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12. STRATIFIED ANALYSIS

Two different analytic concerns motivate the division of data into strata:
one is the need to evaluate and remove corfounding; the other is to eval-
uate and describe effect modification. Because stratification is the pre-
ferred means of dealing with both of these analytic issues, the beginning
student is apt to become bewildered in the attempt to distinguish between
the aims and procedures involved in considering these two aspects of ep-
idemiologic data analysis.

Effect modification refers to a change in the magnitude of an effect
measure according to the value of some third variable (after exposure and
disease), which is called an effect modifier. Effect modification differs from
confounding in several ways. The most central difference is that, whereas
confounding is a bias that the investigator hopes to prevent or, if necessary,
to remove from the data, effect modification is an elaborated description
of the effect itself. Effect modification is thus a finding to be reported
rather than a bias to be avoided. Epidemiologic analysis is generally aimed
at eliminating confounding and discovering and describing effect modifi-
cation.

It is a useful contrast to think of confounding as a nuisance that may or
may not be present depending on the study design. Of course, confound-
ing originates from the interrelation of the confounding factors and study
variables in the source population from which the study subjects are se-
lected. Nevertheless, restriction in subject selection, for example, can pre-
vent a variable from becoming a confounding factor in a situation in which
it otherwise would be confounding. Effect modification, on the other
hand, rather than being a nuisance the presence of which depends on the
specifics of the study design, is a natural phenomenon that exists indepen-
dently of the study. It is a phenomenon that the study is intended to divulge
and describe if at all possible. Whereas the existence of confounding with
respect to a given factor depends on the design of a study, effect modifi-
cation has a conceptual constancy that transcends the study design.

Although effect modification is a constant of nature, in its most general
sense it cannot correspond to any biologic property because there is one
aspect of the concept that is not absolute: Effect modification in its most
general context includes modification of an effect without specifying
which effect measure is modified. Since there are two effect measures, the
difference and ratio measures, that are commonly used in epidemiology
as well as others that are used less often, the concept of effect modification
without further specification is too ambiguous to be useful as a description
of nature.

In Figure 12-1, age can be considered a modifier of the effect of expo-
sure, since the incidence rate difference between exposed and unexposed
increases with increasing age. On the other hand, the ratio of incidence
among exposed to incidence among unexposed is constant over age. Thus,
age modifies the effect of exposure with regard to the difference measure
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Disease Incidence

’ \unexposed

- AGE .

Fig. 12-1. Disease incidence by exposure and age indicating a consiart ratio of
inicidence with age. o . '

. .
of effect but not with regard to the ratio measure. The opposite situation
is described in Figure 12-2: The difference in incidence rate between ex-
posed and unexposed is constant over age, but the ratio of incidence
among exposed to incidence among unexposed declines with age. These
diagrams- illustrate why effect modification should be described only in
relation to a specific effect measure. If effect modification is absent with
regard to. €ither the difference measure or the ratio measure, it will be
present with regard to the other measure unless the disease rate among
the unexposed is unassociated with the potential effect modifier.

This chapter presents the fundamental analytic strategies for dealing
with confounding and efféct modification in a stratified analysis. The bio-
logic and. public health interpretations of effect modification are consid-
ered in Chapter 15.

EVALUATION AND CONTROL OF CONFOUNDING

Confounding is a distortion in an effect measure that results from the effect
of another variable that is associated with the ‘exposure under study. In

Chapter 7, confounding was defined, and the general chiaracteristics of |

confounding factors were discussed. To review, a corfounding factor must

1. Be a risk factor for:the disease among the nonexposed.
2. Be associated with the exposure variable in the population from which
the.cases derive. - ' -
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exposed\

\unexposed

AGE

Fig. 12-2. Disease incidence by exposure and age indicati
s cat
difference of incidence with age. s e consiant

3. Not be an intermediate step in the causal path between the exposure
and the disease.

The case-control data in Example 12-1 demonstrate confounding by age
If the effect of oral contraceptives on the risk of myocardial infarction is;
estimated from the crude data, the odds ratio estimate is 2.2. If the data
are divided, however, into two age categories, the odds ratio estimate in
each category is 2.8, which corresponds to a 50 percent greater effect than
the estimate of 2.2 ([2.8 — 1)/[2.2 — 1] = 1.5).

It is clear that the variable “age” in Example 12-1 meets the criteria for
a confounding factor. First, age is a risk factor for myocardial infarction
among the nonexposed, that is, nonusers of oral contraceptives. We know
in general that age is a strong risk factor for myocardial infarction; more
directly, we can see that among the subjects in this particular stuciy who
are nonusers the proportion of subjects who are classified as cases is
greater in the age category 40 to 44 (88/183 = 0.48) than in the age cate-
gory < 40 (26/85 = 0.31). These proportions do not represent any mean-
ingful epidemiologic measure; because these are case-control data, these
proportions reflect the overall case-control ratio arbitrarily chosen ’b'y the
1ovestigators. The proportions might be described as the “prevalence of
disease among nonexposed study subjects,” which, given the case-control
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le 12-1. Case-control dat ing 1 1 contraceptive use
Example 12-1- Case-control data describing .tbe ejec_t of ora
on rzs‘z of myocardial infarction, with confounding by age [Mann et al., 1968]

“'Age < 40 Age 4044 - Touls
User ' Nonuser‘ User Nonuser User Nonuser
Myocardial infarcion 21 26 - ‘18 88 3 114
cases : ) . )
Controls ~ ~ 1759 7 9% . 24 15
Odds ratio estimate © 28 28 2.2

design, are hot meaningful -prevale’ncest.) Nevertheless, for age to be con-
ing, these proportions must vary by age.

fOlllrrll C:crllgi]'tion,.'fopr agé to be confounding, it must be assogiated with oral
contraceptive use among the source population that gave rise to the cases.
Looking among the controls, who are sampled from that source-popula-
tion, we note- that the proportion of oral contraceptive users 15 much
greater (17/76 = 0.22) among younger' controls than among older con-
trols (7/102 = 0.07), indicating that this condition has been fulfilled.

Since age cannot be construed as a caus_al link between oral contrac§p~
tive use and myocardial infarction, it méets the criteria for a confound{ng
factor in these data. There-is a more direct method, however, bY which
confounding can be. assessed. It is possible to evaluaFe the magnitude of
confounding by comparing the estimate of effect derived from the crude
data with the estimate derived from the stratified data (provided that the
potential confounder is judged not to be.a link ip the _caus.al Path). Ignor-
ing whatever residual age confounding there mlght ,b'e within these. twc;
age cate‘g‘dfies, we can ‘say:that the estimate of the _1nc1(_ience rate ratio 0d
oral contraceptive use-on the risk of myocardial infarction unconfounde
by age is 2.8, since the éstimate is 2.8'in each of the two age strata, The
estimate based on the crude data, however, is 2.2. If these esFlmates were
identical, the data would indicate no confounding. The magnitude of con-
founding in the data is estimated.by the degree of discrepancy between
the crude and unconfounded estimates. : .

Some investigators have attem ted to assess confoun‘dmg through‘ sta-
tistical tests of significancé. For example, in a clinical trial, the age distri-
bution in the trearment and comparison groups may be compared bY at
test; if the test statistic is “significant,” then age would be judged potentially

confounding, whereas lack of “significance” would imply that age is not

confounding: There is probably no more grigvous routine misuse. of §ta-
tistical testing than in this common circumstance. Since confgugdlng isa
bias that depends on the rhagnitude of two component associations, con-
foundeér with exposure and confounder with disease, proper assessment
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of confounding must be based on the magnitude -of those associations.
Statistical “significance” testing reflects a mixture of both magnitude of
association and number of observations and therefore does not corre-
spond to an assessment of magnitude of association alone. A large number
of observations will produce statistical “significance” in situations in which
the magnitude of one of the component associations of a potentially con-
founding factor is puny and would preclude any substantial confounding.
Conversely, strong associations that produce serious confounding might
be judged “not significant” if the number of observations is sparse. Con-
founding should therefore never be assessed by statistical tests.

Although it is possible to obtain a general appreciation for the presence
or absence of confounding in data by examining whether the potentially
confounding factor is associated with disease among nonexposed and with
exposure among nondiseased, the magnitude of the confounding in the
data is difficult to assess in this way because the confounding represents a
function of both of these component associations. Furthermore, when sev-
eral factors are simultaneously confounding, the component associations
should ideally be examined conditional on the other confounding factors,
thereby complicating the problem. The preferred method of assessing
confounding is direct comparison of the crude and unconfounded esti-
mates of effect. (An exception would be the unusual situation in which
prior knowledge outweighs the evidence in the data about confounding,
as discussed in Chapter 7, or when the potential confounder is judged to
be a link in the causal pathway.) This comparison clearly and unambigu-
ously reveals the magnitude of the confounding, which the investigator
can then take into account in further analyses or reporting of results. Fur-
thermore, this comparison can be made while controlling for other factors
if necessary,

Potnt Estimation of a Uniform Effect

In Example 12-1, the point estimate of the incidence rate ratio was 2.8 in
each of the two age strata, so there is no difficulty in inferring that an
overall estimate of effect unconfounded by age should be 2.8. Even if the
parameter value of the effect is identical across strata, however, it is rea-
sonable to expect that estimates of the effect will vary among strata be-
cause of random error. Typically, then, the investigator must derive an
overal] estimate of effect from stratified data by taking a weighted average
of the stratum-specific effect estimates. If the parameter value of the effect
is assumed to be uniform—that is, constant over the range of the con-
founding variable—then each stratum provides a separate estimate of the
same parameter value, the stratum-specific estimates varying only ran-
domly. In weighting the estimates to get an average, it is desirable to assign
greater weight to those stratum-specific estimates with smaller random
variability and vice versa. Theoretically, the optimum procedure for reduc-
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ing the variance in the overall weighted average is to assign weights to the
stratum-specific values that are inversely proportional to the variance of
each stratum-specific estimate: ' I

_ . > [w, + (effect estimate in strarum 1)]
_Overall effect estimate = ——— ST
. ! W.

in which
: 1
W = . s N .
_ (variance of effect estimate in stratum i)

This method of point estimation, in which the individual strata are
weighted to enhance the precision of the overall estimate, is known as
pooling. (The reader should note that the term pooled is sometimes used
by statisticians to mean “crude.”) ,

Pooling can be performed by calculating the weights for averaging the
stratum-specific effect estimates directly from the estimated variance of the
effect calculated from the data in each.stratum separately; this method re-
quires endugh information within each stratum to get reasonable variance
estimmiates. Another approach, the method of maximum likelihood, involves
the solution of a set of equations and produces the pooled estimate with-
out explicitly determining stratum:specific weights. The maximum likeli-
hood ‘approach can’ be thought of as a weighting process in which the
weights are implicit ini the equatiohs that yield: the point estimate. This
description is not literally correct, since, for example, no weighting
scheme would work if one of the stratum-specific estimates were infinity,
whereas the maximum likelihood approach produces an appropriate finite
result in this situation;. indeed, the ability to average erratic stratum-Spe-
cific estimates efficiently when data are relatively sparse is one of the main
advantages of the maximum fikelihiood approach. Another set of pooled
estimators, the Mantel-Haenszel estimators, have explicit weights that are
built into the formulas; the Mantel-Haenszel estimators are the easiest to
caloulate, and, considering that their statistical properties are nearly as
good as the difficult-to-calculate maximum likelihood estimators, they are
often the method of ¢hoice. o C

In the following sections, the above three approaches to pooling are
presented: the-ditect approach, using explicit weights inversely propor-
tiofial to stranim-specific variance estimates; the maximum likelihood ap-
proach; and the Mantel-Haenszel approach. The specific formulas used for
determining the pooled estimators depend on the type of data supplied
and the effect measure being estimated.
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POOLING WITH INVERSE VARIANCES (DIRECT POOLING)

gzr;ectly Pooled Point Estimation of a Uniform Effect with Person-T;

ata. 1 i v

basa. NCtIhD-ENCE' RATE DIF@RENCE. Using the notation in Table 12-1 the Vm_e
ce for the estimate of incidence rate difference : o

. [¥v) I .
tum in a stratified analysis is approximately (D) from a single sca
Var(IRD) = 2 b,
(IRD,) N TN [12-1)

(see formula 11-15). Th
. Therefore, a pooled estimat
) or for i
stant over strata can be obtained from o TED that is con-

A~

2 w, IRD,

IRD =
RD TW._ {12-2]

in which
w, = 1,\ - Ngl : N%l
var(IRD) " aN; + b 23]
and
R, = & - &
NH NDi

as with crude data.

f;r;sﬁ%re ;k; éieat?oirn tfséamp(is 12-;1. Stratum-specific estimates of incidence

s€ data, the corresponding stratu ifi i

ances, and the weights for poolin; i i » based on for.
g are given in Table 12-2, based on f

mulas 12-1 through 12-3. The i rerence is ob.

. . pooled estimate of rate difference is

' ob-

ta;r;ledhby talgng the sum of the product of each stratum-specific estimate

x;v(x t‘e Wf;ght and dividing by the sum of the weights

10~ %r=*, which is expectedly close to the estimated incidence rate

The result is 5.95

Table IZT-I . Notation for incidence rate data with
person-time denominators in stratum i of a stratified analysis

Exposed Unexposed Total
Cases a b,
Person-time N, Nl 'I:‘/IU
(] i




Example 12-2. Age-specific co}‘onavy disease deatbs among
Brz'tzshp male doctors by cigarette smoking [Doll and Hill 71966]

Smokers S ) Nons'mok_e'rs. ,
Age Deaths . ‘Pérso‘rll-'ye‘ars -+ Deaths ~ Person-years
35§44 732 152,407 Tz 18790
45-54 104 43,248 L1z 10673
55-64 206 28,612 .28 . 5710
65-74 186 12,663 o 28 - 2585
75-84 . 102 <8817 L 31 1,462
Total 630 - . 142247 o101 39220

Table 12-2. Stmtur‘ﬁ,-s.pe’cz‘ﬁc estimates of incidence rate difference;
with variances and weights for pooling for the data in example 12-2

Estimate of incidénce " Varjance | Weight
Age rate difference (>§ 10%r) (x _losyrz)' : . (X 10~%r~?)
35-44 504 S 173 - - 578
45-54 128 161 . 62
55-64 230 .0 1L . 090
65-74 T 386 A 535 . - 0.19

75-84 —-202° . : 181_0 C 0.06

difference for stratﬁrn 1, the stratum with the §’mall§st variance and the
largest weight. The ‘crude incidence rate difference is
630 - ol
142247 yr - 39,220 yr

=185 X 10-%r~

which differs considerably from the pooled estimate of 595 X 10 %,
indicating a substantial amoust of age confounding in these data.

