously reveals the magnitude of the confounding, which the investigator 
can then take into account in further analyses or reporting of results. Fur- 
thermore, this comparison can be made while controlling for other factors 
if necessary. 

Point Estinzation of a Ungorrn Effect 
In Example 12-1, the point estimate of the incidence rate ratio was 2.8 in 
each of the two age strata, so there is no difficulty in inferring that an 
overall estimate of effect unconfounded by age should be 2.8. Even if the 
parameter value of the effect is identical across strata, however, it is rea- 
sonable to expect that estimates of the effect will vary among strata be- 
cause of random error. Typically, then, the investigator must derive an 
overall estimate of effect from stratified data by taking a weighted average 
of the stratum-specific effect estimates. If the parameter value of the effect 
is assumed to be uniform-that is, constant over the range of the con- 
founding variable-then each stratum provides a separate estimate of the 
same parameter value, the stratum-specific estimates varying only ran- 
domly. In weighting the estimates to get an average, it is desirable to assign 
greater weight to those stratum-specific estimates with smaller random 
variability and vice versa. Theoretically, the optimum procedure for reduc- 
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ing the variince in the overall weighted, average is to assign weights to the 
stratum-specific klubs that a re  inversely proportional to the variance of 
each stratum-specific estimate: . ' . . 

..x JW, . (effect estimate in stratum i)] 
' 

. ' ,Overall effed kstimate = , ' c .w i  
, . 

in which 

, . 

w. = ' 
' 1 '  

' (v~iance of effectkstirnate in stratum i) 

This method o f  poitit estimation, in which the individual strata are 
weighted to enhance the precision of the overall estimate, is known as 
pooling (The reader should note that the termpooled is sometimes used 
by statisticians to niean. "crude.");. :. 

Pooling can be by calculating the weights for averaging the 
srratum~specific kffect +timates directly from the estimated variance of the 
effect calculatd from the data in each:.s~r?tum separately; this method re- 
,quire$ enough infcirmation within each stratum to get reasonable variance 
estimaies.:Another approach, themethod of maximum likelihood, involves 
the sdution of a set of equations and produces the pooled estimate with- 
out explicitly determining stratum7specific weights. The maximum likeli- 
hood approach can' be thought of as a weighting process in which the 
wergha are implicit in the equations that yield: the point estimate. This 
d e ~ r i ~ t i o n  is %t' literally correct,. siince, for example, no weighting 
scheme would ,work if one of the stratum-specific estimates were infinity, 
whereas the rn+imum. likelihbod,apbroach produces an appropriate finite 
result in this situation;, indeed, the ability to average erratic stratum-spe- 
cific estimates eaciently when data are, relatively. sparse is one of the main 
advantages of the mdmurn  likelihood approach. Another set of pooled 
esti.rnator5, the Matel-Haenszel estimators, have explicit weights that are 
built into the formulas; rhe Mantel-Haenszcl estimators are the easiest to 
&lculate, and, considering thattheir statistical properties are neady as 
good as the difficult-to-calculate maximum likelihood estimators, they are . . 
ofieil the. method of choice. , , 

In the following sections, the above three approaches to popling are 
presented. rhe'direct approach,using explicit weights inversely propor- 
tional t; araturr+pecific variance estimates; the maximum likelihood ap- 
poach; and the Mantel-Haenszel approach. The specfic formulas used for 
determining the pooled estimators depend on the type of data supplied 
and 'the effect measure being estimated. 

. , 
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POOLING WITH INVERSE VARIANCES (DIRECT POOLING) 
Directly Pooled Point Estimation of a Uniform Effect with Person-Time 
Data. INCIDENCE RATE DIFFERENCE. Using the notation in Table 12-1, the vari- 
ance for the estimate of incidence rate difference (IRD) from a single stra- 
tum in a stratified analysis is approximately 

(see formula 11-15). Therefore, a pooled estimator for an IRD that is con- 
stant over strata can be obtained from 

in which 

and 

as with crude data. 
For an example of pooling used to estimate incidence rate dserence, 

consider the data in Example 12-2. Stratum-specific estimates of incidence 
rate difference for these data, the corresponding stratum-specific vari- 
ances, and the weights for pooling are given in Table 12-2, based on for- 
mulas 12-1 through 12-3. The pooled estimate of rate difference is ob- 
tained by taking the sum of the product of each stratum-specific estimate 
with the weight and dividing by the sum of the weights. The result is 5.95 
x which is expectedly close to the estimated incidence rate 

Table 12-1. Notation for incidence rate data with 
person-time denominators in stratum i of a stratifid analysis 
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,?.xahple 12-2. Age-specific corona y disease deaths among . 

British male d ~ c t m , , @  cigarette m ~ k i n g  [Doll' and Hill, 1964 .' 

Smokers  ons smokers 
. . .  . . ,  

Age ~ea ths  Person-years . , 
Deaths Person-years 

. .  . 
35-44 ' 32. '52,407 . 2  18,790 

45-54 104 43,248 , 12 , . 10,673 

55-64 206 . .  -28,612 . . '. 28 . 5,710 

65-74 186 12,663 . '  .28 2,585 

75-84 . 1.02 '. '5,317 . . . 31 1,462 

Total 630 . 142,247 101 39,220 

Table 12-2 Stratum-spec& est2mates of zncidmce'rate dflerence, 
wzth vanances'and weights forpooling for the data in e x a ~ l e  12-2 

~stimate of incidence': ' Variance Weight 
Age rate difference ( x .10yr) ( x 10Byr2)' ' ' . ( X  10-6yr-2) 

. . . . 

35-44 . 5.04 1.73 - . 57.8 
. ,. 

45-54 12.8 ' ' . . 16.1 . 6.21 
. . .  

55-64 .23.0'. :. . , . .  .111.. . 0.90 

65-74 " 38.6. : . . ' .  . ' .  535' . . 0.19 

difference for stratum 1, the stratum with the smallest variance and the 
largest weight. The crude incidence rate difference is 

which differs c~nsiderabl~from the pooled estimate of 5.95 x 1OP4Tf--l, 
indicating a sibstantial amourit of age Sonf6u*ding in these data. 

INCIDENCE RATE RATIO. ~ o ' r .  ratio estimators, po6ling is performed after a 
' 

logarithmic transformation of the estimates, which stabilkes the variances. 
The weights are the inverse3 of .the variances of the logarithmically trans- 
formed stratum-specific estimates of incidence rate'ratio (IRR). An approx- 
imate formula for .this va.ri-e is 

. .. . 

a var[ln(~@,)] = Ua, + l/bi . [12-41 

. . 

and therefore the beight for pooling is . , 

. . 
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Example 12-3. Mortality by sex and age forpatients 
w'th tngeminal neuralgia [Rothman and Monson, 19731 

Age < 65 Age 65 + Totals 

Males Females Males Females Males Females 

Deaths 14 10 76 121 90 13 1 
Person-years 1516 1701 949 2245 2465 3946 

Table 12-3. Stratum-specific estimates of incidence rate ratio, with logan'thic 
transformations, uariances, and weights for pooling for the data in example 12-3 

Estimate of 
Age incidence rate ratio Logarithm of 1k Variance of ln(1k) Weight 

and the pooled estimator, after reversing the logarithmic transformation, 
is 

where 

as with crude data. 
The application of formula 12-5 is demonstrated using the data of Ex- 

ample 12-3 from a survival study of patients with trigeminal neuralgia. The 
male-to-female ratio of mortality rates from the crude data is (90/2465 yr)/ 
(131/3946 yr) = 1.10. A pooled estimate, controlling for age using the two 
age categories in Example 12-3, is obtained using the calculations given in 
Table 12-3. The pooled estimate is obtained by taking the sum of the 
weight in each stratum multiplied by the logarithm of the stratum-specific 
point estimate, dividing that sum by the sum of the weights, and then 
taking the antilogarithm of the result to reverse the transformation, giving 
1.50 for the data in Example 12-3. The large discrepancy between this un- 
confounded estimate and the crude estimate of 1.10 indicates that the 
crude result was substantially biased by age confounding. 



ctly Pooled Point Estimation of a (lniform E$ct with Cumulative In- 
nce Data C U M U L A ~  INCIDENCE DIFFERENCE. The notation for stratified 
2 tables 1s given in Table 12-4. The approximate variance for the risk 

:rence (RD) in stratum i is 

: weight for pooling stratum-specific estimates of risk difference is the 
m e  of the variance: 

. , 

. . N:iNii ' ' w. = [12-71 
'. N;iai(N,i: 7, &) + N:ibi(Noi '. bi) . 

. . . . '  
looled estimate! f6r risk difTeience is :.. . 

... . . 

e cumulative incidence data in Example 12-4 indicate a crude risk dif- 
ence of 301204 - 21/205 = 0.045, but this is confounded by age, as is 
3wn in Table 12-5, in which the age-speclfic risk differences are each 
?n to be in the vicinity of 0.035. 
The unconfounded~pooled estimate of cumulative incidence difference 
obtalned from formulas 12-7 and 12-8; as shown inTable 12-5, the older 
e category gives an estimate of cumulative incidence difference that has 
nuch greater variance than that from the younger category, and therefore 
nuch greater weight is assigned to the younger age category The pooled 
timate is 0 034, which reflects the greater weight assigned to the younger 
tegory 

~ble 12-4 Notatzon for 2 x 2 tables m stratum r of a snat$ed Q . ~ . $ S Z S  

Exposed Unexposed Total 

s e s  4 b, 4, 
oncases ci dl Mo, 

Total ' NU , , . N O ,  ' .  . .  Ti 
, . 

. . . . 
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Table 12-5. Stratum-spec& e&nalex of cumubtiue incfdence 
dt~e'rmce, with var"ia;nces and weights for'pooling for the data in example 12-4 

Estimate of dbfiulative .. Variance of cumulative 
Age incidence 'difference incidence' &Terence Weight 

< 55 0:034 ., ' ' 0.000j9. ' 1009 

3 55 0.036 ' , . 0.00357 280 

. . 
. . . . 

. . . . 
. . 

CUM-W'INCIDEN& RATIO. The ratio estimator is obtained, as before, 
using a 1Garithmic tfansformarion: ~he.a~~roxi~ate;variance of the log- 
arithm of the strat'ilm-sp,icific cumulative incidence ratio (RR) is 

. . 
. : . . 

The weight for pooling is equal to the inverge of 'this variance: 

: 

and the pooled estimator is 
. . 

. .  , where 

bet us consider Exaniple 12-4 again, this time for risk ratio estimation. 
The crude estimate' is. (30/204)/(21/205)' = i .44.  Froin a visual inspection 
it is difficult, to assess the extent to which confounding is present, since 
the two stratum-specific. estimates of cuinulative incidence ratio bracket 
the crqde estimate as show'n in Table 12.6. estimate unconfounded by 
age is obtained by applying formula 12-11., using the weights shown in 
Table 12-6. The vzriqce f ~ r  the effect. estimate ,is considerably larger in 
the younger age category, just the, reverse.of the result seen in Table 12-5 
for risk difference estimation. ~rnall'valuei of risk l&d to stable estimates 
of risk 'difference but unstable estimates of risk ratio. For risk ratio esti- 
mation, then, a relafively laige weight is'assigned to the older age category. 

. . . . 

Table 12-6. Stratum-spec@c estimates of cumulative 
incidence ratio, with logarithmic transformations, 
variances, and weights forpooling for the data in mumple 12-4 

Estimate 
of cumulative 

Age incidence ratio Logarithm of I%, Variance of I*(&,) Weight 

< 55 1.81 0.59 0 31 3.25 
3 55 1.19 0 18 0.09 11.6 

The antilogarithm of the weighted average of the logarithms of the stra- 
tum-specific risk ratio estimates gives the pooled estimate, which is 1.31 
for the data in Example 12-4. The discrepancy between the crude estimate, 
1.44, and the unconfounded estimate, 1.31, indicates the extent of con- 
founding. 

Directly Pooled Point Estimation of a Uniform Effect with Case-Control 
(or Prevalence) Data. The effect parameter of interest with case-control 
data is the odds ratio, which serves as an estimator of the incidence rate 
ratio. The odds ratio is also the measure of interest for cross-sectional 
prevalence data, which should generally be treated as case-control data for 
the reasons given in Chapter 6. As discussed in Chapter 11, the odds ratio 
may also be used as an approximate estimator of the risk ratio or preva- 
lence ratio from 2 x 2 tables with cumulative incidence or prevalence 
data, in which case the same formulas for pooling as given below for case- 
control data would apply. 

