Course EPIB634: Proportional (and Non-proportional) Hazards Models {version 2008.03.28}
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EPIB 634 Survival Analysis & Related Topics

Déja

1 (homogeneous) sample: "Survival" / "Time-to-event” data:
* [equivalent] Functions: S[t] , hazard h[t] , pdf[t]
o Links: e.g. S[t] = exp[ — Oh[u] du ], integral from u=0 to u=t
» Summaries of these functions (e.g. Tos, Ts0, S[T])
* Non-Parametric / Semi-Parametric Estimation
(point & interval) of S[t] , h[t] and pdfft]
--- Lifetable [fixed-] --- K-M / N-A [data-determined intervals]

» Censored data not necessarily " time - to - event "

Y = PSA levels < detection limit, salaries in intervals, distance
travelled on set of tires, pages on single ink cartridge, etc.

*'1 (homogeneous) sample' structure
=> think of as "intercept-only" regression model

Comparison of 2 Survival/Hazard Curves or Distributions
* think of as regression model with single binary X
* Risk Sets (match on time of event)
» Adjusted comparisons (non-regression methods)

Not covered: Parametric models for Lifetime Distributions

SAS LIFEREG procedure fits parametric modelsto failure time data that can be
right, left, or interval censored. The models for the response variable consist of a
linear effect composed of the covariates and arandom disturbance term. The
distribution of the random disturbance can be taken from a class of distributions
that includes the extreme value, normal, logistic, and, by using alog
transformation, the exponential, Weibull, lognormal, loglogistic, and gamma
distributions.

Stata streg performs maximum likelihood estimation of parametric regression
survival-time models. Survival models currently supported are exponential,
Weibull, Gompertz, lognormal, log-logistic and generalized gamma. Also see help
stcox for estimation of proportional hazards models.

R survival package: Regression for a Parametric Survival Model: These are
all time-transformed |ocation models, with the most useful case being the
accelerated failure models that use alog transformation.
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regression models .. general

(Parametric) Regression Models for Rates
* Model (event) rates or hazards
* (i) Models with 'multiplicative’ rates/hazards

log[rate] or log[hazard] = Bg + Bit+ ... By X1 + Bo X5 ...

Rates/hazards PROPORTIONAL (rate ratio parameter
constant over time-bands and covariate patterns... if no
product terms for 'effect modification/interaction)

In Generalized Linear Model, model the numbers of
events, with log link .. and log(PT) as offset

exp[ BJ: rate ratio (RR) contrasting rates for two
X (or t) values 1 unit apart

* (i) Models with additive rates/hazards
rate or hazard = Bg + Bit+...B1 X1 + B> X5 ...

Not as 'natural’. See pp59-- from Chapter 2 of Volume |
of Breslow and Day (in Resources) for empirical
evidence for proportional rate models (constant rate
ratio models) over to additive rates models (constant
rate difference models) in cancer epidemiology.

N.B.: B&D use the term "relative Risk" very loosely,
when in fact they mean "relative Rates" or rate Ratios.

In Generalized Linear Model, model the numbers of
events, with identity link .. no intercept (no cases if
denominator is zero) and (as regressors) product of PT
denominator with each regressor in the rate model.

B: rate difference contrasting rates for two
X (or t) values 1 unit apart
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New

Semi-Regression Models

* Restrict to multiplicative rate/hazard models

» Avoid modelling the nuisance ("t") part
don't fit parameters that (a) are not our focus (b) waste "d.f."

» Use risksets & conditioning to reduce # parameters and
avoid having to model "t".

» Choice of Time-scale and "Time-zero" is important
(has implications for risksets)

* Models, and conditioning as a way of eliminating
parameters, applicable to matched case-control studies
and even to c-c and other (e.g. consumer choice*)
studies with no 'time' element ["conditional logistic
regression’]

(* Daniel McFadden shared the Nobel Prize for his development of theory
and methods for analyzing discrete choice in Economics:
http://www.nobel.se/economics/laureates/2000/mcfadden-autobio.html)

log[rate] or log[hazard] = U[t] + ... B1 X3 + Bo X5 ...
or
[ [t|X, X,.] =hazard =exp[ U[t]]~ exp[ By X1 + By X5 ..]

where "UJ[t]" stands for "unspecified function of t" for log of
hazard function for persons with covariate pattern {X1=0,
X>=0, etc}. Note that exp[ U[t] ] is often denoted by | ¢[t] and
often called the "baseline" hazard function.