INCIDENCE RATE RATIO. For ratio estimators, pooling is performed after a
logarithmic transformation of the estimates, ‘which stabilize;s thg variances.
The weights are the inverses of the varjances of the _loganthmlcally trans-
formed stratum-specific estimates of incidence rate'ratio (IRR). An approx-
imate formula for this variance is ' :

Varlln(IKR)) = Va, + 1b, | (124]
and therefore the weight for "po'oling is

ab,

wW, =
" a +.b
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Example 12-3. Mortality by sex and age for patients
with trigeminal neuralgia [Rothman and Monson, 1973)

Age < 65 Age 65+ Totals

Males Females Males Females Males Females
Deaths 14 10 76 121 90 131
Person-years 1516 1701 949 2245 2465 3946

Table 12-3. Stratum-specific estimates of incidence rate ratio, with logarithmic
transformations, variances, and weights for pooling for the data in example 12-3

Estimate of . .
Age incidence rate ratio  Logarithm of IRR ~ Variance of In(IRR)  Weight

<65 157 045 0.17 583 -
65+ 1.49 0.40 0.021 46.7

and the pooled estimator, after reversing the logarithmic transformation,
is

(12-5]

2 win(IRR)
Ili\R = exp T

where

IR\K:%

as with crude data.

The application of formula 12-5 is demonstrated using the data of Ex-
ample 12-3 from a survival study of patients with trigeminal neuralgia. The
male-to-femalé ratio of mortality rates from the crude data is (90/2465 yr)/
(131/3946 yr) = 1.10. A pooled estimate, controlling for age using the two
age categories in Example 12-3, is obtained using the calculations given in
Table 12-3. The pooled estimate is obtained by taking the sum of the
weight in each stratum multiplied by the logarithm of the stratum-specific
point estimate, dividing that sum by the sum of the weights, and then
taking the antilogarithm of the result to reverse the transformation, giving
1.50 for the data in Example 12-3. The large discrepancy between this un-
confounded estimate and the crude estimate of 1.10 indicates that the
crude result was substantially biased by age confounding,
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ctly Pooled Point Estimation of a Uniform Eﬂéct.witb Cumulative In- 8
nce Data. CUMULATIVE, INCIDENGE, DIFFERENCE: The notation for stratified o R
2 tables is given in Table 12-4. The approximate variance for the risk R
srence (RD) in stratum iis =~ . o .
o a(Ny —a) . b(Ny — b) :
Var(RD) = 2u i Uit Dy ) 12-6
ar{ ) N N o [12-6] 3
:re " SS
fa]
SR IR
RD, = — - =%
o Ny Ne;
: weight for pooling‘stmtum—sbeciﬁc estimates of risk differénce is the
zrse of the variance: B » - _§
. NNy IR 2] =228
O Ngiai(Nli: . ai) + N?ibi(Noi - bl) . ) §
wooled estimator for risk difference is s
e 5% s
RD = - - (12-8] S| M2
DI 53(2(8|ae =
! \\.-§ Ela~ &
NP _ : ) 83
e cumulative incidence data in Example 12-4 indicate a crude risk dif- § %
ence of 30/204 — 21/205 = 0.045, but this is confounded by age, as is = g
own in Table 12-5, in which the age-specific risk differences are each g = o
2n to be in the vicinity of 0.035. A & g @
The unconfounded: pooled. estimate of cumulative incidence difference S8 g2 8
obtained from formulas 12-7 and 12-8; as shown in Table 12-5, the older § b
e category gives an estimate of cumulative incidence difference that has s ‘§”,
nuch greater variance than that from the younger category, and therefore g go
nuch greater weight is assigned to the younger age category. The pooled @ § .
timate is 0.034, which reflects the greater weight assigned to the younger § Sl S
tegory. ‘ e T - . 3 R [ w S
gOry. s8|v|$
R 0
. : TS| 2lE|™8 8
le 12-4. Notafz’onfpr 2 X2 ia@ies iri straum i of a stravified anqusz‘s %-g
Exposed . Unexposed Total ?g
1ses a b, M 83 w 2
ongcases q B d, M, §§ g 503
o : 2 B
Total TN, LN, T 3 '§ E S
_ . . 3 £
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Table 12-5. Stratum- specgfzc asttmates of cumulatzve incidence
¥ ﬁ”erence with variances and weights for pooling for the daia in example 12-4

Estimate of carulative Variance of cumulatlve

Age incidence difference -incidence difference Weight
<55 0034 000099, 1009
=55 0036 o . 000357 , 280

CUMUIA’HVE INCIDENCE RATIO. The ratio estimator is obtained, as before,
using a logar1thm1c transformatlon The. apprommate variance of the log-
arithm of the stratum- spemﬁc cumulatlve incidence ratio (RR) is

o, 4 (129]
Var[ln(RR,)] : 3|Nu " bNg.
The weight for pooiiﬁg' is éélual to the iriver's‘e of 'this‘variance-‘
__@NNa (1210

.Wi' - adN;, + beNy

and the pooled estimator is

i

T Zwlnamo
RR = exp —TWI—— . [12-11]

where

o ANy
BTN

Let us consider Example 12-4 again, this time for risk ratio estimation.
The crude estimate is, (30/204)/(21/205) 1.44. From a visual inspection
it is difficult to assess the extent to which confounding is present, since
the two- stratum-specific. estimates of cumulative incidence ratio bracket
the crude estimate as shown in Table 12+ 6. An estimate unconfounded by
age is obtained by applying formula 12-11, using the weights shown in
Table 12-6. The variance for the effect estimate is considerably larger in
the younger age category, just the reverse of the result seen in Table 12-5
for risk difference estimation. small values of risk lead to stable estimates
of risk difference but unstable estimates of risk ratio. For risk ratio esti-
mation, then, a relatively large weight is assxgned to the older age category.
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Table 12-6. Stratum-specific estimates of cumulative -
incidence ratio, with logarithmic transformations,
variances, and weights for pooling for the data in example 12-4

Estimate

of cumulative N N
Age incidence ratio Logarithm of RR, Variance of In(RR,) Weight
<55 1.81 0.59 031 3.25
=55 1.19 0.18 0.09 11.6

The antilogarithm of the weighted average of the logarithms of the stra-
tum-specific risk ratio estimates gives the pooled estimate, which is 1.31
for the data in Example 12-4. The discrepancy between the crude estimate,
1.44, and the unconfounded estimate, 1.31, indicates the extent of con-
founding,

Directly Pooled Point Estimation of a Uniform Effect with Case-Control
(or Prevalence) Data. The effect parameter of interest with case-control
data is the odds ratio, which serves as an estimator of the incidence rate
ratio. The odds ratio is also the measure of interest for cross-sectional
prevalence data, which should generally be treated as case-control data for
the reasons given in Chapter 6. As discussed in Chapter 11, the odds ratio
may also be used as an approximate estimator of the risk ratio or preva-
lence ratio from 2 X 2 tables with cumulative incidence or prevalence
data, in which case the same formulas for pooling as given below for case-
control data would apply.

For the odds ratio, as for other ratio estimators, a logarithmic transfor-
mation is desirable before weighting the stratum-specific estimates. The
approximate variance of the stratum-specific estimate of the logarithm of

 the odds ratio (OR) is [Woolf, 1954]

a 1 1 1 1
V N==+=4+=4= 12
ar{In(OR,)] a,- + b + c + a (12-12]
and therefore the weight is

w = p albicidl

" abg + abd, + acd, + bed, [1213]
_ 1
Sl 1,10
3, b ¢ d
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Example 12-5. Infayits with congénital beart disease and Dom ‘
syndrgme, and bealthy controls, according to maternal spermicide

use before conception and masernal age at delivery {Rothman, 1982}

. Maternal age <35 Maternal age 35+~ Totals

‘Spermicide use Spermicide use

Spermicide use

+ —~ Total + = _ Tortal + - Total
ror 13 4 4 12 16

Down syndrome 3 -9 12 1 ' N
Controls 1040 1059 1163 5. 8 91 109 1145 1254
Total 1107 © 1068 1175 6 89 95 13 1157 1270

7 ecii stimat ode 01 ith logarithmic
Table 12-7. Stratum-specific estimates of the 0dds ratio wi i
triznsforr'nations, varianees, and weights for pooling for the data in example 12-5

Ma‘te‘m‘al.' Odds ..

age ratio’.” . Logarithm of OAR‘ Variance of In(8R) Weight
<35 034 o122 L 046 ééﬁ
35+ 57 175 e 154 .

and the’pooled estimator is

D >wi1n('o“'&)}

| ..6R ) exp |: S Wi

[12-14]

i

Tﬁe case-control data in Example 12-5 describe an ass‘ociation between
spermicide' use near the time of conception and the risk of Down syn-
drome. The crude estimate of effect is [CH 1145)./(12 : 109) = 3.5. The
application of formula 12-14, based on the galculauons in Table 12-7, gives
aresult of OR = 3.8, which indicates only a modest degree of confounding
by maternal age at delivery.

POOLING USING THE METHOD OF MAXIMUM LIKELIHOOD .

A full discussion of the maximum likelihood approach to estimation is
beyon-d'the scope of this book; the method is giescribe.d gdequate}y ;n
many statistics texts. Briefly, the approach invo_lves spec1fymg the hkfh i-
hood equation for the data as a function of the parameter of interest; the
maxifum likelihood estimate of the parameter is ;he value of the param-
eter that makes the observations in hand most probable under th? h-kfeh—
hood model. The maximization is usually accomplished by maximizing
the togarithm of the likelihood rather than the likelihood itself becausg
the two maxima occur at the same value for the parameter, and the maxi-

mum of the logarithm of the likelihood is usually easier to determine. By
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setting the first derivative of the log-likelihood function equal to zero, an
equation or set of equations is derived that yields the maximum likelihood
estimate for the parameter.

For most applications, the maximum likelihood estimator requires the
iterative solution of a high-order equation or system of high-order equa-
tions, clearly a task for a computer rather than pencil and paper. The com-
plicated equations do not involve any direct set of weights by which stra-
tum-specific effect estimates are averaged, but the solution is always within
the range of the stratum-specific estimates and behaves as if it were a
weighted average in the sense that appropriately large weight is given to
the strata with small variances for the effect estimate. In compensation for
the difficulty of computation, maximum likelihood estimators have the
most desirable statistical properties of all estimators, being highly efficient
and minimally biased asymptotically.

A major disadvantage of the directly pooled estimators is that the pool-
ing weight for each stratum is taken as the inverse of the variance of the
effect estimate for that stratum, as estimated from the data in that stratum
alone. For data with small frequencies, the variance estimates and there-
fore the weights can be highly inaccurate. Indeed, for data containing one
or more zero frequencies, some of the variance estimates given above are
infinity, corresponding to a weight of zero. Consider, for example, formula
12-12, which estimates the variance of the logarithm of the odds ratio for
a2 X 2 table. If any of the four cells in the table is zero, this formula gives
a value of infinity, and a weight of zero would be assigned o that table,
(Furthermore, the logarithm of the odds ratio for that stratum would not
be finite with a zero cell.) If the remaining cells in the table are large,
there might be a considerable amount of information in the table that
would be lost by assigning a weight of zero. Since the odds ratio for the
stratum is either zero or infinity, which are the most extreme possibilities,
it seems obviously incorrect to ignore such information. One proposed
solution to this problem has been to modify formula 12-12 and, by exten-
sion, other formulas like it by adding a constant value (usually 0.5 or 1.0)
to each observed frequency [Haldane, 1955] or to substitute a small con-
stant for the zero frequencies when they occur. Although this solution mit-
igates the problem and avoids the difficulty of dividing by zero, it does not
completely overcome the inaccuracy of the variance estimates for each
stratum-specific estimate of effect when some of the observations are
small. The maximum likelihood approach is preferable when some of the
observed frequencies are small. Rather than treating each stratum in iso-
lation, as does the directly weighted approach to pooling in the assighment
of weights, the maximum likelihood approach automatically “adjusts” the
observations in each stratum in a way that integrates the information
among all strata,

In the following sections, the equations are presented for maximum
likelihood estimation of a uniform effect measure. In each case, the result



can be obtained by writing the likelihood equation for the data as a func-
tion of a uniform effect measure, the observations, and whatever “nui-
sance” parameters may be involved, and thén setting the derivative of the
logarithm of the likelihéod equal to zero..” '

Maximum Likelibood Estimation of a Uniform Effect with Person-Time
Data. INCIDENCE RATE DIFFERENCE. The miaximum likelihood estimation of
incidence rate.difference necessitates the solution. of a set of equations
that number one more than the number of strata. In addition to solving
for the incidence rate différence (IRD), it is necessary to solve for the value
of the incidence rate among the unexposed group in each stratum, satis-
fying the following likelihood equations:

Zm - Z Ny =20 (12-15)
i Doi : o -
and, for each stratum i,
ﬁﬁ_l) + I% ~T,= 0‘ ) [12-16]
. Ry .. .

where IRD is. the pooled estimate of incidence rate difference, Ry; is the
estimate of incidence rate among unexposed in stratum i, and the general
notation follows. that of Table 12-1. The estimates {R,} are estimates of
nuisance parameters that must be calculated to solve for the desired esti-
mate, IRD. It is convenient to begin the’ solution to the above equations
using the observed rate for unexposed within each stratum as a starting
value, but the value for, R, that satisfies the equation can differ consider-
ably from the obsetved value. The. overall solution of equations 12-15 and
12-16 is best accomplished: by starting, with a trial valye for IRD, solving
iteratively for each Ry, and then evaluating the left side of equation 12-15.
Repeated trial values for IRD each require an iterative solution for equa-
tion 12-16 in each stratum, making the overall process tedious unless it is
done by computer. B ' _

For the data in Example 12-2 the maximum likelihood solution for IRD
is 5.91 X 107 %r ™", which isin close agréement with the directly pooled
result of 5.95 X 10~ %r ™! obtained previously. '

INCIDENCE RATE RATIO. For the maximum likelihood estimation of inci-
dence rate ratio-(IRR), no nuisance parameters are irivolved, and the esti-
mate is obtaified by the iterative solution of a single equation:

=0 ) [12-17]
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' For the data in Example 12-3, the maximum likelihood estimate of IRR
is 1.50, which is identical to the result obtained by direct pooling. One
would expect good agreement between these two approaches when the
obS('eFved frequencies are reasonably large, as they are in this example. In
S:ddlthn, the narrow spread between the stratum-specific estimates c;)n-
fines all pooled estimates to the same small range of possible values.