For the odds ratio, as for other ratio estimators, a logarithmic transfor- 
mation is desirable before weighting the stratum-specific estimates. The 
approximate variance of the stratum-specific estimate of the logarithm of 
the odds ratio (OR) is [Woolf, 19541 

and therefore the weight is 



Example 12-5,'1fffdnts ioith congkital heart disease and DO& 
syndrome, arid healthy contra@, according to maternal spmicide 
use before conception and nibtmwl age at delivery {Kothman; 19821 

Maternal age < 35 
' 

.Maternal age 35 + . Totals 

. ~per&ici+e use ' ' Spermicide use Sperrnicide use 

+ - Total + - Total + - Total 

 own syndrome, 3 . 9 12 1 ' '. 3 4 4 12 16 

Controls ' , ' 104 : 1059' 1163 5 ,  ' 86 91' ' 109 1145 1254 

Total 107 ': 1068 1175' .6 89 95 113 1157 1270 

Table 12:7. Shatum-4Iec$c estimates of the odds ratio with logavithmic 
hansfomzatzbnS, valyiancq and weights forpooling for the data in example 12-5 

Maternal Odds ' ' 

age rario , ' Logarithm of Ô R, Variance of ln(O^~,) Weight 

, . 
zmd tlie'pooled estimator is 

. . 

. . _. 
The case-control data' in Example 12-5 describe an association between 

spetmicide. use near the time of conception and the risk of Down syn- 
drome. The crude es,timate of effect is (4 'a 1 145)/(12 - 109) = 3.5. The 
application, of formula 12-14, bakd  on .the calcul.ations in Table 12-7, gives 
a resuh.of 6~ = 3:8; which indicates only a 'mdes t  degree of confounding 
by maternal age at. delivery. 

.. . 

POOLING USING'THE METHOD OF'&UM LIKELIHOOD 

A full dlscussie of. the maximuin likelihood approach to estimation is 
beyond the scope i f  this book; the method. is described adequately in 
mmy statistics texts.Briefly, the ,approach involves specifying the likeli- 
hood equation for the data as a f u n i o n  of the parameter of interest; the 
maxim.um likeiihood,estinate of'the ~h-arneter is the value of the param- 
etkr that- makes the observations.in hand most probable under the likeli- 
hood model. The maximization is usually accomplished by maximizing 
the i-ogvithm of the likel'ihood rather than the likelihood itself because 
the maxima occ-r at the same vahe for the parameter, and the maxi- 
mum of the 1ogar i .h  of the likelihood is usually'easier to determine. By 

., . 
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setting the first derivative of the log-likelihood function equal to zero, an 
equation or  set of equations is derived that yields the maximum likelihood 
estimate for the parameter. 

For most applications, the maximum likelihood estimator requires the 
iterative solution of a high-order equation or system of high-order equa- 
tions, clearly a task for a computer rather than pencil and paper. The com- 
plicated equations do not involve any direct set of weights by which stra- 
tum-specific effect estimates are averaged, but the solution is always within 
the range of the stratum-specific estimates and behaves as if it were a 
weighted average in the sense that appropriately large weight is given to 
the strata with small variances for the effect estimate. In compensation for 
the difficulty of computation, maximum likelihood estimators have the 
most desirable statistical properties of all estimators, being highly efficient 
and minimally biased asymptotically 

A major disadvantage of the directly pooled estimators is that the pool- 
ing weight for each stratum is taken as the inverse of the variance of the 
effect estimate for that stratum, as estimated from the data in that stratum 
alone. For data with small frequencies, the variance estimates and there- 
fore the weights can be highly inaccurate. Indeed, for data containing one 
or more zero frequencies, some of the variance estimates given above are 
infinity corresponding to a weight of zero. Consider, for example, formula 
12-12, which estimates the variance of the logarithm of the odds ratio for 
a 2 x 2 table. If any of the four cells in the table is zero, this formula gives 
a value of infinity, and a weight of zero would be assigned to that table. 
(Furthermore, the logarithm of the odds ratio for that stratum would not 
be finite with a zero cell.) If the remaining cells in the table are large, 
there might be a considerable amount of information in the table that 
would be lost by assigning a weight of zero. Since the odds ratio for the 
stratum is either zero or infinity, which are the most extreme possibilities, 
it seems obviously incorrect to ignore such information. One proposed 
solution to this problem has been to modify formula 12-12 and, by exten- 
sion, other formulas like it by adding a constant value (usually 0.5 or 1.0) 
to each observed frequency [Haldane, 19551 or to substitute a small con- 
stant for the zero frequencies when they occur. Although this solution mit- 
igates the problem and avoids the difficulty of dividing by zero, it does not 
completely overcome the inaccuracy of the variance estimates for each 
stratum-specific estimate of effect when some of the observations are 
small. The maximum likelihood approach is preferable when some of the 
observed frequencies are small. Rather than treating each stratum in iso- 
lation, as does the directly weightedapproach to pooling in the assignment 
of weights, the maximum likelihood approach automatically "adjusts" the 
observations in each stratum in a way that integrates the information 
among all strata. 

In the following sections, the equations are presented for maximum 
likelihood estimation of a uniform effect measure. In each case, the result 



can be obtained by writing the likelihood equation for the data as a func- 
tion of a uniform effect measure, the observations, and whatever "nui- 
sance" parmeters may be involved, and then setting the derivative of the 
logarithm of the likelihood equal to zero. 

Maximum Likelihood Estzmation of a U n i f m  E$ect wztb Person-Time 
Data. INCIDENCE RATE DIFFERENCE The maimum likelihood estimation of 
incidence rate.difference necessitates the solution of a set of equations 
that number one more than the number of strata In addition to solving 
for the incidence rate dllerence (IRD), it is necessary to solve for the value 
of the incidence rate among the unexposed group in each stratum, satis- 
fying the following likelihood equations: 

and, for each stratum . i, . . . 

. . I 

where 1 k  is the pooled estimate of incidence rate difference, k,, is the 
estimate of incidence rate among unexposed in stratum 1, and the general 
notation follows that of Table 12-1. The estimates {k,J are estimates of 
nuisance parameters that must be calculated to solve for the desired esti- 
mate, 163. It is convenient to begin the solution to the above equations 
using the observed rate for unexposed within each stratum as a starting 
value, but the value for I$, that satisfies the equation can differ consider- 
ably from the observed value. The overall solution of equations 12-15 and 
12-16 is best accomplished by starting wi'th a trial value for solving 
iteratively for each k,,, andthen evaluating the left side of equation 12-15. 
Repeated trial values for 1 f b  each require an iterative solution for equa- 
tion 12-16 in each stratum, making the overall process tedious unless it is 
done by computer. 

For the data in Example 12-2 the maximum lkelihood solution for 1ffD 
is 5.91 x lo-%-', 6hich is in close agreement with the directly pooled 
result of 5.95 x 10-3r-I obtained previously. 

INCIDENCE RATE un.0.  For the maximum likelfhood estimation of inci- 
dence rate ratio (IRR)', id nuisance parameters are involved, and the esti- 
mate is obrained by the iterative solution of a single equation: 
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For the data in Example 12-3, the maximum likelihood estimate of IRR 
is 1.50, which is identical to the result obtained by direct pooling. One 
would expect good agreement between these two approaches when the 
observed frequencies are reasonably large, as they are in this example. In 
addition, the narrow spread between- the stratum-specific estimates con- 
fines all pooled estimates to the same small range of possible values. 

Maximum Likelihood Estimation of a Uniform E$ct with Cumulative In- 
cidence Data. CUMULATIVE INCIDENCE DIFFERENCE. The maximum likelihood 
estimation of cumulative incidence difference (RD) again involves the es- 
timation of a set of nuisance parameters, the risk among the nonexposed 
group in each stratum. As with person-time data, the number of equations 
is one more than the number of strata: 

and, for each stratum i, 

where k,, is the maximum likelihood estimate of cumulative incidence 
among unexposed in stratum i, and the notation follows that in Table 12- 
4. 

Solving the above equations for @ using the data from Example 12-4 
gives the maximum likelihood estimate of risk difference as 0.034, which 
is virtually identical to the value derived from direct pooling. The ex- 
tremely narrow range separating the two stratum-specific point estimates 
ensures good agreement for any pooled estimators in this example. 

CUMULATIVE INCIDENCE RATIO. For maximum likelihood estimation of cu- 
mulative incidence ratio (RR), again the risk among unexposed in each 
stratum is a nuisance parameter that must be estimated, but the maximum 
likelihood solution for each k,, has a closed form solution conditional on 
a. The equations are 

and, for each stratum i, 



Solutioh 6f these equatbns for F& using the data in Example 12-4 gives 
the maximum likelihood estimate of 1.31, again' identical to the directly 
pooled estimate. . . . . 

.. . 

~ m ' m u m  .~ikelhood Estikution *fa  U & O ~  Effect with Case-Cant?-ol (or 
Prwillmce) Data. The.maxirnum.likelihood estimation of a uniform odds 
ratio is the solution, a; td the following . equations: . 

. . .  
The 2. is thk he:'e&icted1' value for the a cell in each 2 X 2 table, 
calculated as.a funct io~ of the odds ratio; For each 2 X 2 table 4 can be 
calcula~ed~.from the formula . ' 

where.the notari'csn fbllo% that in ~aGk.l.2-4. Equation 12-23 can be com- 
purailonay tedious ifthe numbers within a stratum are large, but in such 
circums&cei an excellent asymptotic . . .approamation for 3. is obtained 
f r m  the, eqiation . 

. . 

in which 4,ei,ti, a d  d, are the eipkcted cell values that conform to equa- 
tions 12-2.2 and 12-24 and to the marginal totals of the 2 x 2 table [Gart, 
19701. Solving equation i2-24 explici'tlj for 1 in terms of Ti, N,,, M,, and 
GR gives . . . 

. .. 

which;s ~ornputationally much simpler than equation 12-23. Equation 12- 
24 represents tht  maximum IikeliMd solution for a uniform odds ratio 
based on 2:' x 2 @les with two independent binomials; this "uncondi- 
tional" soluricsn (it is conditional on one margin of the 2 x 2 table but not 
on both). generally gives.nearly 'identical results to those obtained from 

. . 
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the difficult-to-calculate conditional formula 12-23 except when the aver- 
age number of subjects per stratum is small. In such instances, the uncon- 
ditional approach can be substantially biased, and it is preferable to use 
the conditional approach or the Mantel-Haenszel estimator [Breslow, 1981; 
McKinlay, 1978; Lubin, 19811. (Directly weighted pooled estimation is also 
unreliable if the number of subjects per stratum is small.) 

Maximum likelihood estimation of the odds ratio in a set of 2 x 2 tables 
requires an iterative solution of equation 12-22 coupled with either equa- 
tion 12-23 or equation 12-25, using trial values for the odds ratio until 
equation 12-22 is satisfied. For the data in Example 12-5, the conditional 
maximum likelihood estimate of the odds ratio (i.e., using equation 12- 
23) is 3.76; the unconditional maximum likelihood estimate (using equa- 
tion 12-25) is 3.79. Despite the small cell frequencies for the cases and a 
moderate discrepancy between the stratum-specific estimates of the odds 
ratio (3.4 for younger mothers and 5.7 for older mothers), the two likeli- 
hood approaches give nearly identical results because the total number of 
subjects per stratum is large. Furthermore, these estimates agree closely 
with the directly pooled estimate for these data, which is 3.82. 

POOLING WITH MANTEL-HAENSZEL ESTIMATORS 

Mantel and Haenszel [I9591 have proposed a simple formula as an esti- 
mator of a uniform odds ratio in a set of 2 X 2 tables. The estimator is 

A 

C aidimi 
OR, = ' C biciRi 

This formula represents a weighted average, without logarithmic transfor- 
mation, of the stratum-specific estimates of the odds ratio, with the weight 
for each stratum equal to blclfl,: 

These weights are inversely proportional to the variance of the logarithm 
i/ of the odds ratio under the null condition. Consequently, the Mantel-Haen- 

szel pooled estimator is optimally weighted for stratum-specific odds ratio 
estimates near 1.0. Theoretical statistical evaluation of the Mantel-Haenszel 
estimator with respect to bias and precision has shown that it compares 
favorably with the maximum likelihood estimator (formulas 12-22 through 
12-25) under a variety of conditions [Breslow and Liang, 19821. Whereas 
the directly pooled estimators require reasonably large frequencies within 
each stratum, the Mantel-Haenszel estimator, like the conditional maxi- 
mum likelihood estimators, performs well even if the frequencies within 



strata are smdl,.or if the data contain an occasional zero. Furthermore, it 
has the advantage of being ektremely simple to calculate. For example, the 
Mantel-Haensiel estimator of a uniform odds' ratio for the data in Example 
12-5 is calculated as'. . : ' 

.. . 