N.B.: the word "baseline" does not refer to measurements
(covariates) recorded at T=0. Rather, it refers to the
"reference” category or covariate pattern, against which all
other categories or covariate patterns are compared.
Thus, it has the same meaning as the "corner” or "point of
departure” category used by Clayton and Hills (eg. "40-49
year olds, unexposed" in the regression example in Table
22.6 p 221 of Clayton and Hills.

The curve | o[t] = exp[ U[t] ] is the "intercept curve".
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regression models .. general

Sx[t] in terms of ( hy[t] and) So[t]
* Remember general law: S[t] = exp[ - H[t] ],

where H[t] is the integrated or "cumulative" hazard.

 Relationship b/w S[t] for x=1 and S[t] for x=0 ["corner"]

ifl [t|x=1] = 1 o[t]” exp[ B™ 1] = | o[t] " HazardRatio
then
integral of | 1[t] = HazardRatio ~ intergral of | g[t]
So,
S[t|x=1] =exp[-H[t|x=0]" HazardRatio ]
— { exp[ _ H[t | X = O] ] } HazardRatio
— { So[t] } HazardRatio

i.e., S curve is constant power of "baseline" curve

Test of Proportionality
Two log[-log[S] ] functions (for x=1 & x=0) should be parallel
* H[t] is the integrated or "cumulative" hazard
* -log[S] = HIt], so -log[Si[t]] = HR " { -log[So[t] ] }

2 -log[S] curves should be proportional
(easier to judge if these parallel than hazards proportional)

* use as test of proportionality assumption

 hazard functions may not be stable enough
(so cannot assess whether 2 h[t] curves are proportional)

Choice of time scale for Cox model

* the one over which the hazard function is the most difficult to
model .. avoid this challenge: match risksets on this scale.
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Fram ngham study: TI ME Scal e = YEAR of _research_grant

FU_AGE | risk set(vertical) based on deaths in cal endar (project) year

time scale is 'rough', because of 2-year cycles
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proc phreg data=sasuser.fram

> 2> 3>>>>>>>>>>>>>

>>>2>>>> > > >

model fu_year*dead(0) = i_male ;

> > > > >

where (40 <= age <= 59);

> > > > > >

>5>>5>>>>>>>>>>>>> > >
> >

>

Total 3198 Event 1544 Censored 1654(51.72 %
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FU_YEAR (Since 1948)
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Testing A obal Null Hypothesis: BETA=0

-2LOA Wout:24098.1 Wth:23968. 1 Covariates; Chi-Sg(1) 130; p=0.0001

Maxi mum Li kel i hood Esti mat es

Paramet er Standard wal d Pr > Risk (hazard)
Variable DF Estinmate Error Chi-Sg Chi-Sg  Ratio
| _MALE 1 0.583 0. 051 129.3 0.0001 1.79

R sk-sets "1" "3", candi dates for deaths in FU YEAR "1" "3"
(each set has persons with a range of ages)

regression models .. general

TI ME Scale = AGE .(NOTE how del ayed entry is specified)

FU_AGE | risk set (horizontal) based on deaths at a particul ar age
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proc phreg data=sasuser.fram

vVVVVYV

model (age,fu_age)*dead(0) = i_male ;
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vV VvV
vV Vv

where (40 <= age <= 59);
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Total 3198 Event 1544 Censored 1654(51.72 %
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FU_YEAR
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Testing A obal Null Hypothesis: BETA=0

-2LOA Wout:22819.8 Wth: 22662. 7 Covari ates; Chi-Sqg(1l) 157; p=0.0001

Maxi mum Li kel i hood Esti nat es

Paraneter Standard wal d Pr > R-sk (hazard)
Variable DF Estinate Error Chi-Sg  Chi-Sq  Ratio
| _MALE 1 0.643 0.051 156.3 0.0001 1.90