Maxz’mum Likelibood Estimation of a Uniform Effect with Cumulative In-
cidence Data. CUMULATIVE INCIDENCE DIFFERENCE. The maximum likelihood
estimation of cumulative incidence difference (RD) again involves the es-
timation of a set of nuisance parameters, the risk among the nonexposed
group in each stratum. As with person-time data, the number of equations
is one more than the number of strata:

4 N, — 3
Eiﬁoi+lﬁb_21—ﬁm_§b=0 [12-18]

and, for each stratum i,

_ al,\+g~ Nll_a'i _Noz_bx_
Re+RD "R, 1-R,~RD 1-R,

0 [12-19]

where R, is the maximum likelihood estimate of cumulative incidence
among unexposed in stratum i, and the notation follows that in Table 12-

. Solving the above equations for RD using the data from Example 12-4
gives the maximum likelihood estimate of risk difference as 0.034, which
is virtually identical to the value derived from direct pooling. The ex-
tremely narrow range separating the two stratum-specific point estimates
ensures good agreement for any pooled estimators in this example.

CUMULATIVE INCIDENCE RATIO. For maximum likelihood estimation of cu-
mulative incidence ratio (RR), again the risk among unexposed in each
stratum is a nuisance parameter that must be estimated, but the maximum
likelihood solution for each Ry; has a closed form solution conditional on
KR. The equations are

3 - (@)ﬁOiNli
Zi T @R, = ° {12-20]

and, for each stratum i, :

ﬁm - 4 + Non + (R\R) (b1 + Nu)
2(RR)T,

- ([ai N+ () (b + N M\
2060, “w®or) A
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Solu'tioﬁ of these equations for KR using the dgta in Example 12-4. gives
the maximum likelihood estimate of 1.31, again identical to the directly
pooled estimate. .

Maxzmum Likelibood Estimation of a Uniform Effect with Case-Comrol (or
Prevalence) Data. The maximum likelihood estimation of a uniform odds
ratio is the solution, OR; to the following equations:

Co Z a »_'— 2 énz 0 [12-22]

The qﬁaﬁﬁty 3; is the “expected” value for the a cell in each 2 X 2 table,

calculated as a function of the odds ratio: For each 2 X 2 table 4, can be
caiculét‘e’cl:fro_m the _formpla : o

S (N)( N >OARR
* . k=max(OM1; = NoD k . Mn -k
a": -

- -n?ir:(g:i,Nn) '(N“> ( . NOi_ ) 6Rk
. fe= max(GM1; — Noi) .' k M, — k

where-the notation follows that in Table 12-4. Equation 12-23 can b.e com-
putationally tedious if the numbers within a stratum are large, but in §uch
circumstances an excellent asymptotic approximation for 4, is obtained
from the equation . o

(12-23]

>

©s

{

[12-24]

OR =

jopd

e}

in which 4,5,¢, and 4, are the expected cell values that conform to equa-
tions 12-22 and 12-24 and to the marginal totals of the 2 X 2 table [Gart,
1970). Solving equation 12-24 explicitly for & in terms of T, Ny, My; and
OR gives . T i s

' 1{ T, | . )] B
3, = Sl + N+ M ‘
a = ABS._{ABS[Z (OR _ 1 1 . .
. Lo ‘ ’ 2 ~
' Tif T ... . _MNORL o oo
7.\‘/[5 <6R N M“)] Br-1[ !

which, is computationally much simpler than equation 12_?3' Equation 1?-
24 reptesents the maximum likelihood solution for a umforrp ?dds ratlg
based on 2- X 2 tables with two independent binomials; this “uncondi-
tional” selution (it is conditional on one margin of the 2 X 2 table but not
on both). generally. gives nearly identical results to those obtained from
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the difficult-to-calculate conditional formula 12-23 except when the aver-
age number of subjects per stratum is small. In such instances, the uncon-
ditional approach can be substantially biased, and it is preferable to use
the conditional approach or the Mantel-Haenszel estimator [Breslow, 1981;
McKinlay, 1978; Lubin, 1981). (Directly weighted pooled estimation is also
unreliable if the number of subjects per stratum is small.)

Maximum likelihood estimation of the odds ratio in a set of 2 X 2 tables
requires an iterative solution of equation 12-22 coupled with either equa-
tion 12-23 or equation 12-25, using trial values for the odds ratio uniil
equation 12-22 is satisfied. For the data in Example 12-5, the conditional
maximum likelihood estimate of the odds ratio (i.e., using equation 12-
23) is 3.76; the unconditional maximum likelihood estimate (using equa-
tion 12-25) is 3.79. Despite the small cell frequencies for the cases and a
moderate discrepancy between the stratum-specific estimates of the odds
ratio (3.4 for younger mothers and 5.7 for older mothers), the two likeli-
hood approaches give nearly identical results because the total number of
subjects per stratum is large. Furthermore, these estimates agree closely
with the directly pooled estimate for these data, which is 3.82.

POOLING WITH MANTEL-HAENSZEL ESTIMATORS

Mantel and Haenszel [1959] have proposed a simple formula as an esti-
mator of a uniform odds ratio in a set of 2 X 2 tables. The estimator is

Z ad/T,

ORus = < [12-26]

This formula represents a weighted average, without logarithmic transfor-
mation, of the stratum-specific estimates of the odds ratio, with the weight
for each stratum equal to b,c/T;:

be T T,

i

ad, bg _ ad

These weights are inversely proportional to the variance of the logarithm
of the odds ratio under thé null condition. Consequently, the Mantel-Haen-
szel pooled estimator is optimally weighted for stratum-specific odds ratio
estimates near 1.0. Theoretical statistical evaluation of the Mantel-Haenszel
estimator with respect to bias and precision has shown that it compares
favorably with the maximum likelihood estimator (formulas 12-22 through
12-25) under a variety of conditions [Breslow and Liang, 1982]. Whereas
the directly pooled estimators require reasonably large frequencies within
each stratum, the Mantel-Haenszel estimator, like the conditional maxi-
mum likelihood estimators, performs well even if the frequencies within
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strata are small-or if the data contain an occasional zero. Furthermore, it
has the advantage of being extremely simple to calculate. For example, the
Mantel-Haenszel estimator of a uniform odds ratio for the data in Example

12-5 is calculated as .

o (3)(1059/(1175) + (1) (86)/95)

. = 3.8
 ORuy = -.(104) (9)/(1175) * 06 (3)/(95) =2

This result is neatly identical to the. maximuin hkellhood estimate (and
the directly pooled estlmate) but is extraordinarily simpler to produce.
The combination of ease of computation and desirable statistical proper-
ties make this estimator the preferred choice for most situations in which
an estimate of the odds ratio is desired for a set of 2 X 2 tables.

By analogy with the Mantel-Haenszel estimator, it is reasonable to con-
struct estimators for, the other ratio measures of effect weighted in a sim-
ilar way. For incidence- rate, data, the analogous estimator is [Rothman and

Boice, 1982] |
> aNy/T,

Ry, = S——‘ —
Lo bNy/T,

[12-27)

This formula is a simple noniterative estunator for.a unlform incidence
rate ratio that is nearly. as efficient as the maximum likelihood estimator
[Walker, 1985). Formula 12-27 may also be used for cumulative incidence
to obtain KRy, [Nurminen, 1981; Tarone, 1981].

For the data in Example 12 3, formula 12 27 yields.

(14) (1701)/(3217) + (76) (2245)/(3194) - 150
: IRR*.'" (10) (5160217 + (12D (949)/(3194)

which is identical for. pracueal purposes w1th both the maximum likeli-

hood and the directly pooled results. .
Formula 12 27 applled to the data in Example 12-4 gives

L 68 (120)/(226) + (22) (85)/(183) _ _ 133
i = (5) (106)/(226) + (16) (98)/(183)

which i$ reasonably close to both the maximum llkellhOOCl and the directly
pooled results.

Greenland and Robms [1985] have suggested extending the Mantel-
Haenszel approach to 'difference measures. The statistical properties of the
Mantel- Haenszel estimators for difference rheasures are better than any
other’ approach for very sparse data withia strata, but the variance of the
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Mantel-Haenszel effect measures is much greater than that of either the
directly weighted or maximum likelihood methods when the data are am-
ple. Mantel-Haenszel difference measures are not covered here.

Statistical Hypothesis Testing for Stratified Data

Examples can be found in which a pooled estimate of rate difference
shows a negative association whereas a pooled estimate of rate ratio shows
a positive association for the same data, apparently indicating that there is
not a perfect correspondence between ratio and difference measures with
regard to the absence or direction of effect. These discrepancies stem from
variation introduced by different weighting schemes. For the purposes of
statistical hypothesis testing, there is a theoretical correspondence of dif-
ferent measures at the null point, and consequently only a single hypoth-
esis test need be considered, whatever the parameter used to assess the
effect. The tests in common use correspond to the conditional tests for
simple data that assume either a fixed number of cases for incidence rate
data or fixed marginal totals for 2 X 2 tables. Strictly speaking, these are
tests of a departure from unity of the odds ratio or the incidence rate ratio,
but the tests are valid as tests of the null hypothesis whatever the measure
of interest.

With stratified data, it is possible that the effect may vary substantially
from one stratum to another. Nevertheless, hypothesis testing is generally
performed with respect to the overall departure of the data from the null
value of no association. That is, even if the parameter value for the effect
varies among strata, the hypothesis test represents a test of the departure
of some single overall measure of effect from its null value; it is convenient
to think of this process as testing the departure of a pooled estimate of
effect from the null value. If the stratum-specific values of the odds ratio
or incidence rate ratio are identical, the tests described later are extremely
powerful; in fact, in the jargon of statistics they are “uniformly most pow-
erful,” which means that they are the best possible tests of the null hy-
pothesis in those circumstances. If the values of the odds ratio or inci-
dence rate ratio vary across strata, it is conceivable that specialized tests
could be constructed that would be more powerful than the tests of overall
departure from the null value described here; the specialized tests would
have to be designed to detect a particular pattern of variation of the effect
across strata. In general, however, the tests of the departure of the pooled
estimate from the null value are still valid, even if they are not theoretically
the most powerful tests that might be applied in a given situation. As a
practical matter, usually no useful alternative exists.

In certain situations it is conceivable that estimates of an effect could be
strongly positive in some strata and strongly negative in others. In such
circumstances the pooled estimate of effect may be near the null value as
a result of the balancing of the opposing effect estimates in individual
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strata. A test of the overall departure of the data from the null condition
would have little meaning in-these circumstances as long as the opposing
effect estimates reflect actual divergence of the parameter rather than sim-
ply random variability: of the effect estimate around the null value.

Statistical hypothesis t(_estiﬁg for stratified data represents a straightfor-
ward extension of the tests applied to-crude data. The exact tests used are
based on the probability calculations for a set of strata; the probability of
observing a set of outcomes is the product of the probability for each
outcome, so the probability of observing the set of observations in strati-
fied data is calculated as the product of the probability of the outcome in
each stratum. The latter ‘probability is determined using the same proba-
bility model as that used for crude data, Although this extension of exact
testing to stratified data is conceptually simple, in practice the large num-
ber of combinations of outcomes can make the computations tedious to
enumerate and perform except by computer. X

The approximate tests for stratified data retain the general form of
expression 10-1 and merely.extend the formulas for crude data given in
Chapter 11 by deriving the components of the test statistics (the observed
number of eéxposed cases, the number expected under the null hypothe-
sis, and the Var.iance)'by'summi'ng the contributions to each of these three
comporents over the set of strata. - '

HYPOTHESIS TESTING WITH STRATIFIED PERSON-TIME DATA

Exact Hypotbesis Testing. with Stratified Person-Time Data. For stratified
data, the overall probabilities needed for the calculation of exact P-values
are the products of the probabilities obtained within each stratum. The
total number of possible outcomes is usually large, especially in compar-
ison with crude data, making exact P-value calciilations for stratified data
difficult. In-practice, they-are rarely dorie. Nevertheless, the principles for
obtaining exact P-values with stratified data are straightforward extensions
of the principles applicable to crude data, and the ‘computations can be

* readily programmed into a computer.

The piobability forfnula for the number of exposed cases in a single
straturi is identical to-the formula used for crude data:

N R . . L : a b
. s . : : B A Ny N,
Pr(number of exposed cases in strawm i = a;) = <l\:"> (f) (?")
The p‘rob'ab-ili'ty that a set of N strata will have exactly a; exposed cases
in each stratum i, i=.1,2,.:. N, is the product of the probability of finding
exactly a, exposed cases in each of the .component strata:

- - ) (N (Na)
Pr(the set.of observations {a}) = 1 ( a:‘) (—;—’) (?") [12-28)
T L 121 i 1

{

STRATIFIED ANALYSIS 199

There is some complexity involved in determining which outcomes of the
data are considered equally extreme and more extreme in relation to the
ac?tua'l observations. The problem calls for considering all possible com-
binations of values for the possible number of exposed cases in each stra-
lt:uml, the number in each stratum being subject to the constraint of the
dc;;a: Sgt;ﬂﬁfr of cases, exposed or unexposed, that actually occurred in

For example, consider the data presented in Example 12-6. There are a
total of 16 cases in the three age strata, of whiclr9 are exposéd The most
extreme outcome, conditional on the number of cases observéd in each
§tratum, would be that all 16 cases were exposed, 2, 12, and 2 respectivel
in each of the three age strata. Consider the possible outcon;es for whici;’
15 cases are exposed. There are three ways in which 15 of the 16 cases
could be exposed: The unexposed case could fall into any of the three age
strata. These three possibilities correspond to the distribution of the egx~
posed cases being 1-12-2, 2-11-2, and 2-12-1. A complete enumeration of
all the possible outcomes for at least 9 exposed cases is listed in Table 12-
8. The 54 combinations constitute the outcomes in the upper tail of the
probability distribution for testing the null hypothesis of no association
bgtween dose category and thyroid neoplasm. To obtain the exact upper-
tail P-value, the probability of each of these 54 possible outcomes must be
calculated according to formula 12-28.