This result is nearly idiritic+l to the. maximum likelihood estimate (and 
the directly .pooled ,estimate) but is'extra'ordinar'ily simpler to produce. 
The combination bf e&e of computation and desirable statistical proper- 
ties make thi.s estimator the preferred choice for ,most situations in which 
an esrimate of the odds ratio is .desired for a set of 2' x 2 tables. 

By analogy with the Mantel-Haenszel esiimatoi, it i i  reasonable to con- 
struct estimators for, theother ratio measures of effect weighted in a sim- 
ilar way. For incidence rate,data, the analogous estimator is [Rothman and 
Boice, . 19821' . ' . . 

. ,  . 
. . .  

This formula is a simple 'noniterative estimator for. a uniform incidence 
rate ratio: that is nearly @ efficient as the maximum likelihood estimator 
[Walker, 19851.  orm mu la 12-27 may also- be used for cumulative incidence 
to obtain [Nurminen, 1981; Tixpie, 19811. 

Fbr the data in Example 12-3, formula 12-27 yields. 
. : .  i 

which is identical for. piactical purposes ,kith both the maximum likeli- 
hood and the direhly pooled results. . . . - 

 orm mu la 12-27 applied to'the data in Example .12-4 gives 

which is reasonably close to both the maximum likelihood and the directly 
pooled results. ' 

Greenland and Robins [I9851 ,bve.iuggested extending the Mantel- 
Haens~el approach fo'difference measures. The statistical properties of the 
  ant el-~aenszel estimators for difference measures are better than, any 
otherapproach for very sparse data within strata, but the variance of the 
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Mantel-Haenszel effect measures is much greater than that of either the 
directly weighted or maximum likelihood methods when the data are am- 
ple. Mantel-Haenszel difference measures are not covered here. 

Statistical Hypothesis Testing for Stratifid Data 
Examples can be found in which a pooled estimate of rate difference 
shows a negative association whereas a pooled estimate of rate ratio shows 
a positive association for the same data, apparently indicating that there is 
not a perfect correspondence between ratio and difference measures with 
regard to the absence or direction of effect. These discrepancies stem from 
variation introduced by different weighting schemes. For the purposes of 
statistical hypothesis testing, there is a theoretical correspondence of dif- 
ferent measures at the null point, and consequently only a single hypoth- 
esis test need be considered, whatever the parameter used to assess the 
effect. The tests in common use correspond to the conditional tests for 
simple data that assume either a fixed number of cases for incidence rate 
data or fixed marginal totals for 2 x 2 tables. Strictly speaking, these are 
tests of a departure from unity of the odds ratio or the incidence rate ratio, 
but the tests are valid as tests of the null hypothesis whatever the measure 
of interest. 

With stratified data, it is possible that the effect may vary substantially 
from one stratum to another. Never%ejess, hypothesis testing is generally 
performed with respect to the overall departure of the data from the null 
value of no association. That is, even if the parameter value for the effect 
varies among strata, the hypothesis test represents a test of the departure 
of some single overall measure of effect from its null value; it is convenient 
to think of this process as testing the departure of a pooled estimate of 
effect from the null value. If the stratum-specific values of the odds ratio 
or incidence rate ratio are identical, the tests described later are extremely 
powerful; in fact, in the jargon of statistics they are "uniformly most pow- 
erful," which means that they are the best possible tests of the null hy- 
pothesis in those circumstances. If the values of the odds ratio or inci- 
dence rate ratio vary across strata, it is conceivable that shcialized tests 
could be constructed that would be more powerful than the tests of overall 
departure from the null value described here; the specialized tests would 
have to be designed to detect a particular pattern of variation of the effect 
across strata. In general, however, the tests of the departure of the pooled 
estimate from the null value are still valid, even if they are not theoretically 
the most powerful tests that might be applied in a given situation. As a 
practical matter, usually no useful alternative exists. 

In certain situations it is conceivable that estimates of an effect could be 
strongly positive in some strata and strongly negative in others. In such 
circumstances the pooled estimate of effect may be near the null value as 
a result of the balancing of the opposing effect estimates in individual 



strata. A test of the overall departure of the data from the null condition 
would have little meaning in these circumstances as long as the opposing 
effect estimates reflect actual divergence of the parameter rather than sim- 
ply random variability of the effect estimate around the null value. 

Statistical hypothesis testing for stratified data represents a stralghtfor- 
ward extension of the tests applied ro crude data. The exact tests used are 
based on the probability calculations for a set of strara; the probability of 
observing a set of outcomes is the product of the probabllity for each 
outcome, so the probability of observing fhe set of observations in strati- 
fied data is calculated as the product of the probability of the outcome in 
each stratum. The latter probability is determined using the same proba- 
bility model as that used for crude data. Although this extension of exact 
testing to str'atified data is conceptually simple, in practice the large num- 
ber of combinations of outcomes can make the computations tedious to 
enumerate and perform except by computer. 

The approximate tests for stratified data retain the general form of 
expression 10-1 and merely extend the formulas for crude data given in 
Chapter 11 by deriving the components of the test statistics (the observed 
number of exposed cases, the number expected under the null hypothe- 
sis, and the variance) by summing the contributions to each of these three 
compomnrs over the set of strata 

HYPOTHESIS TESTING WITH STRATIFIED PERSON-TIME DATA 
Exact Hypothesis Testing with Stratified Person-Time Data. For stratified 
data, the overall probabilities needed for the calculation of exact P-values 
are the products of the probabilities obtained within each stratum. The 
total number of possible outcomes is usually large, especially in compar- 
ison with crude data, malung exact P-value calculations for stratified data 
difficult. In practice, they are rarely done. Nevertheless, the principles for 
obtaining exact P-values with stratified data are straightforward extensions 
of the principles applicable to crude data, and the computations can be 
readily programmed into a computer. 

The probability formula'for the number of exposed cases in a single 
stratum is identical to the formula used for crude data: 

. . . .  . . " ti) (?)ai&)b' 

~r(numberof exposed cases in stratum i = ai) = . .  . 

The probability that a set of N strata will have exactly a, expose4 cases 
in each stratum i, i = 1,2, . . . N, is the product of the probability of finding 
exactly a, exposed cases in each of the component strata: 
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There is some complexity involved in determining which outcomes of the 
data are considered equally extreme and more extreme in relation to the 
actual observations. The problem calls for considering all possible com- 
binations of values for the possible number of exposed cases in each stra- 
tum, the number in each stratum being subject to the constraint of the 
total number of cases, exposed or unexposed, that actually occurred in 
that stratum. 

For example, consider the data presented in $ample 12-6. There are a 
total of 16 cases in the three age strata, of which.9 are exposed. The most 
extreme outcome, conditional on the number of cases observed in each 
stratum, would be that all 16 cases were exposed, 2,12, and 2, respectively, 
in each of the three age strata. Consider the possible outcomes for which 
15 cases are exposed. There are three ways in which 15 of the 16 cases 
could be exposed: The unexposed case could fall into any of the three age 
strata. These three possibilities correspond to the distribution of the ex- 
posed cases being 1-12-2, 2-1 1-2, and 2-12-1. A complete enumeration of 
all the possible outcomes for at least 9 exposed cases is listed in Table 12- 
8. The 54 combinations constitute the outcomes in the upper tail of the 
probability distribution for testing the null hypothesis of no assdciation 
between dose category and thyroid neoplasm. To obtain the exact upper- 
tail P-value, the probability of each of these 54 possible outcomes must be 
calculated according to formula 12-28. 

For example, the probability of the actual observations 0-7-2 is calcu- 
lated, according to Formula 12-28, to be 

The sum of the probability of all the outcomes in Table 12-8 equals the 
upper-tail Fisher exact P-value testing the null hypothesis of no association 

Example 12-6 Incidence of thyroid neoplasm in 
females by age, for those exposed to less than 100 rad and 
those exposed to 300 + rad of radiation [Hempelmann et al., 19751 

0-14 Years 15-29 Years 30 + Years 

300+ < 100 ' 300+ < 100 300+ < 100 
rad rad rad rad rad rad 

Cases 0 2 7 5 2 0 
Person-years 1054 9942 2665 15,410 2217 1530 



Table 12-8 Enumeration of allpossible combinatiom of eaposed cases by 
age categoy, with at  least nine 'exposed cases, for the data of a m p l e  12-6 

Toral no. ,Distribution of . ~otal  nb. Distribution. of ' Totai no. Distribution of 
exposed exposed- cases . exposed exposed &es. exposed exposed cases 
cases by age category cases. , by age cat~gory . cases by age category 

. . 
. ' .  

16 2-12-2, , ' 12'. : 0-12-0 , ' I0 ' .  0-10-0 
15 1-12-2 ; 12 '0-11-i , 10 0-9-1 
15 2-1271. . , 12' : 0-10-2 . . 10 0-8-2 

15 Zll-2'. ,. 12. , ; 1-114.. . I0 , 1-9-0 
14 0-1.2-a. ' l i  . .  I-I~- 'I  10 1-8-1 
14 I-iz-1 1 2 '  . . 1-9-2 . . . l o  1-7-2 

14 1-llL2 i .  . 12 ,: 2-104' . 10 2-8-0 
14 2-12-0 12':. . 2-9-1 . 10 . . . 2-7-1 
14 2-1 1-1, ;. 12:. . 2-8-2 10 2-62 

14 2-10-2': . 11 , 0-1 1 4  9 0-9-0 
13 0-12-1 11, , 0-1071. . 9 . . 0-8-1 
13 0-1 1-2 1 1 .  , 0-9-2' : 9 0-7-2 
13 1-12-0.; , 11 1-104 . . 9 : 1-8-0 
13 1-11-1 . .  , 11, ' 1-91 , '. 9 : 1-7-1 

13 1-10-2 - , . .  11. . 1-8-2 ' . .  , . . . 9  1-62 
13 2-1 1-0. 1 , .  2-94 ' 9 .  2-7-0 
13 2-10-1 . 11 2-8-1 9 ' .  24-1 
13 2-9-2. . 1 1  : 2-7-2 . 9 .  2-5-2 

between level of radiation exposure and incidence of thyroid neoplasm. 
Algebraically, the tail probability is expressed as 

. . . . 
where k, represents the.value for the number of'exposed cases in stratum 
i, k = 'Ck,, a = 2%; and MI = ZMli. The sum of all the probabilities for 
the combinations'.Iist&d,i? Table 12-8 is 0.000600. Interestingly, the sum of 
the probabilities for' the. nine combinaiions. that are' just as extreme as the 
actual observation, with exactly nine exposed cases, is 0.000522, nearly as 
great as the' sum for all .54 butcomes listed in Table 12-8. If the nine com- 
binations with 10 expilsed casei are included, the sum increases'to 
0.000592, arid by including the possibilities. with 11 exposed cases it in- 
creases to 0.000599~tClearljr it is not necessary to carry out all 54 compu- 
tarions'to get an answer.accurate enough for any scientific interpretation, 
since one digit of precision is usually adequate for the P-value. 

I 
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For the lower-tail Fisher exact P-value, which would be calculated when 
the observed effect is less than the null value, the summation is 

where again k = Ck,, and so on. 
To obtain the exact mid-P value, only half the probability of all obser- 

vations as extreme as that observed should be included in the summation: 

M I X - ~ I  

Upper-tail probability = x fi (t:) (?)k' (?) 
2 k = a  i - l  

M l i - k i  

L o w e r -  probability = 2 fi (2') (?)* ($) 
2 k = a  i - 1  

For the data in Example 12-6, the exact upper mid-P value would be 
one-half of 0.000522, which was the probability for the nine possible out- 
comes with exactly nine ex~osed  cases, plus the probability of all the pos- 
sible outcomes more extreme than nine exposed cases, which was a total 
of 0.000078. Therefore, the exact upper mid-P value is 0.00034. 