R sk-sets "68" "69" candi dates for death at age 68, 69,...
Mortality rates vary much more (and in more complex way)
over 20 years of age, than over 20 calendar years =>"t"=age

page 3
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. Proportional hazards model
Topics
Simplest case (1 covariate z, 2 levels/groups which we will refer to as 0

* Fitting proportional hazards model to data and 1)

* estimating HR by (Partial) Likelihood approach _ o
Compared with reference individuals (group 0), who have a hazard hg|t]

* "Information”: how sharp is curvature of LogL fn at timet, thosein group 1 have a hazard that is a constant times ho|[t], i.e.
* Estimating HR via SAS PROC PHREG / Stata/ R ha[t]
. . heldl = constant
» Estimating hg(t) and Sp(t) [ the "corner"] olt]
* Estimating Sx(t) [ X = a specified covariate pattern] {Selvin uses'c' and Collett uses'y ' for HR, the hazard ratio} .
* Split Records Equivaently, one can write

(also a way to handle time-dep. covariates)

« Estimation for stratified survival data ha[t] =HR " hol[t]

Readings [ http://ww. epi.ntgill.calhanl ey/ c681/cox ] The hazard ratio HR will be a number between 0 and infinity. To make it

easier to fit this parameter without having to constrain it within these
Clayton&Hills, Ch 30, sections 4-6 bounds, it helps to re express HR as
Collett Textbook, Chapter 3/4 HR=€ed {orInHR]=b}
Kleinbaum's 'Self-Learning’ textbook, Chapter 3/4

Pair of expository articles by JH so that the model becomes

ha[t] = €0 holt]
or
In[hz=(t]] = In[hz=q[t]] + b~ (z=1).

One can think of the In[hg[t]] as the intercept and z as the indicator
variable for group in aregression. Note that the 'intercept’ hereis afull
hazard curve over t; Unlike the case of other regressions, here the
intercept may be of interest. However we may not have enough datato
estimateit well, especialy if, asis often the casg, it varies considerably
over t, or we do not have many events.
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Proportional Hazards Model: how parameters fitted, their uncertainty estimated; how survival curves obtained, etc 2

Relationship between S[t] for z=1 versus [t] for z=0 [" corner™
(dga, but in less detail.. can skip this page for now)
If hy(t) = €l ho(t), andif H[t] istheintegrated hazard,
then the integrated (or "cumulative"') hazard for z=1is
Ha(t) = € Ho(t),
S0 that the survival functions are

Si(t) =eH1)

= e—ebHo(t)

=[50]®  =[so0] R
Thus, thelog[-1og] functions should beparallel,

log[ -log[Sa(t)] ]
:Iog[-log[So(t)HR] ]
:Iog[ HR e —Iog[So(t)] ]

:Iog[HR] +Iog[—|og[So(t)] ]
and separ ated by the quantity log[HR].

= [e—Ho(t)] e

Thus one canvisually estimate b =log [HR] from log[-log S] plots.
If limited data, the hazard functions may be too unstable to use.

The "baseline" hazard function hy(t) can be from some parametric family
[e.9. ho(t) = constant { negative exponential distribution of failure times},
Weibull, ...] or can be unspecified. In the latter case, the mixture of a
parametric form for HR and a'free' form for hy(t) is why the model is
called "semi-parametric”.

More general case (1 covariate z, with possibly several levelsor possibly
continuous; or several covariates, continuous/discrete/mixed}

For short, refer to set of covariates{z1, 2o, ..., z«} as z ; without loss of
generdlity, refer to areference group of individuas as having{ z,=0,
2=0, ..., =0} as z=0).

Compared with reference individuals (group with z=0), who havea
hazard h[t] a timet, those with covariatevalues{zy, 2o, ..., z} havea
hazard that is some multiple times ho[t], where the multiple depends only
onzi.e.

hy[t
o] = HR)

or
hz(t) = HR(z) * ho(t)

Most often, HR(z) istaken aslog-linear i.e. the log of HR(z) is taken as
linear in the k parameters{b4, b, ..., by} i.e.

logl HR(2) ] = {b1z1 + bozp + ... + byz}
or
HR(z) = exp{bizs + bozo + ... + byz}.