For example, the probability of the actual observations 0-7-2 is calcu-
lated, according to Formula 12-28, to be

<2) < 1054 )° < 9942 )2. 12 ( 2665 \" (15,410’
0/ \10,996 10,996 7 18,075 18,075
(2 (2217’ (1530\°
2 3747 3747 = (0.8175) X (0.00054036) x (0.3501) = 0.000155
The sum of the probability of all the outcomes in Table 12-8 equals the
upper-tail Fisher exact P-value testing the null hypothesis of no association

Example 12-6. Incidence of thyroid neoplasms in
Sfemales by age, for those exposed to less than 100 rad and
those exposed to 300+ rad of radiation [Hempelmann et al,, 1975)

0-14 Years 15-29 Years 30+ Years

300+ <100 3004 <100 300+ <100

rad rad rad rad rad rad
Cases 0 2 7 5 2 0
Person-years 1054 9942 2665 15,410 2217 1530
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Table 12-8. Eniuprieration of all p_bésible combinations of exposed cdses by
age category, with at least nine exposed cases; for the data of example 12-6

Total no.  Distfibution of * Total np. Distributionof =~ Total no.  Distribution of
exposed exposed.cases . exposed exposed cases  exposed exposed cases

cases by age category - cases. ' by age category . cases by age category
16 2122 1207 . 020 . 10 - 0-10-0
15 14122 12 ‘0111 10 0941
15 21241 12:° . 0102 - 10 0-8-2
15 2°11-2.- 12 - 1-11-0. . 10 1-9-0
14 0-12-2- 12 1-10-1 - 10 . 1-8-1
14 1-12-1 120 7 192 - - 10 1-7-2
14 1-1i2 - .12 . 22100 - 10 2-8-0
14 2-12-0 127, 229-1 10 ... 2-71
14 2-11-1 - C 12 282 © 10 2-6-2
14 21027 - 11 0-11-0 9 0-9-0
13 0-12-1 11 0-10-1 - L9 0-8-1
13 0-11-2 S11. . 092 9 0-7-2
13 1-12-0-. 11 1-100 - L9 1-8-0
13 1-11-1 " 1 191 - 9 - 1-7-1
13 1-10-2° 1L 1-8-2 " -9 1-6-2
13 2-11-0. 11 - 290 9 - 2-7-0
13 2-10-1 11 281 9 2-6-1
13 9 2-5-2

2-9-2. 11 2-7-2

between level ‘of radiation exposure and mc1dence of thyroid neoplasm.
Algebralcally, the tail probablhty is expressed as

M1 N . M=k
pr(kaa) ='2 1:[ (M“> (T”> (%) ; [12-29]

where k; represents the value for the number of exposed cases in stratum

= 3k, a = 3a,; and M; = 3M, The sum of all the probabilities for
the combinations listed in Table 12-8 is 0.000600. Interestingly, the sum of
the probabilities for the-nine combinations. that are just as extreme as the
actual obsetvation, with exactly nine exposed cases, is 0.000522, nearly as
great as the sum for all 54 outcomes listed in Table 12-8. If the nine com-
binations with 10 exposed cases are included, the sum increases ‘to
0.000592, and by including the possibilities. with 11 exposed cases it in-
creases to 0.000599.: Clearly it is not necessary to carry out all 54 compu-
tations to get an answer.accurate enough for any scientific interpretation,
since one digit of prec1510n is usually adequate for the P-value.
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For the lower-tail Fisher exact P-value, which would be calculated when
the observed effect is less than the null value, the summation is

a ki Mii—k
Pr (k<) = 3 [ (1\1:11) (%) (%) 12:30]

where again k = 3k, and 5o on.
To obtain the exact mid-P value, only half the probability of all obser-
vations as extreme as that observed should be included in the summation:

ki No; Mij—ly
200 (5 (%)
! ki Mii—k;
" k=a+1 11:[1 (Nl:l) <%> (%) [12-31]

N K N My =k
Lower-tail probability = Z H( ")( ”) <—ﬂ>

GG e

For the data in Example 12-6, the exact upper mid-P value would be
one-half of 0.000522, which was the probability for the nine possible out-
comes with exactly nine exposed cases, plus the probability of all the pos-
sible outcomes more extreme than nine exposed cases, which was a total
of 0.000078. Therefore, the exact upper mid-P value is 0.00034.

Upper-tail probability =

Approximate Hypothesis Testing with Stratified Person-Time Data. For strat-
ified data, asymptotic test statistics are constructed according to the same
principles used for crude data. The test variable is still the number of
exposed cases, which is the sum of a, over the strata. The null expectation
and the variance for the number of exposed cases is calculated within each
stratum, and these results are summed over the strata. Thus, the null ex-
pectation for the number of exposed cases is

N
EA) = > _N;Mu

i=1 i

and the variance, based on the binomial model, is

N
var(a) = >, _MﬂgyNo‘
i=1 ;
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which gives as the test statistic

,Z,ai _,,Zl T, .

X = [12:33]

i MHNHNOi
i=1 ng .

Formula 12-33 is identical to formula 11-1 for crude person-time data ex-
cept that the three components of the test statistic are obtained by sum-
ming their stratum-spegcific -contributions over the strata.

For the data in Examplé 12-6, the test statistic is cal';ulated as follows:

A = no. 'Gfgexposed cases =0+ 7 +2=9

“( 1054 2665 ) (221,7) _
- =2|—="= 222 )4 o) =304
B4y = 2 -(10;996_'> 1 <18,075 - \3747
o 1054 [ 9942\ . 2665) (15,410)
| Vara) =2 <10,996> <10,996> + 12 (18,075 \18075

{2217\ {1530
it — | = 216
+2 (3747) (3747)

and

_A-BA) 9314 _ 308"
X \Ram | VIS

which c”()ft‘r',‘e‘sﬁondS,to a one-tail P-value of 0.000034 or a two-tail P-value
of 0.000069. - o '

The P-value calculated from this approximate test statistic, like the exact
Pvalue, is very small, but the two P-values-do not agree closely. The exact
mid-P valué is about 10 times the rhagnitude of the approximate P-value.
The discrepancy stems from the small numbers involved but is also Fglated
to the fact- that the normal approximation is poorer in the extremities of
the disttibution. o } K _ .

Nevertheless, comparison between the exact and the asymptotic test
raises the question of the nature of the applicability criteria for the asymp-
totic test statistic with regard to the number of observations. There is no
simple answer to this question, but one important point should be .em-
phasized: The large-numbér condition need apply oqu to the summations
involved in formula. 12-33, not to each individual stratum. For person-time
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data, then, formula 12-33 would apply even if each strarum had only one
case, provided that there were enough such strata to allow the distribution
of the total number of exposed subjects in all strata to be well enough
approximated by a normal distribution. The large-number condition nec-
essary for formula 12-33 to apply, then, could be reached by having few
strata with many observations in each one or many strata with sparse data.
With one stratum, formula 12-33 reduces to formula 11-1. A stratum with
no cases has no information and contributes nothing to A, E(A), or Var(A).
As a second example of the application of formula 12-33, consider the
data in Example 12-3. The large number of cases in each of these two strata
make it unnecessary to contemplate any exact test. The P-value can be
determined as follows (considering male gender as “exposed”):

A = no. of exposed cases = 14 + 76 = 90

1516 949
41 = 22 ) = 69.
(3217) + 197 (3194> 69.8

_ [ 1516) (1701 949\ (2245\  _
Var(A) = 24(3217> (—3217> + 197 (——3194> <—3194> = 471

E(A)

il

90 - 69.8 _
X= @
Py, = 0.0017

HYPOTHESIS TESTING WITH STRATIFIED CUMULATIVE INCIDENCE,
PREVALENCE OR CASE-CONTROL DATA (2 X 2 TABLES)

Exact Hypothesis Testing for Stratified 2 x 2 Tables. As with person-time
data, exact hypothesis testing for stratified 2 X 2 tables can be accom-
plished by enumerating all possible outcomes of the number of exposed
cases across strata. The joint probability of each combination is calculated
as the product of the hypergeometric probabilities of each 2 X 2 table.
The exact P-value is determined in the usual way by summing the proba-
bilities in the tail of the distribution. Each 2 X 2 table is considered to
have all marginal totals fixed. Using the notation of Table 12-4, we have,
for the Fisher P-values,

[12-34]

for the upper tail, when the effect estimate is greater than the null value,
and :
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i ssiblé’ rations osed cases by
wble 12-9. Enumeration of all possible combinations of expose
ge category, with at least four exposed cases, for the datd in example 12-5

otal no Distribution of  Total no.  Distribution of  Total no. Distriblclition of
'xp‘osed exposed cases  éxposed exposed cases - exposed  exposed cases

by age category

:ases by age category ~ cases - by age category ~ cases -
6 124 w10 - © 10-0 6 6-0
5 12-3 Co100 91 - 6 5-1
s 1-4 - o 1007 . 82 6 42
14 122 io | -3 6. 3-3
14 11-3 10 64 -6 24
14 104 - 9 9-0 5 5-0
13 12-1 9" 81 - 5 41
13 11-2 9 7-2 S 3-2
13 10-3 . 9 6-3 5 2:2
13 o4 . 9, 5—4 »_5 1
12 12-0 8. 8-0 4 4-0
12 11-1 .8 7-1 4. 31
12 10-2 8 - 6-2 4. 2-2
12 9-3 8 - 5-3 4 1-3
12 84 8 44 4 04
11 110 .7 7-0
11 10-1 7. 6-1
11 92 7 5.2
11 83 ., . .7 4-3
11 7—4 7 34
which gives as the test statistic |
X N NHMII
x'.:'= R [12-38)

NuNoMuMo
Tiz(Ti - D

le

The above test statistic, first proposed by Mantel and 'Haens.zel in 1195'9
and known as the Mantel-Haenszel test, is widely used in epidemio cs)gg:
analyses and other applications in which stratified 2 .>< 2 tab!?s are Lclross.
It is optimal. in statistical- power when the odds ratio is uni orm aif oss
strata, but it is generally the most useful and convenient test eve}r: the
odds ratio varies across strata. The x takes a.value of zero only when h
Mantel-Haenszel pooled éstimator of the odds ratio (formula 12-26) equ sf
unity, so that the test statistic may be 'considere?d a test .o.f the depaurn,\r:f o
ORyy from unity. The large-number appliczibihty condition does not refer
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to individual strata but only to the summations in formula 12-38. Individual
strata may each have as few as two subjects as long as no marginal total is
zero; if a marginal total is zero, the stratum has no information. The test
statistic will be applicable if there is a sufficient number of strata, even
with sparse data. As we shall see in Chapter 13, the test is the one that
applies even to the analysis of matched-pair data.

The null hypothesis of no relation between tolbutamide and death in
the University Group Diabetes Program for the age-stratified data in Ex-
ample 12-4 can be evaluated with the Mantel-Haenszel test. The number
of exposed cases, where “exposed” indicates tolbutamide therapy, is 8 +
22 = 30. The expected number under the null hypothesis is

_ (106) (13) | (98) (38) _ _
E(A) = 226 + 185 - 6.10 + 2035 = 2645

and the variance of the number of exposed cases is

var(a) = (100) (120) (13) 213) _ (98) (85) (38) (145)

(226) (225) (183 (182)
= 306 + 753 = 10.60
The test statistic is
30 — 2645
= T - 1.09

which gives a one-tail P-value of 0.14, or a two-tail P-value of 0.28. Note
that since tolbutamide has been considered a preventive of the complica-
tions of diabetes, departures from the null value were expected to occur
in the direction of preventing death rather than in the opposite direction.
Therefore, a one-tail P-value should technically be the lower tail of the
distribution, in the direction of prevention, rather than the upper tail.
Since the data demonstrate a positive association between tolbutamide
and death, the one-tail P-value should be 1 — 0.14 or 0.86. The two-tail P-
value is 0.28 whichever the direction of the prior expectation about de-
partures from the null value.

If the Mantel-Haenszel test is applied to the sparse data in Example 12-
5, the test statistic is

i [(12) 07) . (6) (4)]
1175 95

X = = 241
(107) (1068) (12) (1163) _ (6) (89) (4) 91)
1175y (1174) (95) (94)
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which gives B, = 0.008, a result that is considerably different from the
exact mid-P. value of 0.023. The discrepancy.is not surprising in view of Var(pooled IRD) = Var [2 == (IﬁDQ] i
the small numbers and the striking asymmetry of the distribution, in which e : ZW‘ = 3
more than half of the probablhty distribution corresponds to the two most ( w)
extreme outéomes out of the 17 pQSSlblhtleS for the number of exposed
cases. o . . The weight is squared because any constant multiplier of a random vari-

: : : : able is squared as a mulnpher of variance. Each w; is taken as the inverse
of the variance of IRD, in pooling, so the overall variance is

Var(IﬁD,)

Contfidence [nterz/als for Pooled Estimates of Eﬁ”ect

Confidence intervals for pooled estimates of effect can be calculated ex-
actly frony the statistical models adopted. to describe the variability of the
dara, or they can be calculated approxmately from asymptotic formulas.
The exact calculations- are exceedingly comphcated and increase quickly
in difficylty as the number of observations-increases. Nevertheless, ready
availability of microcomputérs now makes it convenient to calculate exact
confidence limits for pooled effect estimates in many applications, since
the progtamming and-memory requirements dre not great; the calculation
time may be long even with a computer, but the cost of computer time for
such applications is becommg negligible. In view of the relatively large
effort expended on the ‘collection and processing of epidemiologic data,
it seems worthwhile to obtain exact confidence limits for sparse data, even
if stratified, if the means to do so are at hand. Consequently, exact formulas
for confidence limits are presented in the followmg discussmn whenever
applicable. .

For most-situations, On the other hand, it will be preferable to use the
straightforward and convenient noniterative approximate formulas for the
calculation of confidence limits. The choice of an approximate formula for
interval estimation generally depends on the type of point estimator used,
since the variance approximation depends on how the point estimate is
calculated. Therefore, the description of types of approximate confidence
limits is presented accordmg to the types of pooled point estimators de-
scribed earher in this chapter.

CONFIDENCE INTERVALS FOR STRATIFIED PERSON-TIME DATA

Incidence Rate Dzﬁ’erence No method exists for obtaining exact confi-
dence limits, for incidence rate difference because the total number of
cases is not independent of the rate difference. Approximate confidence
limits can be abtained in several Ways accordmg to the method of point
estimation.