Approximate Hypothesis Testing with Stratified Pmon-Time Data. For strat- 
ified data, asymptotic test statistics are constructed according to the same 
principles used for crude data. The test variable is still the number of 
exposed cases, which is the sum of ai over the strata. The null expectation 
and the variance for the number of exposed cases is calculated within each 
stratum, and these results are summed over the strata. Thus, the null ex- 
pectation for the number of exposed cases is 

and the variance, based on the binomial model, is 



.., .. 
which gfves.'& :the test statistic 

Formula 12133.i~ identical to formula- 11-1 for crude person-time data ex- 
cept that thk three components of the test statistic are obtained by sum- 
riling their stratum-spe.cific .contributions over the strata. 

For the dara in Example 12-6, the test statistic is calculated as follows: 
. . . . 

. . 

, . . .A =. no. ,bf exposed cases.='O + 7 G. 2 = 9 

, . 
,. . 

and . . 
. . 

, . 

which coi?esponds.to a one-tail PLvalue of 0.000034 or a two-tail P-value 
of 0.000063. . . 

The P-value cahla ted  horn this appioxiniate ieststatistic, like the exact 
P-value, is very srnall,.but the two P-values-do not agree closely The,exact 
mid-P "aluk is about 10 'times the magnitude of. the approximate P-value. 
The disq-eijaicy stems from the small numbers invoked but is also related 
to the fact.that the normal approximation is poorer in the extremities of 
the distribution. 

Nevertheless, coinp@ison between the exact and the asymptotic test 
raises the question 6f.tl-ie nature of the applicability criteria for the asymp- 
totic test statistic with regard to the nGmber of observations. There is no 
simple answer to this questcon, but one important point should be em- 
phasiied: The large,number condition need apply only to the summations 
involved in formula. 12-33,'not to each individual stratum. For person-time 

. . 
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1 data, then, formula 12-33 would apply even if each stratum had only one 
case, provided that there were enough such strata to allow the distribution 
of the total number of exposed subjects in all strata to be well enough 
approximated by a normal distribution. The large-number condition nec- 
essary for formula 12-33 to apply, then, could be reached by having few 
strata with many observations in each one or many strata with sparse data. 
With one stratum, formula 12-33 reduces to formula 11-1. A stratum with 
no cases has no information and contributes nothing to A, E(A), or Var(A). 

As a second example of the application of formula 12-33, consider the 
data in Example 12-3. The large number of cases in each of these two strata 
make it unnecessary to contemplate any exact test. The P-value can be 
determined as follows (considering male gender as "exposed"): 

I A = no. of exposed cases = 14 + 76 = 90 

HYPOTHESIS TESTING WITH STRATIFIED CUMULATIVE INCIDENCE, 
PREVALENCE OR CASE-CONTROL DATA (2 X 2 TABLES) 
Emct Hypothesis Testing for Stratified 2 x 2 Tdles. As with person-time 
data, exact hypothesis testing for stratified 2 X 2 tables can be accom- 
plisted by enumerating all possible outcomes of the number of exposed 
cases across strata. The joint probability of each combination is calculated 
as the product of the hypergeometric probabilities of each 2 X 2 table. 
The exact P-value is determined in the usual way by summing the proba- 
bilities in the tail of the distribution. Each 2 X 2 table is considered to 
have all marginal totals fixed. Using the notation of Table 12-4, we have, 
for the Fisher P-values, 

I for the upper tail, when the effect estimate is greater than the null value, 





kble 12-9. Enumeratton of all possible. combikztions of exposed cases @ 
ge category, with at least four exposed  case.^, for the data: . in . example 12-5 

btal no. ~ i s r r i b i i ~ n  of To'otal ,no.. Distribution of Total no. Distribution of 
!xposed exposed cases exposed exposed cases exposed exposed cases 
:ases by age category cases - by age category cases . by age category 

6 1 2 4 .  ' .. 10 - 10-0 . -  6 ' 6-9 

L 5 12-3 , ' lo.' ' ' 

9 . '  : ' 6  5-1 

15 1 1 4  ;.. 0 , . '8-2 6 - 4-2 
14 12-2 i o  ' 7-3. . 6 .  3-3 

14 11-3 lo : , , :  &-4 . 6  2 4  
14 1 0 - 4 .  , ' .  9 ' . .  9-0 5.' 5-0 

13 12-1 . 9 " 8-1 . , ' . 5  4-1 

13 11-2 . 9,': . 7-2 . . 5 . 3-2 
13 10-3 .' 9 6-3 

. ' . 5  2-3 
. . 

13 9 4  .. , . 9 ,; 5 4  5 1 4  . . . .  
12 12-0 8 .  . W 4 .  4-0 

. . 
1.2 11-1 , '  , ,  . 8 7-1 . 4 .  3-1 

12 10-2 8 . .  6-2 4.  2-2 

12 9-3 ." 8 '  , 5-3 4 1-3 

12 f&4 , .  . 8 ' .  '4-4 4 ,  0-4 

11 11-0 ., 7: . 7-0 . " 

11 10-1 - 7 .  ' 6-1 
11 9-2 7 .  ' 5-2 . .  

4 3  , 11 8-3 , ,, . . 7  , 

11 7 4  . : .7: - .  3 4  . .  

! .  
. . . : 

. . 

which gities as . the . .  test statistic 
: .. . . . , 

N 
. .  . 
. . 

[12-381 
. . . . . . 
. . 

. . .. . 

The above test stadstic, first proposed by Mantel and Haenszel in 1959 
and knij&as the ' ~&te l -~aensze l  test, is ,,widely used in epidemiologic 
analyses o w  appli&tions in which stratified 2. x 2 tables are used. 
It is optimal. in statistical power when the odds' ratio is uniform across 
strara, but it isgenerally . .  . the most useful and'convenient test even if the 
odds ratio varies across strata. The x takes a.value of.zero only when the 
Mantel-Haenszel podledestimator of the odds ratio (formula 12-26) equals 
unity, so that the test statistic may be considered a test of the deparGre of 

from unity. The large-number applicability condition does not refer 
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to individual strata but only to the summations in formula 12-38. Individual 
strata may each have as few as two subjects as long as no marginal total is 
zero; if a marginal total is zero, the stratum has no information. The test 
statistic will be applicable if there is a sufficient number of strata, even 
with sparse data. As we shall see in Chapter 13, the test is the one that 
applies even to the analysis of matched-pair data. 

The null hypothesis of no relation between tolbutamide and death in 
the University Group Diabetes Program for the age-stratified data in Ex- 
ample 12-4 can be evaluated with the Mantel-Haenszel test. The number 
of exposed cases, where "exposed" indicates tolbutamide therapy, is 8 + 
22 = 30. The expected number under the null hypothesis is 

and the variance of the number of exposed cases is 

The test statistic is 

which gives a one-tail P-value of 0.14, or a two-tail P-value of 0.28. Note 
that since tolbutamide has been considered a preventive of the complica- 
tions of diabetes, departures from the null value were expected to occur 
in the direction of preventing death rather than in the opposite direction. 
Therefore, a one-tail P-value should technically be the lower tail of the 
distribution, in the direction of prevention, rather than the upper tail. 
Since the data demonstrate a positive association between tolbutamide 
and death, the one-tail P-value should be 1 - 0.14 or 0.86. The two-tail P- 
value is 0.28 whichever the direction of the prior expectation about de- 
partures from the null value. 

If the Mantel-Haenszel test is applied to the sparse data in Example 12- 
5, the test statistic is 



which gives I!,,, = 0.008,' a result that is con.sidehably different from the 
exact mid-P. value of O;O2:3. The discrepancy:is not surprising in view of 
the small nu&bers and the strlking asymmetry of the .distribution, in which 
more than,half of tl-ie 'probability distribution corresponds to the two most 
extreme outkomes out o:f the 17 passibilities for the,number of exposed 
cases. 

Confdence Znt&-ials f m  Pooled Estimates of Effect 
~onf,dence intervals for jpooled estimates. of effect cail be calculated ex- 
actly from. the ~tattstiaal models adopted. to 'describe the variability of the 
data, or thej; can be calculated ap~roximately from asymptotic formulas. 
The exact calculation$ are exceeditigly cornpli&ted &d increase quickly 
in difficulty & the number of obsefvations.increases. Nevertheless," ready 
availability i f  microcomp'uters now makes it convenient to calculate exact 
corifiderice 'limits foFpocjled effect estimates in many applications, since 
the programming and.memory requirements are not great; the calculation 
time may be long eveil with a computer, but the cost of computer time for 
such appltcations is becoining negligible. In view of 'the relatively large 
effort expended on the"col1ection and processing of epidemiologic data, 
it seems worthwhile to obtain exact confidence limits for sparse data, even 
if stratifiediifthe means to do so are at hand. 'consequently, exact formulas 
for coilfidence limits are presented in the following discussion whenever 
applicable. 

For most situations, on the other hand,. it will be preferable to use the 
straighdOmard and co&nient noiriterative approximate formulas for the 
calculation of confidenc6 limits. The choice of. an approximate formula for 
interval estimation generally depends on .the type of estimator used, 
since the variance approximation depends on hok the point estimate is 
calculated. Thereforej the description of types of ;approximate confidence 
limits is presented according to the types of pooled point estimators de- 
scribed ezlier .in this chqpter. 

CONFIDENCE I N T E R V ~  FOR STRATIFIED PERSONrTIME DATA 
Zmidmke Rate Dllfe-e.. No me,thod exists for obtaining exan confi- 
dence limits, for inciderice'rate difference because the total number 'of 
cases is not independent of the rat? difference. Approximate confidence 
limits can be obtained in several ways according to;the method of point 
estimation. . : . . . . 

DIRECTLY WEIGHTED POINT ESTIMATE. The basic approach relies on the gen. 
era1 statis~ical rule that the variance of a sum of independent random vari- 
ables is the.s"m of the variance of each randoh k i a b l e .  Since the directly 
pooled estimator for incidence rate difference is a sum of random vari- 
ables (the strahm-specific estimates of incidence rate difference) multi- 
plied bjf a constant (the weight for pooling), an overall variance for the 
pooled estimator would be 

, . 
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The weight is squared because any constant multiplier of a random vari- 
able is squared as a multiplier of variance. Each wi is taken as the inverse 
of the variance of lbi in pooling, so the overall variance is 

This variance can be used with the pooled estimator and formula 10-2 to 
compute approximate confidence limits. 

Consider the pooled estimate of incidence rate difference for the data 
in Example 12-2, 5.95 X 10- t r - l .  From equation 12-39, the variance of 
the estimate is approximately the inverse of the sum of the weights, or 

which gives a standard deviation of 

A 90 percent confidence interval for the pooled estimate is obtainable as 

A second method of obtaining approximate confidence limits for inci- 
dence rate difference is to compute test-based limits from the point esti- 
mate and the x from formula 12-33, using formula 10-6. For the data in 
Example 12-2, the x is 3.319, giving, for 90 percent confidence limits, 

a wider result than that obtained above. The test-based approach gives 
wide results because it does not assign an extremely heavy weight to the 
youngest age stratum as the direct approach does; the small numbers in 
the youngest stratum result in a small variance for the incidence rate dif- 
ference estimated fiom that stratum. 



. . . . 
-Mu, U K g ~ ~ O ~ ~  POINT EsTiMAm. The maximum likelihood estima- 

tion of I@D reiu-ires the ,simultaneous maximum 'likelihood estimation of 
the nuisance p$zmeters Ki for each st'ratum. These 'fitted or smoothed 
estimates of %,.Can .be.ised in conjunction with the pooled estimate of 
IRD to get an improved,:estimate of the variance for the i ? c i d e n ~  rate 
difference in &?ch stratum by substituting $ for b,/N,, and + IRD for 
aim,, in formula 1.2-1.Tfie improvedvaciance estimate. is 

. . .  . . 

The overalJ variance of 'the pooled maximum likelihood estimate can be 
obtained by taking , ' . , . . . .  . 

. . 

. . 
which is the reciproba! of the variance in  f6rmula 12-40; these weights are 
then usedd to get the, overall variance.as in equation 12-39. 

For the data in ~&afn~le 12-2, the weights estimated according to for- 
mula 1.2-41 are, from: the .youngest to the oldest age categories, 57.6 x 
10vr2, 4.9 X l09r2f 0.7. X lo$', 02 x 10vr2, and 0.2 x 10vr2. The sum 
of .these weights is .64.1' . x . 10vr2, and therefore. the variance is taken as 

. . . . 

which:is,ciose to the value of 1.53 X 10-'jr" gbtained from the directly 
pooled weights. A 90 percent confidence internal for the maximum like- 
lihood estimate of 5.91, 'X ~ O - ~ y r -  is.obtainec1 . . as 

which is virtually identical to the limits obtained from the weighs used in 
direct pooling. 