Since

exp{bi1z; + bozo}=exp{bi1z1} ~ exp{b2z;},
we can rewrite modd as

hz(t) =HR(z1) © HR(z2) * ...~ HR(z) = ho(t)
or

S,() = [So(t)] ez _ [So(t)] HR; + HR, + ... +HRy

where HRy is shorthand for exp{b1z;}, samefor HR, etc.

I mportant to have the "corner” covariate pattern near the actual z values
(so, might want to 'center' the z valuesfirst, beforefitting.

Not precluded from using products or power s of the Z's.
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Proportional Hazards Model: how parameters fitted, their uncertainty estimated; how survival curves obtained, etc 3

Fitting proportional hazards model: Risksets

Our primeinterest isin estimating the parameters of HR; we will also, as
asecondary objective, estimate hp(t). The keys to the estimation are the
Risk Sets, the collections of candidates for (individuals at risk just
before) each distinct failure time (event)

Simplest case (1 covariate z, 2 levels or Tx groups which we will
distinguish using indicator variable z= 0 and z=1). In e.g. below, a*
denotes afailure (event), a+ denotes a censored observation; and time
runs from left to right [note: to estimate HR function we do not need the

fallure & censoring times themselves, only their order with respect to z].
Raw data..( 7 individuas).
Z :l ° + ° °

z=0 ° + °

It iseasier to lay them out as separate time lines [in the ‘early days
before computers, some investigators would represent survival dataon
their patients using lines of thread along awall].

Z:l —_

z=1 —————+

z=1 o

z=1 .

z=0 .

z=0 +

z=0 .
R skset # 1 2 3 4 5

Cox argued that since there are no failures (events) between the ¢'s, we
do not know much about the hazards in these gaps [unless we want to
posit parametric form for hg(t) or Sy(t)]. In any case our prime interest
isin HR, and so we will concentrate just on these risk sets.

Estimating HR by (Partial) Likelihood approach

It helpsto lay it out the 5 risk sets as follows (note that in the 5th riskset
thereis'no contest') ...

0=d;
S1
mn

do

So
No

w|jw o AWE
whE N o
NNVO Nk
RO ROR

1
0
1

In the Maximum Likelihood method, we find that value of the HR which
maximizes the likelihood of the obser ved data pattern (the sequence
isindicated in bold above) The likelihood isafunction of HR.

To congtruct the Likelihood function, we need a probability model for
each table (i.e., for the outcome in each riskset) and an assumption
regarding the separate tables. In the calculation of avariance for the MH
statistic (log rank test) we aready assumed that the 2x2 tables were
realizations of hypergeometric (urn sampling) models and that the tables

could be treated as if they were independent of each other. We could do
the same here to set up alikelihood.

For each risk set, we ask

" Given that the event occurred, what isthe chance that it ocurred
to theindividual it happened to, rather than to someone elsein the
risk set?"
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Consider arisk set where the event happened at t to a person with z=1. Li kel i hood

If the hazard for personswith z=1is HR" hg(t) and 1" hg(t) for those

with z=0, and if in therisk set there are n; and ny persons respectively, 0. 006
then the [conditional] probability that the event happened to that
particular person with z=1 out of thery and ng 'at risk' is 0.005
HR " hlt] 0. 004
m”~ HR™ holt] + ng” 17 ho[t] 0. 003
which smplifiesto 0. 002
HR HR
n"HR + ny” 1 0 10 20 30 40 50
Conversdly, in arisk set where the event happened to a person with z=0. Or with the parameter B = Log[HR] ...
then the [conditional] chance that the event happened to that particular
person with z=0 out of them and ng 'at risk' is Li kel i hood
1
nHR + no 1 0. 006}
- 0. 005}
Thus, for the example above, the product of the probabilities of the
observed outcome (likelihood) in each of the 4 informative risksetsis 0.004¢
. HR . 1 . HR . HR 0.003
~4HR+3 2HR+3 2HR+2 HR+1 0. 002}
This likelihood L(HR)= prob(data| HR) can be evaluated for arange of 0. 001}
HR valuesin order to find the value HRy;. which mazimises L. e.g. | og[ HR]
-1 0 1 2 3 4

HR 12 1 2 4 8 16
Lx10® 14 36 58 61 48 30

Thefunction L & derived functions are shown graphically on next page.
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or inthelog Likelihood scale...