DIRECTLY WEIGHTED POINT ESTIMATE. Thee basic approach relies on the gen
eral statistical rule that the variance of a sum of mdependent random vari-
ables is the-stim of the variance of each random variable. Since the directly
pooled estimator for incidence rate difference is a sum of random vari-
ables (the stratum-specific estimates of incidence rate difference) multi-
plied by a constant (the weight for pooling), an overall variance for the
pooled estimator wopld be .

zwi

N
Var(pooled IRD) = . : -

R

This variance can be used with the pooled estimator and formula 10-2 to
compute approximate confidence limits.

. Consider the pooled estimate of incidence rate difference for the data
in Example 12-2, 595 X 10~ %r~! From equation 12-39, the variance of
the estimate is approximately the inverse of the sum of the weights, or

1/(65.16 X 10%r?) = 1.535 X 10-8yr-2

which gives a standard deviation of
V1535 X 10817 = 1.239 X 10-4yr~!
A 90 percent confidence interval for the pooled estimate is obtainable as

595 X 107%r~! + 1.645 (1.239 X 10~%r-1)
= 39 X 107%r~1,80 X 10~ %r-!

A second method of obtaining approximate confidence limits for inci-
dence rate difference is to compute test-based limits from the point esti-
mate and the x from formula 12-33, using formula 10-6. For the data in
Example 12-2, the x is 3.319, giving, for 90 percent confidence limits,

IRD(1 + Z/x) = 595 X 10~ (1 £ 1645/3.319)
= 3.0 X 107%r~1,89 X 10~%r~!

a wider result than that obtained above. The test-based approach gives
wide results because it does not assign an extremely heavy weight to the
youngest age stratum as the direct approach does; the small numbers in

the youngest stratum result in a small variance for the incidence rate dif-
ference estimated from that stratum.
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VAXIMUM UKELIHOOD POINT ESTIMATE. The maximuni likelihood estima-
tion of IRD requires the simultaneous maximum likelihood estimation of
the nuisance parameters Ry for each stratum. ‘These fitted or smoothed
estimates Of Rg.can be.used in conjunction with. the ‘pooled estimate of
IRD to get an improved estimate of the variance for the incidence rate
differenice in each stratum by substituting Ry, for b/Ny and R, + IRD for
a/N,, in formula 12-1. The improved vafiance estimate. is

R + IRD | —Rﬂ : [12-40)

Var(1RD) =
'ar(.,. 3 N, N,

The overall variance of the pooled rﬁaximu‘m likelihood estimate can be
obtained by taking . - .

[12-41)

= N;Ny
R No(Ry + IRD) + NH(R;H) ..

which is the reciprocal ¢f the variance in formula 12-40; these weights are
then used to get the overall variance.as in equation 12-39.

For the data in Example 12-2, the weights estimated according to for-
mula 12-41 are, from- the youngest to the oldest age categories, 57.6 %X
10912, 49 X 10%r% 0.7. X 10%r? 0.7 X 10%r’, and 0.2 x 10%r® The sum
of these weights is'64.1" X 10%r?, and _therefore‘me variance is taken as

A = ____1_— = 1 Y —~8 -2
Var(}RD) = 1 % 1090 = 156 X 10~ %r
which is close to the value of 1.53 % 10~ 8r 2 obtained from the directly
pooled weights. A 90 percent confidence interval for the maximum like-
lihood estimate of 5.0F X 10~ *yr~is-obtained as

591 x 10-4r" = 1.645 (VIZ6 X 10-%r9)

: = %9 x 10-%r~!, 80 X 107%yr~!

which.i‘s.vir'tUally identical to the limits _obtained from the weights used in
direct pooling. C -

Incidence Rate Rartio. Confidence limits for the pooled estimate of the
ratio of incidence-rates. ffom stratified ‘data can be obtained by exact com-
putation or by approximate methods. The exact computation requires it-
erative calculation of a complicated sum of probabilities and consequently
requires a computer. :
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EXACT ini
g t;(ir\;?([))srqgﬁ .LIMfITS. &?btammg the exact limits necessitates express-
ability for the observations in ter inci
: ms of the incide
ratio (IRR). In stratum i, let th ili dbeu
, € probability that a case is
exposed be u,
From formula 11-9 or 11-10 the following relation can be derived: l

Na(IRR) IRR

" Ni(IRR) + N, = B [12-42]

1i

Exact Fisher limits for IRR and IRR can b i
‘ IRR e determined from f; -
42 and the following modification of formula 12-29: mformula 12

o2 = g H (k) U (1 — yyMmi-n [12-43]
and
1-o2= =Z+ 1 H (Nli‘) ) (1 = uik (12-44)

in vagch k; represents the number of exposed cases in stratum i, k = 3k,
in ; 1222 and M; = 3ZM;,,. The value for IRR that satisfies equations 12-42,

2 3 corre§ponds to the Fisher exact lower confidence bound; using
equation 12-44 instead of 12-43 gives the Fisher exact upper conﬁ’dence

bound. Mid-# exact limits are obtainable b i
bility for k = 2 into the tail: e by allotting only half the proba-

k=a j=1

1 YoM
/2 = 5 E H (k:‘> Q) (1 — Ei)Mu—k,-

* I <1ﬁ:> @) (1~ gy (1249]

k=a+1i=1

gives the lower bound ituti - ill gi
ives ¢ » and substituting 1 — a/2 for o/2 will give the upper
. \?Cgth the help qf a computer, exact 90 percent confidence limits for the
i:r)c;1 ence rage ratio using the data in example 12-6 can be calculated. The
isher-type 90 percent interval is 2.43 to 1 i '
interval is 2.71 1o 16.0. 50 andthe midP 90 percent
. AfPPROXIMATE CONFIDENCE LIMITS. The formulation of the approximate lim-
its for the three different types of point estimates are as follows:

.1. l?z'rectly Weighted Poinr Estimate. The variance of the directly pooled
incidence rate ratio should be estimated after a logarithmic transforma-
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tion, so that the limnits canbe set on the logarithmic scale. The variance
’ . . .

formula resembles 12-39:

| e L 12-46
- Var[ln(pooled.IRR)] = ﬁ- { ]

where -
_ab. (12-47)

VT 2+ b

For the data in Example 12-3, w, = 140/24 = 583, W, = 9196/197 = 46.7,
and ' '

D B :
i RR)] = —————— = 001
.Va_r{ln(ppoled IRR)] = 585 + 467 0.019

The dijf‘e‘ctly pooled ﬁ-oint estimate is 150, giving a 90 percent confidence
interval of -~ |
| explin(1.50) + 1,645 V0019 = 1.20, 1.88

v - o N . . s i_
2 Maximum Likelibood Point Estimate. The asymptthcally efﬂq:gz :1:;—
n‘.xum likeliiood estimator of the incidence rate ratio has a vari
mate of -
arRR) = X (12-48)
© VAR = T N/

>

2
R g e
- Ny

| o vide R i \riance
It is necessary to divide the above by (IRR)* to approximate the var

of In(IRR):
' o . L1t {12-49)
var[1n(IRR)] = A - MNN,
: : (IRR) E
A =1 ~ ‘I:IQ
| (‘RR * N)

i
formula 12-46 if a/b; is replaced by

7.
likelihood estimate of IRR

The above formula is identical to
(IﬁR)Nli,. o in the wgight given in formul_a 12_-_4

For the data in Example 12-3, the maximum
is 1.50, and the variance of In(IRR) is
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1
24(1701/1516) 197(2245/949)
(150 + 170171516~ (1.50 + 2245/949)

= 0.019

(1.50)

which gives a 90 percent confidence interval of
expl[ln(1.50) = 1.645 V/0.019]) = 1.20, 1.88

This interval estimate is virtually identical to that obtained by the directly
weighted approach.

For the data in Example 12-6, the approximate 90 percent confidence
interval around the maximum likelihood estimate of IRR, which is 6.55, is
2.7710 15.5, which agrees quite well with the 90 percent exact mid-P in-
terval of 2.71 to 16.0.

3. Mantel-Haenszel Point Estimate. The Mantel-Haenszel estimator for in-
cidence rate ratio (formula 12-27) can be considered a weighted average
of stratum-specific estimates of the incidence rate ratio with weights equal
to bNy/T; and the approximate confidence limits calculated on this basis.
A more stable formula for the variance, however, can be obtained by con-
sidering each a, and b; to be an independent Poisson variate [Tarone, 1981 1,
or by considering each a, to be an independent binomial variate condi-
tional on Ny; [Greenland and Robins, 1985]. The latter approach yields

i M,,-N“NO‘-/T‘.Z
Var{In(IRR,,)] = —=1 (12-50]

For Example 12-3, the above formula gives Var[In(IRR,;,)] = 0.019, the
same as the result obtained using the directly weighted procedure above.
The resulting confidence interval, 1.20~1.88, is likewise identical to the
interval for the directly weighted point estimate.

Test-based limits for the data in Example 12-3 can also be obtained for
the Mantel-Haenszel point estimate (1.50) and the X statistic from formula
12-33 (2.94):

1.50¢.= 1645290 — 1.19, 1.87

These test-based limits are in close agreement with the results obtained
from the other approaches. Test-based limits can also be obtained for the
directly weighted point estimate.

For the data in Example 12-6, for which IRR,,, = 7.30, the variance
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For the data in Example-_12-6, for which IRRyy = 7.30, the variance
calculated from formula 12-50 is 0.344; which gives a 90 percent confi-
dence ifiterval for IRR, of 2.8 to 19. For.the same data, the test-based 90
percent confidence limits can be calculated from the x of 3.98 as

C 7“3()0:1.645}5.9?) =3217

Consid‘e‘ri';xg th"e small numbers involved, both of ﬂlgse approximate in-
tervals are.in reasonably good agreement with the mid-P exact 90 percent
confidence interval 6f 2.7t6 16. :

CONFIDENCE INTERVALS FOR STRATIFIED CUMUIATIVEAINCIDENCE DATA
Risk Difference. Because of the nuisance parametef R?l'. in each stratum, po
approach exists for obtaining exact. confidence 11m1t§ for a _po‘oled risk
difference or prevalence difference. Approximate confidence llm‘ltS can be
obtained by methods dnalogous to those described above for incidence
rate data. - P - ‘ .

DIRECTLY. WEIGHTED POINT ESTIMATE. The variance of the poolled r1§k dif-
ference can be expressed in terms of the stratum-specific weights in the
same way as that used for ir_icidencge rate data (formpla 12-39):

-:' “~ 1
o Var(pooleq RD) = g; (12-51]

where the weights are those given in ngrhgla 12-7:

o NN
i Nglai(Nli - 3«1) _+ N?ibl(NQI - bi)

The square root of .the above variance éstimate in formula.12.—51 can be
used with formula 10-2 to obtain apptoximate confidence limits. For Ex-
ample 12-4; the stratum-specific weights are 1,009 and 280 (Table 12-5), so
that Zw, = 1,289 and .the variance estimate is 1/1,289 = 0.00077§. The
square root is 0.028, so that a 90 percent confidence interval estimate,
using the weighted point estimate of 0.034, would be

0.034 + 1.645(0.028) = —0.012, 0.080

An alternative is to uéé test-based confiqeric':e.lirhits (formula 10-6),‘based
on the'x from formula 12-38. For the data in Example 12-4, the x is 1.09
and the test-based confidence interval is '

0.034(1 = 1.645/1.09) = —0.017, 0.086

which is slightly widet than the result using the estimates of stratum-spe-
cific variance. ' :
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MAXIMUM LIKELIHOOD POINT ESTIMATE. Again, the maximum likelihood so-
lutions for the pooled estimate KD and the unexposed risk Ry in each
stratum can be used to improve the variance estimation for the rate differ-
ence in each stratum. The improved estimates can be obtained by substi-

tuting Ry, for by/Ny and Ry, + KD for a/N ui; these substitutions can be made
directly into formula 12-7, giving the improved weights

NNy
- N‘”(ﬁ‘“ + Rb) - ﬁOi - R\D) + Nnﬁm(l - ﬁo.)

w;

(12-52]

which can be used in formula 12-51 to get a variance estimate for the
maximum likelihood estimate of RD. ‘

For the data in Example 12-4, the weights calculated from formula 12-
52 are 1,008 and 280 for strata 1 and 2, respectively, which gives a variance
of 1/(1,008 + 280) = 0.000776. Note that the weights and variance esti-
mate are nearly identical to the results obtained from the noniterative di-
rectly weighted procedure because the number of observations within
each stratum is large. The resulting 90 percent confidence interval is
—0.012, 0.080 as it was with the directly weighted approach.

Risk Ratio. Exact confidence limits for risk ratio are not calculable, since
the likelihood equation contains the nuisance parameters Ry, for each stra-
tum i. If risks are small, however, the odds ratio measure may be used to
approximate the risk ratio. Since the odds ratio can be estimated without
nuisance parameters, the likelihood can be expressed conditionally on all
the margins of the 2 X 2 table, allowing the calculation of exact confi-
dence limits for the pooled odds ratio. This procedure is described below
for case-control data.

Approximate confidence limits for pooled estimates of the risk ratio can
be obtained for directly weighted, Mantel-Haenszel, or maximum likeli-
hood point estimators.