. .  r 

Incidmce Rate ~ a t i o .  Confidence limits for the pooled estimate of the 
ratio of i ic idence . r i t~ ,  from stratified 'data can be obtained by exact com- 
putation or by approkimate methods. The exact computation requires it- 
erative calculation of a complicated sum of probabilities and consequently 
requires .a com$ter. : 
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EXACT CONFIDENCE LIMITS. Obtaining the exact limits necessitates express- 
ing the tail probability for the observations in terms of the incidence rate 
ratio (IRR). In stratum i, let the probability that a case is exposed be ui. 
From formula 11-9 or 11-10 the following relation can be derived: 

Exact Fisher limits for IRR and can be determined from formula 12- 
42 and the following modification of formula 12-29: 

and 

in which k, represents the number of exposed cases in stratum i, k = Zk,, 
a = Zai, and M, = ZM,,. The value for IRR that satisfies equations 12-42 
and 12-43 corresponds to the Fisher exact lower confidence bound; using 
equation 12-44 instead of 12-43 gives the Fisher exact upper confidence 
bound. Mid-P exact limits are obtainable by allotting only half the proba- 
bility for k = a into the tail: 

gives the lower bound, and substituting 1 - a/2 for 4 2  will give the upper 
bound. 

With the help of a computer, exact 90 percent confidence limits for the 
incidence rate ratio using the data in example 12-6 can be calculated. The 
Fisher-type 90 percent interval is 2.43 to 18.0, and the mid-P 90 percent 
interval is 2.71 to 16.0. 

APPROXIMATE CONFIDENCE LIMITS. The formulation of the approximate lim- 
its for the three different types of point estimates are as follows: 

1. Directly Weighted Point Estimate. The variance of the directly pooled 
incidence rate ratio should be estimated after a logarithmic transforma- 



. , . . 

, . 
. . 

' .  , . . 
, . .  

tion, so thatthe limits canbe  set pn the logarith-mic scale. The variance 
formula resembles 12-39: .. . .  . 

where . . :: " 

and . . . . . 
. . 

me dffedy pooled point eStimate'.is . . 1.50, giving a 90 percent confidence 

2. ~&uk ~ i k e l o o d  Point ~s t iW& The. asymptotically efficient maxi- 
mum likelihood kirnator of theincidence rate ratio has a variance esti- 
mate of ,, . . .  

, .  , . , . . . 

n is necessary to divide the above by (I&)' to approximate the variance 
of 1n(1&): 

The above formil; is identical to formula 12-46 if a ih i  is replaced by 
(I&)N,JN, in thk weight given in formula 12-47. 

For the data i i  ~x&nple 12-3, the maximuni likelihood estimate of IRR 
is 1.50, and the ,&iance of-ln(1a) is ' , 
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which gives a 90 percent confidence interval of 

This interval estimate is virtually identical to that obtained by the directly 
weighted approach. 

For the data in Example 12-6, the approximate 90 percent confidence 
interval around the maximum likelihood estimate of IRR. which is 6 GG ;. 

- .,,, 1.3 

2.77 to 15.5, which agrees quite well with the 90 perceni exact mid-P in- 
terval of 2.71 to 16.0. 

3. Mantel-Haenszel Point Estimate. The Mantel-Haenszel estimator for in- 
cidence rate ratio (formula 12-27) can be considered a weighted average 
of stratum-specific estimates of the incidence rate ratio with weights equal 
to b,N,,/T, and the approximate confidence limits calculated on this basis. 
A more stable formula for the variance, however, can be obtained by con- 
sidering each a, and b, to be an independent Poisson variate [Tarone, 19811, 
or by considering each a, to be an independent binomial variate condi- 
tional on N,, [Greenland and Robins, 19851 The latter approach yields 

For Example 12-3, the above formula gives ~ar[ln(~h$,,,)] = 0.019, the 
same as the result obtained using the directly weighted procedure above. 
The resulting confidence interval, 1.20-1.88, is likewise identical to the 
interval for the directly weighted point estimate. 

Test-based limits for the data in Example 12-3 can also be obtained for 
the Mantel-Haenszel point estimate (1.50) and the x statistic from formula 
12-33 (2.94): 

These test-based limits are in close agreement with the results obtained 
from the other approaches. Test-based limits can also be obtained for the 
directly weighted point estimate. 

For the data in Example 12-6, for which I&,,, = 7.30, the variance 



- i 
. . . . 
. . 

. .  . . . . 

For the data in ~xamble. .12-6, for which I&, = 7.30, the variance 
calculated from formula:l2-50 is 0.344, which gives a 90 percent confi- 
dence idte-&al:for I& 'of 2.8 to 19. For.the same data, the test-based 90 
percent confidence limits can be calculatkd from the x of 3.98 as . . . .  :. 

. . 
: ' 7.30'1 ?1.@5~.98) = .3,2 17 ' 

. . 

considering the smqll numbers involved,. both of these approximate in- 
tervals are.@ reasonably good agreement with the mid-P exact 90 percent 
confidence interval ~f 2.7:td. 16. 

CONFIDENCE INTERVALS FOR STRATIFIED CUMULATIVE INCIDENCE DATA 
Risk Dflwence. Because of the nuisance parameter k,, in each stratum, no 
approach exists for obtaining exact confidence limits for a pooled risk 
difference or prevalence difference. Approximate confidence limits can be 
obtained by methods andogous to those described above for incidence 
rate data. 

DIRECTLY.-IGHTED POINT ESTIMATE. The variance of the pooled risk dif- 
ference can bk expressed in terms of the stratum-specific weights in the 
same way as that used for incidence rate data (formula 12-39) 

where the weights are those given in formula 12-7. 

. .  . 
, . .N?iNi 

W i  ' Nz,a,(Nli - a,) . + N : ~ ~ , ( N ~ ,  . - bi) 

The square root of the above variance estimate in formula 12-51 can be 
used wlth formula 10-2 to obtaln approximate confidence limits. For Ex- 
ample 12-4, the stratum-specific weights are 1,009 and 280 (Table 12-5), so 
that Zw, = 1,289 and the variance estimate is 1/1,289 = 0.000776. The 
square root is 0.028, so that a 90 percent confidence interval estimate, 
using the weighted point estimate of 0.034, would be 

An alternative is to use test-based confidence limits (formula 10-6), based 
on the x from formula 12-38. For the data in Example 12-4, the x is 1.09 
and the test-based co&dence interval is 

which $ slightly wid& than the result using the estimates of stratum-spe- 
cific variance. 

STRATIFIED ANALYSIS 

MAXIMUM LIKELIHOOD POINT ESTIMATE. Again, the maximum likelihood so- 
lutions for the pooled estimate & and the unexposed risk hi in each 
stratum can be used to improve the variance estimation for the rate dfler- 
ence in each stratum. The improved estimates can be obtained by substi- 
tuting hi for bJNOi and hi + & for aimli; these substitutions can be made 
directly into formula 12-7, giving the improved weights 

which can be used in formula 12-51 to get a variance estimate for the 
maximum likelihood estimate of RD. 

For the data in Example 12-4, the weights calculated from formula 12- 
52 are 1,008 and 280 for strata 1 and 2, respectively, which gives a variance 
of 1/(1,008 + 280) = 0.000776. Note that the weights and variance esti- 
mate are nearly identical to the results obtained from the noniterative di- 
rectly weighted procedure because the number of observations within 
each stratum is large. The resulting 90 percent confidence interval is 
- 0.012, 0.080 as it was with the directly weighted approach. 

Risk Ratio. Exact confidence limits for risk ratio are not calculable, since 
the likelihood equation contains the nuisance parameters %, for each stra- 
tum i. If risks are small, however, the odds ratio measure may be used to 
approximate the risk ratio. Since the odds ratio can be estimated without 
nuisance parameters; the likelihood can be expressed conditionally on all 
the margins of the 2 x 2 table, allowing the calculation of exact confi- 
dence limits for the pooled odds ratio. This procedure is described below 
for case-control data. 

Approximate confidence limits for pooled estimates of the risk ratio can 
be obtained for directly weighted, Mantel-Haenszel, or maximum likeli- 
hood point estimators. 

D I R E ~ Y  WEIGHTED POINT ESTIMATE. AS usual, approximate confidence 
limits for ratio measures should be set on the logarithmic scale. Formulas 
12-46 and 12-10 can be used to obtain the variance of the logarithm of the 
pooled risk ratio estimate. For the data in Example 12-4, the stratum-spe- 
cific weights, given in Table 12-6, are 3.25 and 11.6. The Zw, = 14.85 and 
the variance of the logarithmically transformed point estimate is 1A4.85 
= 0.0673. The weighted average of the logarithms of the stratum-specific 
estimates of the risk ratio is 0.270, which is the antilogarithm of the pooled 
estimate of the risk ratio, 1.31. Approximate 90 percent confidence limits 
can be set as follows: 



-MUM LIKELIHOOD POINT ESTIMATE. ~oimul'a 12-10 can be improved by 
substituting N,,%,@ for,& and ~ ~ ~ l & ~  f o r b ,  where &, and & are the fitted 
maximum likelihood estimates. The improved'weights are 

. : 

which may be used in formila 12-46 to bet a n  estimate for the pooled 
variance. For ~xam~le ' l .2 -4 ,  the maximum 1,ikelikood point estimate of the 
risk ratio is 1.31; l&., =. 0:0$4, k2 = 0.1781, and the improved weights 
are 3.44 and ''11.4. The Hw, for these improved weights is 14.83, and the 
variance of the. 1ogarithmi.cally transformed point estimate is 1/14.83 = 
0.0674, .neiry the same'yesult as that obtained from the stratum-specific 
variance estimates. The 90 percent confidence . interval . , is obtained on the 

log scale as . . 

and the actual limits are 
. . . . 

'e-.0.156 e0.698 = 0,86,,2,0 , 
. . , 

, . 

. .  . 

MAN&-H*ENS~EL PO& ~ S - ~ ~ W T E .  The Mantel-Haenszel point estimator of 
the risk rzitib from Eoll'ow-up data with.count denominators takes the same 
form as the point estimator'for the rate ratio 'with person-time denomi- 
nators:(formula 12-27):.The'vtiriance for the logarithm of RR,, is approx- 
imately [Greenland and .Robins, 19851 

. 

F O ~  the data, in wample.'12-4, the: abone -ression gives var[ln(BMH)1 
= 0.0671; coupled with the point estimate . . of RR, = 1.33, the approxi- 
mate 9D percent confidence limits are . . 

. . . . 
. . .  

. ' ' : exp(ln(l:33) ? 1.645' v m )  .=. 0.87, 2.0 
.. . 

which are nearly identical tb the limits calcutated foi the directly weighted 
point estimate and the' m i m u m  likelihood estimate. 

. . 
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CONFIDENCE INTERVALS FOR THE ODDS RATIO FROM STRATIFIED CASE- 
CONTROL (OR PREVALENCE) DATA 

Confidence limits for the pooled estimate of the odds ratio from stratified 
2 x 2 tables can be obtained by exact computation or by approximate 
methods. The exact computation is exceedingly complex for any but the 
most sparse data and requires a computer program [Thomas, 19751. 

Exact Confidence Limits. The expression for the probability of the obser- 
vations in a single set of N 2 x 2 tables, conditional on the marginal totals 
for each 2 x 2 table and the odds ratio, is 

Tail probabilities for exact confidence limits can be calculated by taking 
the sum of the probabilities calculated in expression 12-55 for all possible 
values of Za, equal to or greater than the actual value observed, and for 
all possible combinations of cell frequencies that yield a given value for 
Za,. To get mid-P exact limits, only one-half the probability determined by 
expression 12-55 should be added to the summation for every possible 
combination in which Za, equals the observed value. The exact lower con- 
fidence limit is obtained by determining through trial and error the value 
of the odds ratio that produces an upper-tail probability of d 2  (a equals 
the complement of the desired confidence level). The upper confidence 
limit is obtainable by summing over all values of Za, that are less than or  
equal to the observed value and finding the value of the odds ratio that 
gives a lower-tail probability of d 2 .  

For the data in Example 12-5, the observed value for Za, is 4; the 55 
combinations for which Ha, 2 4  are listed in Table 12-9. Using expression 
12-55 to determine the contributions to the tail probability, 90 percent 
exact mid-P confidence limits are found to be 1.30,9.78. The correspond- 
ing Fisher limits are 1.09, 10.9. 