DIRECTLY WEIGHTED POINT ESTIMATE. As usual, approximate confidence
limits for ratio measures should be set on the logarithmic scale. Formulas
12-46 and 12-10 can be used to obtain the variance of the logarithm of the
pooled risk ratio estimate. For the data in Example 12-4, the stratum-spe-
cific weights, given in Table 12-6, are 3.25 and 11.6. The Sw, = 14.85 and
the variance of the logarithmically transformed point estimate is 1/14.85
= 0.0673. The weighted average of the logarithms of the stratum-specific
estimates of the risk ratio is 0.270, which is the antilogarithm of the pooled
estimate of the risk ratio, 1.31. Approximate 90 percent confidence limits
can be set as follows:

0.270 = 1.645 (V0.0673) = —0.157, 0.697

e™01, €97 = 0.86, 2.0
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MAXIMUM LIKELIHOOD. PélfiT ESTIMATE. Fo‘fmufa 12-10 can be improve.d by
substituting N, R for 4 and NoRy; for b, where Ry and KR are the fitted
maximum Jikelihood estimates. The improved weights ‘are

: _ : (R’k)ﬁoiNmNu _ A {12-53]
TR (4 — RNy + (1 - RRRON,,

Whicfl ma‘yA be used in fo'.rmlila-12—46' to get an estimate for the pooled
variance. For Example 12-4, the maximum likelihood po.int estimate qf the
risk ratio is 1.31; Ry =. 0.0504, R;; = 0.1781, and the 1rpproved weights
are 3.44 and 11.4. The Sw, for these improved weigth is 14.83; aqd ttic_e
variance of the logarithmically transformed point estimate 18 1/14.83.—
0.0674, mearly the same result as that abtained from the stratpm-speaﬁc
v'arian‘c,‘e estimates. The 90 percent confidence interval is obtained on the
log scale as . : : :
In(131) % 1645 (VO0678) = —0.156, 0.698
and the actual limits are
o o, 998 = 086,20
MANTEL-HAENSZEL POIIiIT EST'IMATE. The Mdntel-Haenszel point estimator of
the risk ratio from follow-up data with.count dqnqmin_ators ta.kes the same
form as the point estimator for the rate ratio with person-time denomi-

nators (formula 12-27).-The variance for the logarithm of RRyy; is approx-
imately [Greenltand and Robins, 1985]

N o : -
z (MuNuNm — abT)T?

i=1 .
[IZI i.] LZ1 Ti':

For the data in Example.;'li—4, the.above expression gives Var[ln(RRMH)_]
= 0.0671; cdubl'e'd with the point estimate of RRyy = 1.33, the approxi-
mate 90 percent confidence limits are .-~ -~

[12-54]

Var(ln(RRud] =

exp(in(133) * 1.645 VO0671) = 087,20

which are r-learly.* identical to the limits calcutated for the directly weighted
point estimate and the maximum likelihood point estimate.
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CONFIDENCE INTERVALS FOR THE ODDS RATIO FROM STRATIFIED CASE-
CONTROL (OR PREVALENCE) DATA

Confidence limits for the pooled estimate of the odds ratio from stratified
2 X 2 tables can be obtained by exact computation or by approximate
methods. The exact computation is exceedingly complex for any but the
most sparse data and requires a computer program [Thomas, 1975).

Exact Confidence Limits. The expression for the probability of the obser-
vations in a single set of N 2 X 2 tables, conditional on the marginal totals
for each 2 X 2 table and the odds ratio, is

Nli NOi a
(a\> <bl> OR

min(g'N”) (Nli) ( Ny ) ORk
k=max(0Q,M1; — Ngj) k M“ -k

Tail probabilities for exact confidence limits can be calculated by taking
the sum of the probabilities calculated in expression 12-55 for all possible
values of 3a; equal to or greater than the actual value observed, and for
all possible combinations of cell frequencies that yield a given value for
2a;. To get mid-P exact limits, only one-half the probability determined by
expression 12-55 should be added to the summation for every possible
combination in which Za, equals the observed value. The exact lower con-
fidence limit is obtained by determining through trial and error the value
of the odds ratio that produces an upper-tail probability of «/2 (a equals
the complement of the desired confidence level). The upper confidence
limit is obtainable by summing over all values of Za, that are less than or
equal to the observed value and finding the value of the odds ratio that
gives a lower-tail probability of o/2.

For the data in Example 12-5, the observed value for 3a, is 4; the 55
combinations for which $a, =4 are listed in Table 12-9. Using expression
12-55 to determine the contributions to the tail probability, 90 percent
exact mid-P confidence limits are found to be 1.30, 9.78. The correspond-
ing Fisher limits are 1.09, 10.9.

Pr(data) = I_] (12:55)

Approximate Confidence Limifs. DIRECILY WEIGHTED POINT ESTIMATE. For-
mulas 12-46 and 12-13 can be used to obtain approximate confidence lim-
its for the directly weighted pooled estimate of the odds ratio. As usual
with a ratio measure, the limits are first set on the logarithmic scale and
then translated back to the original scale. For the data in Example 12-5,
using the weights indicated in Table 12-7, the sum of the weights is 2.85,



nd the estimated variance of the Iogarlthm of the pooled odds ratio is 1/
85 = 0.351. Apprommate 90 percent conﬁdence limits are

exp[ln(3.82)':i 1.645 \/0.351] =144,101.

thich differ somewhat from'the exact limits, but. the discrepancy is toler-
ble, especially considering the width of the interval. In view of the small
umber of cases in the analy51s the approx1mat10n seems reasonably
ood.

MAXIMUM LIKELIHOOD POINT ESTIMATE. With maxitum likelihood point-es-
imation, fitted cell entries in the 2° X 2 tables can be used fo derive an
stimate of thie variance. The values for a, b, ¢, anel d, that satisfy equation
2-23 or equation 12-24 and the marginal totals of each 2 x 2 table can
se substituted in equation 12- 13 .

[12-56]

T
+ .
i

L=

ol =

“he variance of the logarlthmlcally transformed odds ratio point estimate
s /3w,

For the data in Example 12-5, the cell frequencies for the uncondmonal
naximum likelihood estimate, satisfying equation 12-24, are given in Table
12-10. From these fitted cell frequencies, w; = 2.31 and w, = 0.54, which
jives 2w, = 2.85 and a variance of 0.351. Approxxmate 90 percem confi-
lence limits are

ex'p[ln-(s.79) + 1.645 V0351] = 1..'43, 10,0'-

Jsing equation 12 23 rather than 12 24 to calculate the fitted frequencies
iccording to the conditional likelihood is considerably more difficult; for
hese data the a cells for the two-strata using equation 12-23 are 3.238 and
).762, which are nearly identical to the unconditional values in Table 12-
10 and produce the same approximate confidence interval. Because the
;omputation necessary to get the ¢onditional fitted cell entries from the
terative solution of equations 12-22 and 12- 2_3 is -difficult, it is easier to
salculate the exact confidence limits instead.

Another approach, which was proposed mmally by Cornﬁeld [1956] for
1single 2 X 2 table, was extended by Gart [1971] for asetof 2 X 2 tables.
The approximate lower lnmt is the solution to the equatlon

_ 2a - ZEi

= 12-57
VVar(Za) - [ ]

Zan
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Table 12-10. Fitted maximum likelibood cell entries for the
data in example 12-5; pooled estimate of odds ratio is 3.79

Maternal age < 35 Maternal age 35+
Spermicide use Spermicide use
+ - Total + - Total
Down syndrome 3.247 8.753 12 0.753 3.247 4
Control 103.753 1059.247 1163 5247 85753 91
Total 107 1068 1175 6 89 95

where E; is the expected value of a, conditional on the value of the odds
ratio at the lower boundary of the confidence interval,

Ei(MOi — Nn + Ei)
(Mu - E;) (Nu - El)

B:

Z.;, is the value of the standard normal statistic that corresponds to the
desired level of confidence, and

LI Y 1 1 1 -1
Var(Za) = = + + +
(Za,) 2, [Ei M,—-E N,-E M,—-N,+ Ei]

To obtain the upper bound to the interval, Z,, is replaced by —2Z,.
Equation 12-57 must be solved iteratively for each limit. In principle this
method has the advantage of approximating the variance using the cell
frequencies that correspond to the confidence limit value of the odds ratio
rather than the point estimate.

For the data in Example 12-5, the fitted cell frequencies for the a cell
using equation 12-57 to obtain the lower limit of a 90 percent confidence
interval are 1.542 for the young stratum and 0.356 for the older stratum;
note that these do not add to Za, = 4 as in point estimation, though the
fitted cell frequencies within each table still conform to the marginal totals
of the individual table. The lower confidence limit satisfying equation 12-
57 is 1.48. For the upper limit, a separate iterative solution is required to
get the fitted frequencies for the a cell of 5.772 and 1.370 for the young
and old strata, respectively. The upper conﬁdence limit corresponding to
these values is 9.72.

MANTEL-HAENSZEL POINT ESTIMATE. The statlstlcal properties of the Mantel-
Haenszel estimator of the odds ratio have been elaborated under two dif-
ferent limiting situations: Either the number of subjects per stratum be-
comes large, or the number of strata becomes large with few subjects per
stratum [Hauck, 1979; Breslow, 1981]. Variance formulas have been pro-



posed for the Mantel-Haenszel odds ratio estimator for ea'u':h of these lim-
iting situations; Breslow and Liang [1982] _pr‘gpose‘d weighupg the two for-
mulas to derive a.combined formula that is generally apphcable. More
recently, Robins and c’oaumor_s‘.[1986-] have developed a single variance
formula that should be generally applicable for the Mante‘l—.Haenszel odds
ratio estimator; . T

S Ses+om XS
Varlin(OR,g)] = —=—— + = e

IS T R EN

[12-58]

=1

where
‘Pi.:= (ai + dx)frx o
Q= (b + _C‘)/T‘
"o Re=ad/T -
and ' )
S = bo/T -

For the data in Example 125, the above formula gives an estimated
variance of 0.349, which yields.a 90 percent c‘gnﬁdence interval of 1‘.43 o
10.0, a result that is nearly identical to the'limits for the directly weighted
and maximum likelihood point estimates. o

Test-based 90 percent confidence limits for:th‘e data in Example 12-5 are
obtained as =~ .’ S :

. 3.78(1:1.645/2.41) = 1531 93—7

which are ﬁarfbvs}er than k_the' limits obtained from formula 12-58. The te.st—
based approach for approximate confidence limits can also be used with
the directly weighted point esdimate.

VALUATION AND DESCRIPTION OF EFFECT MODIFICATION ‘ .
The techniques for deriving a pooled estimate of an effecF tha't is un orm
across categories of a third variable should not _be' applied if it app;:fars
unreasonable to-assume that the effect is indeed umform. Whep ane ect
is believed to vary across strata—that is, when effect moc'hflcatlop is pl:ief:[
sumed to exist—the focus of data analysis and presentation shou‘ld s
from the control of confounding to a description of hpw the effect is mpd—
ified by the stratification factor. It is important .to.reahz.e.that confounding,
when present, is manifest only in the crude measure of effect; Wh‘CI:l effect
modification is present in the data, none _Qf' the options for describing the
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effect involves the crude measure, so the issue of confounding is
superseded by the description of effect modification. Determining
whether effect modification is present in the data is clearly an important
decision that should be addressed in every stratified analysis.

It is important to inject a note of caution about the methodology for
assessing effect modification. The evaluation of effect modification often
appears to rest on a seemingly mechanical application of statistical tests.
The epidemiologic issues of interaction underlying the statistical evalua-
tion of effect modification are subtle and can become muddled in a purely
mechanical approach. These issues are discussed in Chapter 15, which
supplies an epidemiologic perspective for the statistical methods de-
scribed in the following section.

In addition to the epidemiologic considerations, there are statistical con-
siderations that warrant a cautious approach to the statistical evaluation of
effect modification. The more general statistical tests for effect modifica-
tion have low power because the alternatives to the null hypothesis that
they test are not very specific. As a result, “nonsignificant” P-values are
even more difficult to interpret correctly. Furthermore, given the many
influences of selection biases, misclassification, confounding, and other
biases as well as causal effects, it is seldom that one would expect any
effect to be precisely uniform for any scale of measurement. Thus, the null
hypothesis of a uniform effect often amounts to no more than a staristical
contrivance that at best should be accepted as only an approximation to
reality and generally should be regarded with skepticism.

Evaluation of Effect Modification

The first step in evaluating effect modification is to inspect the stratum-
specific estimates of effect. While some random variability in stratum-spe-
cific estimates is to be expected even when the underlying parameter is
uniform, excessive variability or obvious nonrandom patterns of variation
may be evident on inspection. The investigator’s judgment about effect
modification should not be limited to the appearance of the data in hand,
when it is available, outside knowledge from previous studies or more
general biologic insight should be integrated into the evaluation process.

Typically, however, outside knowledge is scant, and investigators will
desire a more formal statistical evaluation of the extent to which the vari-
ability of stratum-specific estimates of effect is consistent with purely ran-
dom behavior. Toward this end, a variety of statistical tests can be applied.
Part of the variety derives from the fact that ratio and difference measures
require separate evaluations for effect modification, since uniformity of the
ratio measure usually implies effect modification of the difference measure
and vice versa. The use of statistical tests has been discussed in Chapter 9,
especially with regard to assessing “statistical significance,” which trivial-
izes the interpretation of otherwise meaningful measures. The use of sig-
nificance tests is more defensible, however, when an immediate decision
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rests on the outcome of a single statistical evaluation. Such may be thfe
case if an investigator is attempting to decide.wheth'er the §xtent th vari-
ability in a set of stratum-specific estimates of effect is consistent with the
random variation of a uniform effect or, alternatively, whether there is ef-
fect modification in the-data.’ Lo o '
Statistical tests of the null hypothesis that-the effect is uniform (i.e., ex-
hibits no effect modification) generally are_:'of (WO types, one basec% ona
directly pooled .estimate of uniform effect arid the other on a maximum
likelihood estimate. . .

For the directly pé)oled estimates, the basic principle of .the test is to
compare each étratum:specmc estimate w1th the pooled estlmat‘(;3 sqléare
the difference, and divide by the variance-of the stratum-specilic eftect
estimate. The resulting quotient is summed over all strata, yielding a (I;hl-
square statistic with degrees of freedoim equal to one less than the number

of strata:

L, S ®-RP (12:59]
SR R e rel

For difference measures of_.effec't, the above‘forrnula can be appl}ed [(l-:lll-
rectly, with R denOtihg'me .stratum-specifjc dlffergncg and R.denouril;g m(;
directly pooled estimate of effect, The gtfafum-specﬁc var}ant;:]es the
denominator ‘are the reciprocals of the weights used to obtain the p'?}? .
estimate. For ratio measures of effect, it is desirable to use a logarithmic
transformation: ' S

. % k) — IncRF (12-60]
%= 2 T i)

in which R; now denotes the stratum-specific ratio estimate of effect and R
snotes the directly pooled ratio measure.” ‘
de;:so ;ens et‘hx:'ncllll)rlzcoty tﬁe application of the above tgsF for effect m.odiﬁcauon
of the incidence rate difference, consider-thie stratified eﬁect’est'lmates pre-
sented in Table 12-2. The directly pooled estimate of .tbe 1nf:1den<{e rate
difference is 5.95 X 10~#%r~'. Using the stratun?-speaﬁzc point es_ttl;lnfates
and their variances in Table 12-2, formula 12-59 gives ax .Of 8:38 with four
degrees of freedom.- From tables of the c'hi-square distribution, fthe CS;
responding two-tail P-value is 0.08, which’_ indicates ;l_qe degree 9 icim >
tency of the data in Example 12-2 with the,h‘ypptheas that the inciden
ifference is constant across age categories. ‘ .
rat;; an illustration of formula 12-60 used to evaluate the heterogenet:lljty
of a ratio measure of effect, consider’the data in Example 1?.—5 and [he
calculations derived from them in Table 12-7. The pooled estimate of the
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0dds ratio is 3.8. Formula 12-60 applied to the stratum-specific estimates
in Table 12-7 gives a x* with one degree of freedom of 0.14, which corre-
sponds to a two-tail P-value of 0.7, showing that the data are consistent
with the hypothesis of a uniform odds ratio.

The chi-square tests given in formulas 12-59 and 12-60, like the directly
weighted pooled estimators on which they are based, depend on an as-
sumption of large numbers of observations within strata. With small fre-
quencies, the tests are unreliable. With zero cell frequencies, it may not
even be possible to obtain stratum-specific variance or effect estimates. An
alternative approach is to use a statistical test based on the maximum likeli-
hood estimation of a uniform effect measure. This approach, termed a
likelihood-ratio test, constructs the test statistic from a comparison of the
likelihood equations for the data under two hypotheses: One hypothesis
is that the effect is uniform, and the other is that the effect acquires a
different value in each stratum. Although the likelihood-ratio test is also
asymptotic, the requirement for large numbers within each stratum is not
as stringent as it is in formulas 12-59 and 12-60; the test can be used even
when there are small cell frequencies in the data. With zero cell frequen-
cies the test fails, although it can be modified slightly by substituting a
small positive value for zero to get a reasonably accurate result in many
cases. The tests require previous calculation of the maximum likelihood
estimate of a uniform effect, but otherwise require no iteration and involve
only simple computation. The likelihood-ratio approach should give more
accurate results in testing for effect modification when the data are rela-
tively sparse.

The formulation of the likelihood-ratio tests for effect modification de-
pends on the effect measure and the type of data under consideration. For
incidence rate difference (IRD), the test is

Xiis= -2, [a,.ln(———(IR‘" 0 )N“) " b,.ln<-—IR‘t’;N°‘)} [12:61)

i i

Note that the pooled maximum likelihood estimate of IRD is part of the
test formula, as is the maximum likelihood estimate of IR, in each stratum.

; The estimates of IR, must be obtained in the estimation of IRD, so no

additjonal estimation beyond maximum likelihood point estimation is re-
quired to apply formula 12-61.

For the data in Example 12-2, the pooled maximum likelihood estimate
of the incidence rate difference is 5.91 X 10~%yr ™% strarum-specific max-
imum likelihood estimates of the iricidence among nonsmokers are, from
the youngest to the oldest, 8406 X 107 %r~*, 1.640 X 107%yr~%, 6,303 X
107%r™%, 1352 X 107%r~%, and 1917 X 10~ 4r~%, Using these estimates
in formula 12-61 gives a x* value of 7.4 with four degrees of freedom,
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which c'or'r'eé'pOnds toa two-tail P-value of 0:12. This value compares with
the result of 0.08 from formula 12-59. 3 _ .
For incidence rate ratio, the likelihoqd ratio test of uniformity is

2 i of — BB, )
! - =9 Ao\ —=———————<
Xn-1 2.1.='1-. 4N a(IRR + Ng/Ny)/

Mg\ . IR -
+ bln[(;) (1 ~ = No./N“)]] {12-62]

The formula requires the ‘maximum likelihood estimate of IRR, but no
nuisance parameters are involved.

For the data in Example 12-2, the maximum likelihood estimate% of IRR
is 1.42; the chi-s‘quare'test in formula 12-62 gives a value of 12.1 with four
degrees of fréeedom, which corresponds to-a two-tail P—v.alu'e of 0.016.
Thus, these ‘data are even less consistent with a uniform incidence rate
ratio than they are with a uniform incidence rate difference. For the inci-
dence raté ratio the stratum-to-stratum pattern of variation is extremely
regular, decreasing steadily from the youngest to- the oldest age Ca'tggory.
The regular pattern.of variation casts additional doubt on the validity of
the assumption of a uniform incidence rate ratio. '

For cumulative incidence difference, the likelihood-ratio test analogous
to formula 12-61 is ' -

‘n i (ﬁo _+.ﬁD)N“ ! RmNOi .
X = =2 ; [ai-ln(—»‘—;— + biln b,

+.'cilri((l =Ry = @)N1>' + d;ln(g;R‘;‘)&)] [12-63]

‘ G d

which éga'm involves not only the maximum li'kelthod estimate of the
risk difference but also the nuisance parameters {Ro}.

For thedata in Example 12-4, the maximum likelihood estimate of t_h-e
risk difference is 0.0343 under the uniformity assumption. Stratum-specific
maximum_likelihood estimates of the risk among unexposed persons are
0.0415 and 0.1892 in the young and old strata, respectively. The two sfra-
tum-specific estimates of risk difference are 0.0338 and 0.0363, showing
extremiely little variation. Accordingly, the x* from formula 12-63 is 9.091
with one degree of freedom, corresponding to a P-yalue of 0.97; this in-
dicates the extraordinarily high consistency between the data and the sta-
tistical hypothesis of a uniform risk difference in these two age categories.

For cumulative incidence ratio, the likelihood-ratio test of uniformity is
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i i

+ c,ln(ﬂ;imm) + d,1n<(—l%i)N°‘)] [12-64]

oo = =22, [ailn(———Rm(Rg)N") + an(B'i‘)—Nﬂ)

which differs notably from the corresponding test for incidence rate ratio
(formula 12-62). The difference derives from the fact that formula 12-62 is
developed from a likelihood expression that is conditional on the total
number of cases in each stratum, thereby eliminating the nuisance param-
eters. For cumulative incidence data, however, it is not correct to condition
on the total number of cases in a stratum, and therefore an unconditional
likelihood expression must be used; one consequence is that the estimates
of the nuisance parameters {Ry} are part of the test statistic.

The data in Example 12-5 can be evaluated for uniformity of the risk
ratio. The maximum likelihood estimate is 1.311, based on the assumption
of uniformity. The nuisance parameter estimates (i.e., maximum likeli-
hood estimates of the risk among unexposed for each stratum) are 0.0504
and 0.1781 in the younger and older categories, respectively. The one de-
gree of freedom x? statistic from formula 12-64 is 0.452, which corre-
sponds to a P-value of 0.5. Thus, the data are reasonably consistent with a
uniform risk ratio despite the apparent variation in stratum-specific esti-
mates of the risk ratio (1.8 and 1.2).

For case-control (or prevalence) data, the likelihood ratio test of uni-
formity of the odds ratio is

. 53 3 by G 4 p
Xa_1 2 ; [ailn(ai) + biln(b‘-) + ciln(q) + dJn(d,):I [12-65])

where the fited cell frequencies 4, b, ¢, and g, are the values satisfying
equation 12-24,

>
[o5Y

i

OR, =

>

o

{

For the data in Example 12-5, the (unconditional) maximum likelihood
estimate of the odds ratio is 3.79. The fitted cell frequencies for the a cell
are 3.2473 and 0.7527 for the younger and older strata, respectively; the
other fitted cell frequencies are obtained from the margins of each 2 X 2
table by subtraction. Formula 12-65 yields a chi-square of 0.13 with one
degree of freedom, which corresponds to a two-tail P-value of 0.7. These
results are nearly identical to those obtained with formula 12-60.

Another test of uniformity of the odds ratio over a set of 2 X 2 tables
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Description Of Effect Modification

was proposed by Zelen {1971} Zelerl’s-test.c.alls for sumrrlnnlg1 _t6hzrc;111i
square calculated for each2 X 2 table (the square Qf formlu }211 Loon
8) and subtracting from the sum the square of the Mame -Hae szl chi
square (formula 12-38). Zelen’s procedu;fe, howev'er, is no; gene;o yives é
countetexamples have been cited in which arlfmform o s1 ra 1h e%) e
large chi-square for Zelen’s test anq a zero chi-square lresluQ ;S7JVVThis =
tum-specific odds ratios diﬂzfr considerably (Mantel et al, : p
are is not recommended. . .

Ceg;:)fe-l f)f the tests considered in this section takes into ac.count th‘zl 111);2
tern of variability of the effect estimates a.c;os's. strata. The chl—fsquare e
calculated in the application of these tests are ;ndep.endent o} zll(rjly ort djffef
of the strata: If the strata were reordered, the test resqlt wou drilc:3 o a;
In principle; it is possible to constrqct'mo;e_rp'pwerful tczls;ts str;ta eda
specific patterns of variation of the effect estimates over the au 2 an
alternative to uniformity. To do so, it would be qecess_ary to Eos. e e
pattern. For example, the 1_‘1k‘elihood test of umforrmty of tale 1an e
rate ratio for the data given in Example 12_:2: produces a P-v: 1{1; Oa r.nore,
the effect estimates decline nearly exponentially, however, o) agal more
powerful test of uniformity can be constructeq using an exponein curve
as the alternative pattern’of variation. With .tfus more powelrﬁ; lTp"})he imi
a s‘ub's't:aritially staller P-value resul;s [Mi'et.tmen' an_d Neff, ‘9 'dénce o
proved test takes into account the .d¢clin1ng pattern of the inci

ratio estimates with increasing age. :

ific’ Ao} indi re is
When the stratum-specific estimates vary enougp t.o ¥nd1cate that thrt.:,3 i
likely to be variation-in the underlying. effect, it is improper to.lpd sent
either the crude estimate of effect or a.pooled estimate. The poole o
mate of effect is a weighted average of the st‘ratumicslap;qulcf estmggt:zé bt
. N ) . Py e r
eights are intended ote precision and therefor
the weights are intended to promote pre ; °ct the
number of observations ini individual 'strata. The p_clﬁled esnlrln;tee t_ll'lsatC([)h '
» | . to. . S
quently potenti isleading unless it is reasonable to as
sequently potentially mis : ’ 0 assurme thal e
St s i mly around a uniform effec .
effect estimates vary only random da ; -
effect itself varies over strata, then the value of the pooled (;s.tltrni:;)t:tglrllcgf
lated on the assumiption of uniformity will de’pgr:}cli on éhqd 12 lrStudy o
abjects over strata i t is peculiar t6 the individu
subjects over strata in a way that is € ) vidual stuc
diffi]'cu‘l't to specify. The ¢rude estimate is 2 Worse alternatxvef, since it tdc;es
} \tdw ' Of i -specific estimates.
- even represent 4 weighted average of the stratum-specilic €
not even represent a weighte . . es .
How. then. should the effect be described when the effect is judged ta
vary 0\;er‘ strata? One simple approach is to present the esum.atzs_ ?ggal
rately for-éach stratum:-The study can be considered a st of 1r;Lf 1\Cfl al
sub‘studiés'mat are reported separately. Point '.eStlmateS anq cc;t I11 iged
intervals can.be reported for each stratum. This approach 1sho eex
when effeet modification occurs for a dichotomous-factor such as sex.
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STANDARDIZED EFFECT ESTIMATES

The drawback of reporting the results separately by stratum is that the
overall body of data becomes divided, resulting in less precise estimates
of effect in individual strata. If the stratification variable has many cate-
gories, there will be comparatively little precision for each of the several
estimates. Furthermore, a set of many estimates of effect may offer a more
detailed description of the effect than would a summary of the overall
effect in a single number, but it also provides much less cogency in its
detailed description. The entire purpose of data analysis is to reduce in-
herently complex information into a less complex and therefore more
readily interpretable form. With this goal in mind, it is appropriate to con-
sider whether there is not some meaningful way in which a set of stratum-
specific estimates might be reduced into a single overall measure. The
difficulty with the pooled estimate is the unpredictable or unspecifiable
way in which it combines the information over strata. A reasonable way to
avoid this difficulty is to combine the information over the strata using a
specified system of weights—that is, to standardize the component rates
of the effect measure to a standard distribution for the stratification vari-
able. The advantage of standardization is that the weighting of strarum-
specific information is easily specified, allowing the averaging of different
values of the effect estimate from different strata to occur in a theoretically
replicable and epidemiologically meaningful way.

Investigators may occasionally be cautioned to avoid standardization of
effect estimates if there is “excessive” variability in the estimates over the
strata, since that variability will be obscured in the overall estimate. For
example, if effect estimates in two strata point in opposite directions, let
us say indicating prevention for males and causation for females, a stan-
dardized estimate could indicate prevention, causation, or no effect de-
pending on the choice of standard. This problem exists, however, for any
single summary measure. A standardized summary measure at least has
the advantage that it weights the divergent estimates in a definable way. It
is incorrect to make uniformity of effect a prerequisite for standardization,
with uniformity, pooling is preferable to standardization to optimize pre-
cision. Standardization is useful principally when the effect does vary over
strata. Of course, it is always true that a summary measure can obscure an
underlying variability. If the variability is extreme, as it often is when effect
estimates point in opposite directions, it may be reasonable to report the
stratum-specific details. In other instances, the investigator may properly
decide that a summary result will convey enough of the intended message
without obfuscating important detail to permit standardization. After all,
there is no limit to the process of separating data into levels of detail; even
small and apparently homogeneous subgroups represent the aggregate ex-
perience of some individuals who experienced the effect of interest and
others who did not.



ble 12-11. Incidence rate ratio es‘tz'mat}e; of ,
roviary dedth for smokers relative 10 ROTISTRORELS _ '
no‘ng%ritisb male doctors, by age (data of example 12-2)

Exdct (mid-2) 90

e P;)_i'n't estimate of ,IRR.: percent confidence interval*
=44 574 oL 191,24

554 . 214, - T 132,363

564 147 - - 1.06,207

;—74 136 098,191

5-84 090 . © 065,128

confidence intervals calcuiat‘ed from fbrmt_)la‘s 11-9 and 11-1(_).' .

Consider again-the incidence rate data given in Egarpple 12-.2..lt 1? ap-
yarent that the incidence rate ratio is not ur}iforn'} over age, declln}ng. rotrln
in estithated valae of 5.7 in the youngest s‘t.ratur.n. to ]ustv below unity 1}r11 tbe
Jldest. A reasonablée approach to the presentation of the_s_e dgta mlg_Ttble
o show the stratum-specific results rather than @y summary figure ( :11t je
12-11). On the gther hand, despite the interesting ‘Ya_ljlablllt}.{ apl%ar;:ndn
he data, a single summary estimate might be'_-d_e.sued-and coul he 1ed
‘ended. In that case’ a standardized estimate of incidence rate: ratio shou
oe used; one reasopiable choice for a standard w01:11d be the perzon—yz]ar
distribution of smoking Britisti male doctors,'_wh_lch woulq lead to the

SMR:

630 © 630 - 142
[(2/18,790)"(52,4_07) + ) 4.4_4;41 .