Approximate Confidence Limifs.  DIRE^ WEIGHTED POINT ESTIMATE. For- 
mulas 12-46 and 12-13 can be used to obtain approximate confidence lim- 
its for the directly weighted pooled estimate of the odds ratio. As usual 
with a ratio measure, the limits are first set on the logarithmic scale and 
then translated back to the original scale. For the data in Example 12-5, 
using the weights indicated in Table 12-7, the sum of the weights is 2.85, 



nd the estimated variance of the logarithm of the pooled odds ratio is 1/ 
.85 = 0.351. Approximate 90 percent confidence limits are 

' ex~[ln(3.82)'2 1.645 a] = i,44,10.1., 
. 

. . 
. . 

ihich diffe-r wmewhBt .from.thi.exact limits, butthe discrep& is toler- 
ble, especially consideririg,:the width of the interval. In view ,of the small 
[umber of cases in the anal);sis, the approximatidn ,seems reasonably 
ood. 

MAXMUM L I . ~ L I H ~ D  POINT EST~MATE. With maximum likelihood point.es- 
imation, fitted cell .entries in'the 2'  x 2 tables can be used to derive an 
:$timate ofthe variance.  he va'iues for i,, bi, ti, a*. ai that satisfy equation 
2-23 or ecjuati6ri 12-24 and the. marginal totalL of each 2 x 2 table can 
,e substituted in equation 12-13': . .: . 

. . 
. .  . 

. . .  
. . 

:he variance of the logarithmically transformed odds ratio point estimate 
s l/Cw,. 

. . 

For the data in Example 12-5, the cell frequencies for the unconditional 
naximum likelihdod estimate, satisfying equation 12-24, aregiven in Table 
12-10. From these fitted ~e l l f re~uencies ,  w, = '.2.3.1 and w, = 0.54, which 
;ives Cw, = 2.85 arid a variance of 0.351. Appro*mate 90 percent confi- 
ience limits are . , ' 

. .. .. . . . 

Jsing equation 12-23 rxher  than 12-24 to calc615te the fitted frequencies 
~ccording to the c.onditiona1 likelihood is considerably more difficult; for 
hese data the a cells For -the two.strata using equation 12-23 are 3.238 and 
1.762, which are nearly idegticai to the unconditional. values in Table 12- 
LO and produce the same approximate confidence interval. Because the 
:omputation necessary to get thk tonditional fitted cell entries from the 
terative soluti.on of equations: .12-22 and 12-23'is ~difficult,it is easier to 
:alculate the exact confidence limits instead. ' . , , 

Another approach, which, was proposed initially by Cornfield [I9561 for 
I single 2 x 2 t'ablk, was extended by Gart [1,971] for a set of 2 x 2 tables. 
rhe approximate lower limit is the' solutiqn to the equation. 
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Table 12-10. Fitted maximum likelihood cell enn-ies for the 
h t a  in example 12-5;pooled estimate of odds ratio 6 3.79 

Maternal age < 35 Maternal age 35 + 
Spermicide use Spermicide use 

+ - Total + - Total 

Down syndrome 3.247 8.753 12 0.753 3.247 4 
Control 103.753 1059.247 1163 5.247 85.753 91 

Total 107 1068 1175 6 89 95 

where E, is the expected value of ai conditional on the value of the odds 
ratio at the lower boundary of the confidence interval, 

Z,, is the value of the standard normal statistic that corresponds to the 
desired level of confidence. and 

To obtain the upper bound to the interval, Z,, is replaced by -Z,,,. 
Equation 12-57 must be solved iteratively for each limit. In principle this 
method has the advantage of approximating the variance using the cell 
frequencies that correspond to the confidence limit value of the odds ratio 
rather than the point estimate. 

For the data in Example 12-5, the fitted cell frequencies for the a cell 
using equation 12-57 to obtain the lower limit of a 90 percent confidence 
interval are 1.542 for the young stratum and 0.356 for the older stratum; 
note that these do not add to Ca, = 4 as in point estimation, though the 
fitted cell frequencies within each table still conform to the marginal totals 
of the individual table. The lower confidence limit satisfying equation 12- 
57 is 1.48. For the upper limit, a separate iterative solution is required to 
get the fitted frequencies for the a cell of 5.772 and 1.370 for the young 
and old strata, respectively. The upper confidence limit corresponding to 
these values is 9.72. 

MANTEL-HAENSZEL POINT ESTIMATE. The statistical properties of the Mantel- 
Haenszel estimator of the odds ratio have been elaborated under two dif- 
ferent limiting situations: Either the number of subjects per stratum be- 
comes large, or the number of strata becomes large with few subjects per 
stratum [Hauck, 1979; Breslow, 19811. Variance formulas have been pro- 



. . 

posed for the   ant el-~aenszel odds ratio estimator for each of these lim- 
idng situations; Breslow and L i ~ g  [1982] proposed weighting the two for- 
mulas to &rive a .combined formula that is generally applicable. More 
recently, Robins arid coauthors:[1986.] have developed a single variance 
formula that should be generdly applicable for the   ant el-Haenszel odds 

, . . . 

ratio estimator; ,. 

where . . . . 

. . 
. .  . . p i : =  (a, + d,)n, . , ' 

Qi .= (b, + ci)/Tr 
' - . R, .= aid,/Ti . - ' 

. . and . . .  
, . . . S, = bici/Ti- . . :, ' 

. . . . 

For the data i n . E m p l e  l2:5, the above formula gives an estimated 
variance of 0.349, whi.ch yie1ds.a 90 percent confidence interval of 1.43 to 
10.0, a resilt that is nkarl? identical to the.limits . . for the directly weighted 
and maximum likelihood point estimates. ' . , 

Test-based 90percent confidence limits for'the data in Example 12-5 are 
. . 

obtained as 
. . 

3,78("1.@5/2.41) = 1.53, 9.37 
. . 

which are narkwer than the limits obtaided from formula 12-58. The test- 
based approach for approximate cofidence limits ran also be used with 
the directly weighted point estimate. . . 

VALUATION DES,CFWIlON OF EFFECT MODIFICATlON 
The techniques for deriving a pooled estimate of an effect that is uniform 
across categories of a third variable should 'not ,be applied if it appears 
unreasonable toassume that the effekt is indeed uniform. When an effect 
is believed to vary acr'oss'strata--that is, when effect modification is pre- 
sumed to exist-the focus of data analysis apd presentation should shift 
from the control of confounding to a description of how the effect is mod- 
ified by the stratificadon factor. It is imporiant to.realize.that confounding, 
when preseqk is manifest only in thecrudemeasure of effect when effect 
modification. is present in'the &ta, none &'the . . options for describing the 
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effect involves the crude measure, so the issue of confounding is 
superseded by the description of effect modification. Determining 
whether effect modification is present in the data is clearly an important 
decision that should be addressed in every stratified analysis. 

It is important to inject a note of caution about the methodology for 
assessing effect modification. The evaluation of effect modification often 
appears to rest on a seemingly mechanical application of statistical tests. 
The epidemiologic issues of interaction underlying the statistical evalua- 
tion of effect modification are subtle and can become muddled in a purely 
mechanical approach. These issues are discussed in Chapter 15, which 
supplies an epidemiologic perspective for the statistical methods de- 
scribed in the following section. 

In addition to the epidemiologic considerations, there are statistical con- 
siderations that warrant a cautious approach to the statistical evaluation of 
effect modification. The more general statistical tests for effect modifica- 
tion have low power because the alternatives to the null hypothesis that 
they test are not very specific. As a result, "nonsignificant" P-values are 
even more difficult to interpret correctly. Furthermore, given the many 
influences of selection biases, misclassification, confounding, and other 
biases as well as causal effects, it is seldom that one would expect any 
effect to be precisely uniform for any scale of measurement. Thus, the null 
hypothesis of a uniform effect often amounts to no more than a statistical 
contrivance that at best should be accepted as only an approximation to 
reality and generally should be regarded with skepticism. 

Evaluation of Effect Modification 
The first step in evaluating effect modification is to inspect the stratum- 
specific estimates of effect. While some random variability in stratum-spe- 
cific estimates is to be expected even when the underlying parameter is 
uniform, excessive variability or obvious nonrandom patterns of variation 
may be evident on inspection. The investigator's judgment about effect 
modification should not be limited to the appearance of the data in hand; 
when it is available, outside knowledge from previous studies or more 
general biologic insight should be integrated into the evaluation process. 

Typically, however, outside knowledge is scant, and investigators will 
desire a more formal statistical evaluation of the extent to which the vari- 
ability of stratum-specific estimates of effect is consistent with purely ran- 
dom behavior. Toward this end, a variety of statistical tests can be applied. 
Part of the variety derives from the fact that ratio and difference measures 
require separate evaluations for effect modification, since uniformity of the 
ratio measure usually implies effect modification of the difference measure 
and vice versa. The use of statistical tests has been discussed in Chapter 9, 
especially with regard to assessing "statistical significance," which trivial- 
izes the interpretation of otherwise meaningful measures. The use of sig- 
nificance tests is more defensible, however, when an immediate decision 



. .  . 

. . 

rests on the outcome df a single statistical evaluation. Such may be the 
case if an investigator is attempting to dacicie.whether the extent of vari- 
ability in a set of stratum-specific estimates of effect is consistent with the 
random vari'itidn of a uniforin effect or, ialternati"ely, +hether there is ef- 
fect modific,ation in  the -data. . . . 

~tat is t~cd'  tests of the.null .hypothesis that .the effect: is uniform (i.e., ex- 
hibits no effect modification) generally are'of two types, one based on a 
directly pooied.esti-mate of .uniform effect arid the other on a maximum 
likelihood estimate. : . 

FOT the directly pboled estimates, the basic.principle of the test is to 
c o m p m  each stra~urn~s~ecific estimate %ith the pooled estimate, square 
the differF;llce, and divide by the variance. of the stratum-specific effect 
estimate. The resulting is summed over all strata, yielding a chi- 
square statistjc With degrees of freedoin equal to one less than the number 
of strata: . . 

. . 

. . 

For diffe-rent measures of 'effect, the above formula can Fe applied di- 
rectly, with k, denotihgthe stratum-*ecific difference and R denoting the 
direccly pooled estimate of effect.., The Strafum-specific variances in the 
denom'inator.are the reciprocals of the weights used to obtain the pooled 
estimate. For ratio measures of effect, it is desirable to use a logarithmic 
transformation: . . 

. . 

in which i(t now denotes the srratum-specific ratio estimate of effect and fi 
denotes the directly pooled ratio measure.. 

As an example of the application of the above test for effect modification 
of the incidence rate difference, consider. the s'tratified effect estimates pre- 
sented in Table 12-2, The directly po~led:estimate of the incidence rate 
difference is 5.95 x ,lo-.+-'. Using the stratum-specific point estimates 
and their variances in Table 12-2, formula 12-59 gives a x2 of 8.38 with four 
degrees of freed6m.Fro.m. tables of the chi-square distribution, the cor- 
responding two-tail P-vdue is 0.08, which indicates the degree of consis- 
tency of the data in Example 12-2 with the,hypotheiis that the incidence 
rate difference is coktant across age categories: 

For an illustration Of formula 12-60 used to evaluate the heterogeneity 
of a ratio measure of effect, considerthe daq in.Example 12-5 and the 
ca1culatidfis'derived:from !them in '~able  12-7. The pooled estimate of the 

. , 

. . . , 
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odds ratio is 3.8. Formula 12-60 applied to the stratum-specific estimates 
in Table 12-7 gives a x2 with one degree of freedom of 0.14, which corre- 
sponds to a two-tail P-value of 0.7, showing that the data are consistent 
with the hypothesis of a uniform odds ratio. 

The chi-square tests given in formulas 12-59 and 12-60, like the directly 
weighted pooled estimators on which they are based, depend on an as- 
sumption of large numbers of observations within strata. With small fre- 
quencies, the tests are unreliable. With zero cell frequencies, it may not 
even be possible to obtain stratum-specific variance or effect estimates. An 
alternative approach is to use a statistical test based on the maximum likeli- 
hood estimation of a uniform effect measure. This approach, termed a 
likelihood-ratio test, constructs the test statistic from a comparison of the 
likelihood equations for the data under two hypotheses: One hypothesis 
is that the effect is uniform, and the other is that the effect acquires a 
different value in each stratum. Although the likelihood-ratio test is also 
asymptotic, the requirement for large numbers within each stratum is not 
as stringent as it is in formulas 12-59 and 12-60; the test can be used even 
when there are small cell frequencies in the data. With zero cell frequen- 
cies the test fails, although it can be modified slightly by substituting a 
small positive value for zero to get a reasonably accurate result in many 
cases. The tests require previous calculation of the maximum likelihood 
estimate of a uniform effect, but otherwise require no iteration and involve 
only simple computation. The likelihood-ratio approach should give more 
accurate results in testing for effect modification when the data are rela- 
tively sparse. 

The formulation of the likelihood-ratio tests for effect modification de- 
pends on the effect measure and the type of data under consideration. For 
incidence rate difference (IRD), the test is 

Note that the pooled maximum likelihood estimate of IRD is part of the 
test formula, as is the maximum likelihood estimate of I& in each stratum. 

: The estimates of IR, must be obtained in the estimation of IRD, so no 
additional estimation beyond maximum likelihood point estimation is re- 
quired to apply formula 12-61. 

For the data in Example 12-2, the pooled maximum likelihood estimate 
of the incidence rate difference is 5.91 x 10-%r-'; stratum-specific max- 
imum likelihood estimates of the incidence among nonsmokers are, from 
the youngest to the oldest, 8.406 X 10-5yr-1, 1.640 X lo-yr-', 6.303 X 
lo-yr-', 1.352 x 10-2yr-', and 1.917 X 10-2yr-'. Using these estimates 
in formula 12-61 gives a x2 value of 7.4 with four degrees of freedom, 



. . . . . . 
. . 

. . 

which corie;ponds to a two-tail P-value of 0~12. This value compares with 
the result of 0.08 from formula 12-59. 

For iilcidence . . rate ratio, the likelihood r'aao . . test of uniformity is 
, . 

The forniula requires .the haximum likelihood,estirnate of IRR, but no 
nuisance p$arnecers i re  involved. . 

For the dam'in ~ x a n i ~ l e  12-2, the maximum likelihood estimate of IRR 
is 1.42; the chi-square test in.formula 12-62 gives a value of 12.1 with four 
degrees of freedom; which corresponds t0.a two-tail P-value of 0.016. 
Thus, these ,data are even less consistent with a uniform incidence rate 
ratio than i$ey are with a uniform incidence rate difference. For the inci- 
dence rat6 ratio the 'stratum-to-stratum pittern .of variation is extremely 
regular; decreaSing .steadily from the youngest to. the oldest age category. 
The regular patternof vaiiation casts additional doubt on thevalidity of 
the assumetion of a urhform incidence rate ratio. 

For cumulative incidence difference, the likelihood-ratio test analogous . . 
to forriinla 12-61 is '. . ,' 

which again involves not only the maximum li,kelihood estimate of the 
risk difference but also the nuisance parameters {hi). ' 

For the.data in Example 12-4, the maximum likelihood estimate of the 
risk di.&rence is 0.0343 under the uniformity assumption. Stratum-specific 
maximum~likelihood.es~mates of the risk among unexposed persons are 
0.0415 -md'.0.1892 in the young and old spata, respectively. The two stra- 
tum-specific estimates of risk difference are 0.0338 .and 0.0363, showing 
extreniely liixle variation. ~ c c o r d i n ~ i ~ ,  the x2 from formula 12-63 is 0.001 
with one degree of freedom, corresp6ndihg to a P-value d 0:97; this in- 
dicates .tRe.extraordiri&rily high consistency between the data and the sta- 
tistical hypothesis of a uniform risk difference'in these two age categories. 

For cumulative incidence ratio, the likelihood-ratio test of uniformity is 
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which differs notably from the corresponding test for incidence rate ratio 
(formula 12-62). The difference derives from the fact that formula 12-62 is 
developed from a likelihood expression that is conditional on the total 
number of cases in each stratum, thereby eliminating the nuisance param- 
eters. For cumulative incidence data, however, it is not correct to condition 
on the total number of cases in a stratum, and therefore an unconditional 
likelihood expression must be used; one consequence is that the estimates 
of the nuisance parameters {R,,,) are part of the test statistic. 

The data in Example 12-5 can be evaluated for uniformity of the risk 
ratio. The maximum likelihood estimate is 1.311, based on the assumption 
of uniformity. The nuisance parameter estimates (i.e., maximum likeli- 
hood estimates of the risk among unexposed for each stratum) are 0.0504 
and 0.1781 in the younger and older categories, respectively The one de- 
gree of freedom x2 statistic from formula 12-64 is 0.452, which corre- 
sponds to a P-value of 0.5. Thus, the data are reasonably consistent with a 
uniform risk ratio despite the apparent variation in stratum-specific esti- 
mates of the risk ratio (1.8 and 1.2). 

For case-control (or prevalence) data, the likelihood ratio test of uni- 
formity of the odds ratio is 

where the fitted cell frequencies $, B,, e,, and di are the values satisfying 
equation 12-24, 

A i d i  
OR,, = 77c 

bici 

For the data in Example 12-5, the (unconditional) maximum likelihood 
estimate of the odds ratio is 3.79. The fitted cell frequencies for the a cell 
are 3.2473 and 0.7527 for the younger and older strata, respectively; the 
other fitted cell frequencies are obtained from the margins of each 2 X 2 
table by subtraction. Formula 12-65 yields a chi-square of 0.13 with one 
degree of freedom, which corresponds to a two-tail P-value of 0.7. These 
results are nearly identical to those obtained with formula 12-60. 

Another test of uniformity of the odds ratio over a set of 2 x 2 tables 



was proposed by Zelen [1971]. Zelen'stest, calls for summing the chi- 
square calcusated for each.2 x 2 table (thesquare of formula 11-6 or 11- 
8) and subtracting fr& the sum the square .of the Mantel-Haenszel chi- 
square (formula 12-38): Zelen's procedure, however, is not generally valid; 
counterexamples have been cited in which a uniform odds ratio gives a 
large chi-square for Zelen's test and a zero chi-square results when stra- 
tum-specific odds ratios differ considerably [Mantel et al., 19771 This p m  
cedure is not recommended. 

None of rhk tests .considered in this section takes into account the pat- 
tern of variability of the effect estimates across strata. The chi-square values 
calculated in the applic&on of these tests i re  independent of any ordering 
of the strati; If 'the strata were reordered, the test result would not differ, 
In principle, it is possible to construct more powerful tests directed at 
speciflc patkrns of variation of the effect estimates over the strata as an 
alternative to uniformity. Todo so, it would be necessary to postulate the 
panern. For example,, the Jikelihood teq of uniformity of the incidence 
rate ratio for the data given in ~xample  12:2 produces a P-value of 0.016; 
the egedt estimares decline nearly exponentially,, however, so that a more 
powerful test of uniformity can be constructed using an exponential curve 
as the alternative patternof variation. With this more, powerful approach, 
a substa&tially smallei P-value results [~ietr inen and Neff, 19711. The im- 
proved reit takes into account the declining of the incidence rate 
ratio estiinites w ~ t h  increasing age. . 

, 

iption 0f ~ f f ~ c t  ~od@cation 
. . 

When the stratum-~~ecinc'estimates vary enough to indicate that there is 
likely' to bd variation:iI! the underlying effecr, it is improper to present 
efther the crude estimate'& effect or a.,pooled estimate. The pooled esti- 
mate of effect is a weighted average of the stratum-specific estimates, but 
the weigh& i re  inte*ded to promote precision. and therefore reflect the 
number of observations in individual'strata. The pooled estimate is con- 
sequentlyyp6tentially misleading unless it is reasonable to assume that the 
effect estimates vary only randomly around a uniform effect value. If the 
effect irself.%ies over strata, then the value of the pooled estimate calcu- 
lated on . he . asshpt ibn  of uniformity will depend on the distribution of 
sub~ects over strata in a way that is peculiar to the individual study and 
difficult to specify f n e t ~ ~ d e  estimateis a worse alternative, since it does 
not even represent a 6eighted average of the stratum-specific estimates. 

How, then, shouldthe effect be described when the effect is judged to 
vary over swam? One ?imple approach is to present the estimates sepa- 
rately for  each stratum:The study ,can be considered a set of individual 
substudies'that are reported separately. Point estimates and confidence 
intervals can. be reported for each stratum. This approach is often used 
when eff& hodlfication occurs for a dichotomous. factor such as sex. 
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STANDARDIZED EFFECT ESTIMATES 

The drawback of reporting the results separately by stratum is that the 
overall body of data becomes divided, resulting in less precise estimates 
of effect in individual strata. If the stratification variable has many cate- 
gories, there will be comparatively little precision for each of the several 
estimates. Furthermore, a set of many estimates of effect may offer a more 
detailed description of the effect than would a summary of the overall 
effect in a single number, but it also provides much less cogency in its 
detailed description. The entire purpose of data analysis is to reduce in- 
herently complex information into a less complex and therefore more 
readily interpretable form. With this goal in mind, it is appropriate to con- 
sider whether there is not some meaningful way in which a set of stratum- 
specific estimates might be reduced into a single overall measure. The 
difficulty with the pooled estimate is the unpredictable or  unspecifiable 
way in which it combines the information over strata. A reasonable way to 
avoid this difficulty is to combine the information over the strata using a 
specified system of weights-that is, to standardize the component rates 
of the effect measure to a standard distribution for the stratification vari- 
able. The advantage of standardization is that the weighting of stratum- 
specific information is easily specified, allowing the averaging of different 
values of the effect estimate from different strata to occur in a theoretically 
replicable and epidemiologically meaningful way. 

Investigators may occasionally be cautioned to avoid standardization of 
effect estimates if there is "excessive" variability in the estimates over the 
strata, since that variability will be obscured in the overall estimate. For 
example, if effect estimates in two strata point in opposite directions, let 
us say indicating prevention for males and causation for females, a stan- 
dardized estimate could indicate prevention, causation, or no effect de- 
pending on the choice of standard. This problem exists, however, for any 
single summary measure. A standardized summary measure at least has 
the advantage that it weights the divergent estimates in a definable way It 
is incorrect to make uniformity of effect a prerequisite for standardization, 
with uniformity, pooling is preferable to standardization to optimize pre- 
cision. Standardization is useful principally when the effect does vary over 
strata. Of course, it is always true that a summary measure can obscure an 
underlying variability. If the variability is extreme, as it often is when effect 
estimates point in opposite directions, it may be reasonable to report the 
stratum-specific details. In other instances, the investigator may properly 
decide that a summary result will convey enough of the intended message 
without obfuscating important deiail to permit standardization. After all, 
there is no limit to the process of separating data into levels of detail; even 
small and apparently homogeneous subgroups represent the aggregate ex- 
perience of some individuals who experienced the effect of interest and 
others who did not. 



ble 12-11. Incidwlce rate ratio estimak of 
ronary death for smokers relative to n o m o k m  
nong Britkh male doctors, by age (data of example 12-2) 

Exact (mid?) 90 

F point &rimate of IRR." perceht confidence interval* 
.. . 

j-44 5.74 . '  . : .. .. 1.91; .24 

5-54 , 2.14. 1.32, 3.63 . 

544 1.4'7 1.06,'2.07 ' ' 

5-74 1.36 . . ' 0.98, 1.91 . ' 

j-84 ' 0.90 . ... -0.65, 1.2s 
~. ~ . . 

:onfidence intervals cilculated fbrrnulas 11-3. and 11-10: . . . 

Consider againthe incidence .&? data given, in Example 12-2. It is ap- 
,arent that the incidence rat& ratio is not uniform over age, declining from 
m esrimated valiie .of 5.7 in the youngest sttatum to just below unity in the 
~ldest. A reason:able approach to the presen~tion of the& data might be 
o show the s ~ ~ ~ e c i f i c r e s u l ~  rather than any summary figure (Table 
12-11). On the other hand.; ddespite the interesting vaeability apparent in 
h e  data., a siilg1.e summary- estimate might be desired and could be de- 
:ended. In that a standardized estimate of incidence rateratio should 
oe used; one reasonable choice for a standard would be the, person-year 
distribution of ,smoking ~ritish' male doctors,. . which . would lead to the 

. . 
SMR: . . . . . ._. . . 

Naturally, a differekt choice of standard would aEea the repbrted estimate 
of effect. For orample, if each age categoq were assigned an equal weight, 
the resulting smdardized rate ratio would be .  .. 

. . . . 

The relatively great difference in the above two effect estimates reflects 
only the differenrchbice of weights involved in the selection of a standard. 
The second'appr6ach assigns.relatively larger weights to :the older age 
categories in which the effect is small. 