SMR =

Naturally, a different choice of staridard would affect the repgrted estirpzﬁe
of effect. ,Fo‘r example, if each age category were assigned an..equal weight,
the resulting standardized rate fatio would be" - .

L 32 + 1044 + .. :

SRR = 20Ty - 4529850 = 1.16
2, 1 )
18.790yr 10,673y

fference‘ in the above two effect estimates reflects

The relatively gredt di andard.

only the different choice of weights involved in the §electioq ofa sltCl wd
The second approach assigns ‘relatively la.rgerv.welghts to ‘the older ag
categories in which the effeet is small. _ A _
Stindardized estimates, like pooled estimates, .are always weighted a\;
erages of stratum-specific effect estimates. For..diﬁerence measures of ef-
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fect, the weighting is the same as the standard weights, since the standard-
ized rate difference may be expressed as

SRD — IwR, 3wR, _ SwR, — Ry) _ Sw(ED)
Ewi EW‘- Ewl B Sw,

i

where w, is the standard weight for category i, Ry; is the rate among ex-
posed in stratum i, Ry, is the rate among unexposed in stratum i, and KD,
is the estimate of rate difference in stratum i. For rate ratio measures of
effect, however, the standardized rate ratio is a weighted average of stra-
tum-specific values that weights the stratum-specific rate ratios according
to the product of the weight from the standard and the rate among the
nonexposed:

_ SwR/Gw) SwR, KR _ Sw/RR
2WiROi/ (EWI) B EWiRoi B 3w/

[12-66)

where KR, is the estimate of rate ratio in stratum i and W' = WR,,

The structure of formula 12-66 reveals why the two standardized rate
ratios combining the stratum-specific point estimates in Table 12-11 are
influenced heavily by the small effect estimates in the older age categories.
Since w;" is a product of the weight for standardization and Ry;, the value
of Ry, will influence the weighting of the stratum-specific estimates. As it
happens, R, increases steeply with age for the data of Example 12-2,
thereby magnifying the influence of the older age groups on the overall
standardized rate ratio. Even the SMR, standardized as it is to the young
age distribution of the smokers themselves, is only a modest 1.42 because
of the influence of the R, in expression 12-66.

Equation 12-66 can be applied, under certain conditions, to case-control
data to obtain standardized rate ratio estimates from case-control studies
[Miettinen, 1972]. Consider the SMR, which, as always, is standardized to
the distribution of the exposed population. If Ny, is the numerator and Dy
is the denominator of the rate for the exposed source population of sub-
jects in category i, then a; = f,) (N,) and ¢; = feoy (Dyy), where g, is the
number of exposed cases in stratum i of the case-control study, ¢, is the
number of exposed controls in stratum i, and fuqy and f . are the sam-
pling fractions of cases and controls in stratum i of the source population.
To standardize to the distribution of the exposed population, w, should be
taken as Dy; = ¢/f..q, Ry; may be written as

R, = affy
Ci/ fco(i)




50 that SwiR,, = 2'_3'1/fc.a(i)' Similarly,

" b/t
= Dla
T
and
Lo N be
EWLRot = 2 d,fi i). ’
. . i=1 Yla

If the samipling fraction for cases is constant over the strata, which will be
true if the cases have been selected independently of the stratification fac-
tor, then - : : '

CUSMR = m— . [12-67]

Expression 12:67- has the usual form for an. SMR, namely, the ratio of the
observed number of exposed cases to an “expected” or null number. The
expected number is.not identicalto the expected number used for statis-
tical hypothesis testing, since hypothesis testing is premised on the cor-
rectriess of the null-hypothesis, which cannot be assumed for estimation.
The expected number in expression 12-67 indicates how many exposed
cases would have been observed if the exposure had no effect, but it in-
volves no marginal totals that include the a cell, since the a cell is the one
cell in each 2 X 2 table that differs from its null value when the exposure
has an effect.- . .

It is poss‘ib‘l‘é to choose other standards for the standardization of rate
ratio estimates- in case-contro] studies. For example, if w; is taken as the
size of the denominator for the unexposed population in k:ategory i, equal
to Dy = dyfeeyi then ' S '

$ ad

SRR = 2 S ' N [12-68)

2

N

=1

assuming once again that the sampling fraction for cases. is constant over
the strata. - : I

Confidence intervals for standardized effect measures can be calculated,
but they must reflect the. pattern of the weights assigned by the standard.
For standardized rate differences, an approximate variance formula is
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1S
Var(SRD) = oy Z wVar(RD,) [12-69]

where w; is the weight from the standard for category i and Var(RD)) is
obtained from formula 12-1 or 12-6, depending on the type of data il"he
square root of Var(SRD) can be used for the standard deviation in for.mula
10-2 to obtain approximate confidence limits. For rate ratio measures. the
usual logarithmic transformation should be used. With follow-up dat:; an
?pp.roximate variance formula for the logarithm of a standardized rate’ ra-
fo is

Var{ln(SRR)] = 2‘(”2‘:31;“)?) + Z‘(’VE‘ZV:KFI;"‘) [12-70]
iRy Wi i2

where Var(R;;) and Var(R,) can be estimated from the first and second
terms, respectively, of formula 12-1 or 12-6, depending on the type of data;
the square root of Var{In(SRR)} can be used in expression 10-4 to fin(i
approximate confidence limits.

To. exemplify the application of formula 12-70, let us determine the ap-
proximate 90 percent confidence limits for the SMR calculated from Ex-
ample 12-2. The weights from the standard, which for an SMR is always
the exposed group, and the terms of the necessary sums for the variance
of the logarithm of the SMR are given in Table 12-12. The variance is

630  1997.56

Var{In(SMR)] = —
(SMB] = 2308 * Zadar

= 0.00159 + 0.01025 = 0.01184

The standard deviation is therefore 1/0.01184 = 0.1088, and a 90 percent
confidence interval around the SMR of 630/444.41 = 1.42 is

exp(In(1.42) + 1.645(0.1088)] = 1.19, 1.70

Table 12-12. Intermediate calculations for the variance
of the logaritbm of the SMR for the daia of example 12-2

Age
category w wRy WiR; wvar(R,,) wVar(Ry,)
35-44 52,407 32 5.58 32 1556
45-54 43,248 104 48,63 104 197.03
55-64 28,612 206 14030 206 703.04
65-74 12,663 186 137.16 186 671.91
75-84 5317 102 112.74 102 410.02
Total 142,247 630 444.41 630 1997.56
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The analogbus', 'C'allculatio.ns.for a standard. in which a weight qf 1.0 is as-
signed to each category,.which gives a standardized rate ratio of. 1..16,
would result in a variance of 0.0161, corresponding toa standar.d dev1'at10n
of 0.1269. The 90 percent confidence. interval-for the SRR with uniform
weights is . SR

- explIn(1.16) = 1,645(0.1269)] = 094, 143

No genéral fofmulafion can be made for the variance of the logarithm
of a standardized rate ratio calculated from case-control data, since for
case-control data the variance formula itself depends on the. choice of a
standard. For the SMR (calculated from formula -12—67), which uses the
distribution of exposed:subjects in the source pppulati-on as the standard,
the variance is approximated by : :

) L . . 2"._. .
L "-@9(1+1+%
S &\d/ b, o d

| VaIn(SMR)] = 5+ t_)g)
| &%

i
i

Using the d‘at.a from EXaﬁplé 12-5, the SMR is calculable as .3.78, and the
Var{In(SMR)] = 0.350, which gives a 90 percent confidence interval of

. explIn(3.78) + 1.645(V0350)].= 143,100

This point 'e’s'timm:e and confidence interval bappen to agree w.ell in thlcsi
instance-with the (unconditional) maximum llkellhOOfIl point estimate an
the exact mid-P 90 peércent confidence. interval, wh_1c,:h were previously
calculated to be 3.79 and 1.30 to 9.78, respectively; whllg such agr.eer'nelnt
is reasonably common, it is not gua;aqt,egd.__because different principles
are involved in weighting the stratum-specific results for the two ap-
proaches. * A L
Using the distribution of the nonexpo'sed,subje_:;ts in .the sgurcedpopu—
lation as the standard (i.e., formula 12-68), the variance is estimated as

[12-71)

i T { my

STRATIFIED ANALYSIS 233

For the data in Example 12-5, the SRR from formula 12-68 is 3.98 and
the Var{In(SRR)] = 0.381, giving a 90 percent confidence interval of

explIn(3.98) = 1.645(\/0.381)} = 1.44, 11.0

EFFECT FUNCTIONS

When the effect-modifying factor is measured on a continuous scale such
as age it is possible to fit a mathematical equation describing the variation
in the effect measure as a function of the effect modifier. For example, if
the rate ratio seems to vary linearly with age, it is possible to express the
rate ratio as a straight line function of age:

RR = 2, + a,(age)

where g, is the “intercept” value and a, is a coefficient that describes the
change in the rate ratio for a unit increment of age. The coefficients ayand
a, can be estimated by a simple weighted regression procedure.

A linear function is not necessarily a good description of the mathemat-
ical relation between the effect measure and the effect modifier; it may be
worthwhile to consider transformations that improve the description. The
stratum-specific estimates of the incidence rate ratio for the data in Ex-
ample 12-2 (Table 12-11) illustrate a progressive decline in IRR with age.
The stratum-specific estimates are plotted in Figure 12-3. It is evident that
a straight line will not provide as good a fit as one might hope. In Figure
12-4, the logarithm of each age-specific estimate of IRR is plotted; for the
five age categories from youngest to oldest, these values are 1.7469, 0.7603,
0.3841, 0.3046, and ~ 0.1001, respectively. These values conform better to
a linear pattern. For the data of Example 12-2, then, it seems reasonable
to describe the effect of smoking, as measured by the incidence rate ratio,
as a function of age using a logarithmic transformation of the IRR:

In(JRR) = a, + a,(age)

The coefficients for this equation can be determined easily by a linear
regression procedure. It is important to use a weighted regression that
assigns to each age-specific observation a weight that reflects the precision
of that estimate; a weight proportional to the reciprocal of the variance of
In(IRR) accomplishes this purpose. The age-specific weights for the
weighted regression are calculated as the reciprocals of the variances de-
termined by formula 12-4; the weights are 1.88, 10.76, 24.65, 24.34, and
23.77 from youngest to oldest, respectively. Note the small weight ac-
corded to the youngest age category, for which only two events were ob-
served among the nonsmokers; the small number of events in the denom-
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Fig. 12-3. Estzmates of incidence rate ratio for coronary death for smoking
British doctors, compared with nonsmoking doctors, by age (data of example
12-2). .
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Fig. 12-4. Logaritbm of estimates of mczdence rate ratio for coronary death for
smoking British doctors, compared with nonsmoking doctors, by age (data of
example 12-2), and fitted weighted regression line. = -
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inator rate of the rate ratio leads to a large variance for the rate ratio. The
youngest category consequently does not contribute much to the fitting of
the weighted regression line. A least-squares weighted regression analysis
[Kleinbaum and Kupper, 1978] using the above weights gives 2, = 2.29
and a, = —0.030. To express the IRR as a function of age using these
results, we can reverse the logarithmic transformation:

S

IRR = (229 — 0.030Gge))

The above fitted equation describes the incidence rate ratio as a function
of age and can be used to estimate the IRR at any given age. For example,
at age 65 the estimate of IRR is exp(2.29 — 0.030(65)) = 1.43. At age 40
the estimated value of IRR is 3.0; the predicted and observed values are
relatively discrepant at age 40 because the entire set of age categories was
used to generate the coefficients, but little weight was contributed by the
unstable estimate of IRR in the youngest age category. For age 80, however,
the estimated IRR of 0.91 from the regression equation is nearly identical
to the observed value of 0.90 because of the greater weights assigned to
the older age categories. The overall pattern indicates roughly exponential
decline in IRR with age, until the effect disappears entirely between ages
75-80 (the apparent reversal in the direction of the effect at the oldest ages
is not striking enough to warrant a biologic interpretation).
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13. MATCHING

Marching refers to the selection of a comparison Series—unexposed sub-
jects in a follow-up study or controls in a case-control study—that is iden-
tical, or nearly so, to the index series with respect to one or more poten-
tially confounding factors. The mechanics of the matching may be
performed subject by subject, which is described as ndividual matching,
or for groups of subjects, which is described as Jfrequency matching. The
general principles that apply to matched data are identical for individually
matched or frequency matched data.

PRINCIPLES OF MATCHING

The topic of matching in epidemiology is beguiling: What at first seems
clear is seductively deceptive. Whereas the clarity of an analysis in which
confounding has been securely prevented by perfect matching of the com-
pared series seems indubitable and impossible to misinterpret, the intui-
tive foundation for this cogency attained by matching is a surprisingly
shaky structure that does not always support the conclusions that are apt
to be drawn. The difficulty is that our intuition about matching springs
from knowledge of experiments or follow-up studies, whereas matching
is most often applied in case-control studies, which differ enough from
follow-up studies to make the implications of matching different and coun-
terintuitive.

Whereas the traditional view, stemming from an understanding based
on follow-up studies, has been that matching enhances validity, in case-
control studies the effectiveness of matching as a methodologic tool de-
rives from its effect on study efficiency, not on validity. Indeed, for case-
control studies it would be more accurate to state that matching introduces
confounding rather than that it prevents confounding.

The different implications of matching for follow-up and case-control
studies are easy to demonstrate. Consider a source population of 2,000,000
individuals, distributed by exposure and sex as indicated in Table 13-1.
Both the exposure and male gender are risk factors for the disease: For
the exposure the relative risk is 10, and for males relative to females it is
5. There is also substantial confounding, since 90 percent of the exposed
individuals are male and only 10 percent of the unexposed are male. The
crude relative risk in the source population, comparing exposed with
unexposed, is 32.9, considerably different from the unconfounded value
of 10.

Now consider what happens if a follow-up study is planned by drawing
the exposed cohort from the exposed source population and matching the
unexposed cohort to the exposed cohort for sex. Suppose 10 percent of
the exposed source population were included in the follow-up study; if
these subjects were selected independently of gender, we would have ap-
proximately 90,000 males and 10,000 females in the exposed cohort. A