. 

Standardized estimates,, like pooled estimates, .are always weighted av- 
erages of stratum-specific effect estimates. For difference measures of ef- . . 

. . . . 
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fect, the weighting is the same as the standard weights, since the standard- 
ized rate difference may be expressed as 

where wi is the standard weight for category i, Rli is the rate among ex- 
posed in stratum i, ki is the rate among unexposed in stratum i, and @), 
is the estimate of rate difference in stratum i. For rate ratio measures of 
effect, however, the standardized rate ratio is a weighted average of stra- 
tum-specific values that weights the stratum-specific rate ratios according 
to the product of the weight from the standard and the rate among the 
nonexposed: 

SRR = ZW~R,~/(CW,) =-- ZW,RJ%, cW.t&, I 

xw!%i/(c.wi) CW,R,,~ CWil 

where fii is the estimate of rate ratio in stratum i and wif = w i b .  
The structure of formula 12-66 reveals why the two standardized rate 

ratios combining the stratum-specific point estimates in Table 12-1 1 are 
influenced heavily by the small effect estimates in the older age categories. 
Since wit is a product of the weight for standardization and hi, the value 
of hi will influence the weighting of the stratum-specific estimates. AS it 
happens, hi increases steeply with age for the data of Example 12-2, 
thereby magnifying the influence of the older age groups on the overall 
standardized rate ratio. Even the SMR, standardized as it is to the young 
age distribution of the smokers themselves, is only a modest 1.42 because 
of the influence of the hi in expression 12-66. 

Equation 12-66 can be applied, under certain conditions, to case-control 
data to obtain standardized rate ratio estimates from case-control studies 
[Miettinen, 19721. Consider the SMR, which, as always, is standardized to 
the distribution of the exposed population. If NIi is the numerator and Dli 
is the denominator of the rate for the exposed source population of sub- 
jects in category i, then a, = fc,,i) (Nli) and ci = fc0(,, (Dl,), where a, is the 
number of exposed cases in stratum i of the case-control study, ci is the 
number of exposed controls in stratum i, and f,,,,, and f,,(,, are the Sam- 
pling fractions of cases and concrols in stratum i of the source population. 
To standardize to the distribution of the exposed population, w, should be 
taken as D,i = ~ ~ / f ~ ~ ( ~ ~  RIi may be written as 



so that Cw,R,, = $a,/f,,(,,. Similarly, 

and 

If the sampling fraction for cases is constant over the strata, which will be 
true if the cases bave been selected independently of the stratification fac- 
tor, then 

N 

Expression 12-67 has the usual form for an SMR, namely, the ratio of the 
observed number of exposed'cases to an "expected" or null number. The 
expected number is not identical to the expected number used for statis- 
tical hypothesis testing, since hyporhesis testing is premlsed on the cor- 
rectness of the null hypothesis, which cannot be assumed for estimation. 
The expected number in expression 12-67 indicates how many exposed 
cases would have been observed if the exposure had no effect, but it in- 
volves no marginal totals that include the a cell, since the a cell is the one 
cell In each 2 x 2 table that differs from its null value when the exposure 
has an effect. . ' 

a is to choose other standards for the standardization of rate 
ratio estimates. in case-contra1 studies. For example, if wi. is taken as the 
size of the denomhitor for the &exposed population in category i, equal 
to DOi = di/f,,(,); then , , . 

. . , . .  
, . 

. . 

, S R R = ~  [12-681 

. '  . ,  : Cb,  . .  
1=1. . , 

. . . .  . . . 

assuming once again that the sampling fraction for cases.'is constant over 
the strata. . , .  

Confidence intervals fbr standardized ellea measures can be calculated, 
but they must reflect the. p&rn of the weights' assigned by the standard. 
For standardized rite diEeiences, an approxiiiate variance formula is 
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where wi is the weight from the standard for category i and var ( f i i )  is 
obtained from formula 12-1 or 12-6, depending on the type of data. The 
square root of Var(SRD) can be used for the standard deviation in formula 
10-2 to obtain approximate confidence limits. For rate ratio measures, the 
usual logarithmic transformation should be used. With follow-up data, an 
approximate variance formula for the logarithm of a standardized rate ra- 
tio is 

where Var(R,,) and Var(&,) can be estimated from the first and second 
terms, respectively, of formula 12-1 or 12-6, depending on the type of data; 
the square root of Var[ln(SRR)] can be used in expression 10-4 to find 
approximate confidence limits. 

To exemplify the application of formula 12-70, let us determine the ap- 
proximate 90 percent confidence limits for the SMR calculated from Ex- 
ample 12-2. The weights from the standard, which for an SMR is always 
the exposed group, and the terms of the necessary sums for the variance 
of the logarithm of the SMR are given in Table 12-12. The variance is 

The standard deviation is therefore d m  = 0.1088, and a 90 percent 
cofidence interval around the SMR of 630/444.41 = 1.42 is 

Thble 12-12. Intermediate calculations for the variance 
of the Zogaribm of the SMR for the &ta of example 12-2 

Me 
category w, wtR1, w ,%, w,var(R,,) w,zVar(%,) 

35-44 52,407 32 5.58 32 15.56 
45-54 43,248 104 48,63 104 197.03 
55-64 28,612 206 140.30 206 703.04 
65-74 12,663 186 137.16 186 671.91 
75-84 5,317 102 112.74 102 410.02 

Total 142,247 630 444.41 630 1997.56 



. . . .. . 

The analogbui, ~2lculations'for a standard: in which a weight of 1.0 is as- 
signed to each category, .which gives a standardized rate ratio of 1.16, 
would result in'a variznce.of 0.0161, corresponding to a standard deviation 
of 0.1269. The 90 pecient confidence. interval, for the ?RR with uniform 
weights is 

. . . . .  
. .. 

No general formulafion can be made for the varlance of the logarithm 
of a standardized rate ratio calculated from case-control data, since for 
case-control data the variance formula itself depends on the choice of a 
standard For the SMR (calculated from formula 12-67), which uses the 
distr~bution of exposed subjects In the source population as the standard, 
the variance is approximated by 

Using the data from &ample 12-5, the SMR is calculable as 3 78, and the 
Var[ln(SMR)] 2 0 350, which gives a 90 percent confidence interval of 

. . 
This p d n t  estimate aria mnfidence interval happen to agree well in this 
instancewith the (unconditional) maximum likelihood point estimate and 
the exact kid-P 90 percent confidenee. interval, which were previously 
calculated to be 3.79 and. 1.30 to 9:78, re~pectiv~ly; while such agreement 
is reaso,nably common, i t  is not guaranteed, because different principles 
are involved ip weighting the strahi~-spe~ific results for the two ap- 
proaches. . . 

Using thedistribution ofthe nonexp~sedsubjects in the source popu- 
lation as the standard (i.e., formula 12-68), the variance is estimated as 

. . . . 
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For the data in Example 12-5, the SRR from formula 12-68 is 3.98 and 
the Var[ln(SRR)] 2 0.381, giving a 90 percent confidence interval of 

EFFECT FUNCTIONS 

When the effect-modifying factor is measured on a continuous scale such 
as age it is possible to fit a mathematical equation describing the variation 
in the effect measure as a function of the effect modifier. For example, if 
the rate ratio seems to vary linearly with age, it is possible to express the 
rate ratio as a straight line function of age: 

where a,, is the "intercept" value and a, is a coefficient that describes the 
change in the rate ratio for a unit increment of age. The coefficients a,, and 
a, can be estimated by a simple weighted regression procedure. 

A linear function is not necessarily a good description of the mathemat- 
ical relation between the effect measure and the effect modifier; it may be 
worthwhile to consider transformations that improve the description. The 
stratum-specific estimates of the incidence rate ratio for the data in Ex- 
ample 12-2 (Table 12-1 1) illustrate a progressive decline in IRR with age. 
The stratum-specific estimates are plotted in Figure 12-3. It is evident that 
a straight line will not provide as good a fit as one might hope. In Figure 
12-4, the logarithm of each age-specific estimate of IRR is plotted; for the 
five age categories from youngest to oldest, these values are 1.7469,0.7603, 
0.3841, 0.3046, and -0.1001, respectively. These values conform better to 
a linear pattern. For the data of Example 12-2, then, it seems reasonable 
to describe the effect of smoking, as measured by the incidence rate ratio, 
as a function of age using a logarithmic transformation of the IRR: 

The coefficients for this equation can be determined easily by a linear 
regression procedure. It is important to use a weighted regression that 
assigns to each age-specific observation a weight that reflects the precision 
of that estimate; a weight proportional to the reciprocal of the variance of 
1n(1&) accomplishes this purpose. The age-specific weights for the 
weighted regression are calculated as the reciprocals of the variances de- 
termined by formula 12-4; the weights are 1.88, 10.76, 24.65, 24.34, and 
23.77 from youngest to oldest, respectively. Note the small weight ac- 
corded to the youngest age category, for which only two events were ob- 
served among the nonsmokers; the small number of events in the denom- 
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inator rate of the rate ratio leads to a large variance for the rate ratio. The 
youngest category consequently does not contribute much to the fitting of 
the weighted regression line. A least-squares weighted regression analysis 
[Kleinbaum and Kupper, 19781 using the above weights gives a,, = 2.29 
and a, = -0.030. To express the IRR as a function of age using these 
results, we can reverse the logarithmic transformation: 

The above fitted equation describes the incidence rate ratio as a function 
of age and can be used to estimate the IF3 at any given age. For example, 
at age 65 the estimate of IF3 is exp(2.29 - 0.030(65)) = 1.43. At age 40 
the estimated value of IRR is 3.0; the predicted and observed values are 
relatively discrepant at age 40 because the entire set of age categories was 
used to generate the coefficients, but little weight was contributed by the 
unstable estimate of IRR in the youngest age category. For age 80, however, 
the estimated IRR of 0.91 from the regression equation is nearly identical 
to the observed value of 0.90 because of the greater weights assigned to 
the older age categories. The overall pattern indicates roughly exponential 
decline in IRR with age, until the effect disappears entirely between ages 
75-80 (the apparent reversal in the direction of the effect at the oldest ages 
is not striking enough to warrant a biologic interpretation). 
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13. MATCHING 

Matching refers to the selection of a comparison series-unexposed sub- 
jects in a follow-up study or controls in a case-control study-that is iden- 
tical, or nearly so, to the index series with respect to one or more poten- 
tially confounding factors. The mechanics of the matching may be 
performed subject by subject, which is described as individual matching, 
or for groups of subjects, which is described asfrequency m c c l i n g .  The 
general principles that apply to matched data are identical for individually 
matched or frequency matched data. 

PRINCIPLES OF WTCHING 
The topic of matching in epidemiology is beguiling: What at first seems 
clear is seductively deceptive. Whereas the clarity of an analysis in which 
confounding has been securely prevented by perfect matching of the com- 
pared series seems indubitable and impossible to misinterpret, the intui- 
tive foundation for this cogency attained by matching is a surprisingly 
shaky structure that does not always support the conclusions that are apt 
to be drawn. The difficulty is that our intuition about matching springs 
from knowledge of experiments or follow-up studies, whereas matching 
is most often applied in case-control studies, which differ enough from 
follow-up studies to make the implications of matching d8erent and coun- 
terin tui tive. 

Whereas the traditional view, stemming from an understanding based 
on follow-up studies, has been that matching enhances validity, in case- 
control studies the effectiveness of matching as a methodologic tool de- 
rives from its effect on study efficiency, not on validity Indeed, for case- 
control studies it would be more accurate to state that matching introduces 
confounding rather than that it prevents confounding. 

The different implications of matching for follow-up and case-control 
studies are easy to demonstrate. Consider a source population of 2,000,000 
individuals, distributed by exposure and sex as  indicated in Table 13-1. 
Both the exposure and male gender are risk factors for the disease: For 
the exposure the relative risk is 10, and for males relative to females it is 
5. There is also substantial confounding, since 90 percent of the exposed 
individuals are male and only 10 percent of the unexposed are male. The 
crude relative risk in the source population, comparing exposed with 
unexposed, is 32.9, considerably diEerent from the unconfounded value 
of 10. 

Now consider what happens if a follow-up study is planned by drawing 
the exposed cohort from the exposed source population and matching the 
unexposed cohort to the exposed cohort for sex. Suppose 10 percent of 
the exposed source population were included in the follow-up study; if 
these subjects were selected independently of gender, we would have ap- 
proximately 90,000 males and 10,000 females in the exposed cohort. A 