LogL
-5.5 g

-6.5

B = Log[ HR]

-1 0 1 2 3 4

The Derivative of thelog Likelihood ...

d LogL / dB

B = Log[ HR]

-1 0 1 2 3 4

Tangent to logL curveiszeroat B = 1.14 (wecall thisB_hat or b];

So... HRyL = exp[b] = 3.14.

Uncertainty / Information concerning log [HR]

The 'sharpness or 'flatness of the logL (HR) curvein the vicinity of B =
1.14 gives an indication of how sensitive logL isto changesin log[HR]
i.e. of how well or badly other values of log[HR] would do in producing
alargelikelihood. This can be measured by the 2nd derivative of logL
(or if you like by the tangent to the 1st derivative curve) with respect to
B. Note that the L curveincreases until B = 1.14 then decreases. Thus
the dope diogL /dB goes from positive to negative over thisrange. ie the
2nd derivative is negative. Since we are smply interested in the curvature
we use the negative of the 2nd derivative; it will be abig positive quantity
when the curvatureis very sharp, and asmall positive quantity when the
curvatureisvery dow.

The plot below shows that the curvature of logL is quite small
(approximately 0.7412 at B = 1.14). This negative of the 2nd derivative
of thelog likelihood, evaluated at the ML estimate, is called the
"Information" in the data. Its reciprocal is agood measure of the
variance of the ML estimate of B.

1

0.8

- LogL B B
0.6 d (dLogL/ dB) / d

0.4

0.2

. . . . . — B
-1 0 1 2 3 4

We usualy work with B =log[HR], since the sampling variability of bis
more symmetric. The I[B] calculated at b = 1.14 is approximately
0.7412, yielding SE[b] = ((1/0.7412) = 1.16, yielding a 95% CI for
HR=exp[B] of {0.3to 31} .The 4 informative risk sets provide just a

small amount of information about log[HR] and our confidence in
values near the ML estimateislow.
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Estimating HR via SAS PROC PHREG

DATA a;

INPUT event tine tx ; /* Note arbitrary times */
LI NES; /* only CRDER matters */
1 2 1 /* event=0 stands for censored obsn. */
0 4 1
1 6 0
1 8 1
0 10 0
1 12 1
1 14 0

title null nodel; proc phreg ; model ti me*event(0) = ;

Dependent Variable: TIME Nurmber of Event & Censored Val ues
Censoring Variabl e: EVENT

Censoring Val ue(s): Tot al Event Censored %ensored
Ti es Handl i ng: BRESLON 7 5 2 28.57
NOTE: No expl anatory variables in this nodel. -2 LOGL = 11.27

JH LOGL = log[{1/7} x {1/5} x {1/4} x {1/2}] = LOF 1/280] = -5.63

title model with tx; proc phreg data=a;
model tinme*event(0) = tx / RISKLIMTS;

Testing A obal Null Hypothesis: BETA=O
W t hout Wth Covari ates Model hi - Squar e
-2 LG L 11.27 10.15 1.12 with 1 DF (p=0.29)

M. Estinates

Parameter Standard Vald Pr > R sk* 95% CL
Variable Estimate FEror Chi-Sq Chi-Sq Ratio Lower  Upper
TX 1.14 1.16** 0.9685 0.33 3.14 0.32 30.6

*  Technically speaking, should be called Hazard Ratio; Obtained as exp[1.14]
**  See 2nd Derivative graph on left:  SE[b] = Sgrt[var] = sgrt[ 1/Information]

Estimating HR via Stata

1.input event time tx
1 2 1
0 4 1 2. stset tine , failure(event)
1 6 O
1 8 1
0 10 O
1 12 1
1 14 0

end

7 obs., representing 5 failures in single record/single failure data

56 total analysis time at risk, at risk fromt = 0
earliest observed entry t = 0 |last observed exit t = 14
* null model

stcox, estimate

failure _d: event
analysis tine _t: time

Iteration O: log likelihood = -5.6347896

Log likelihood = -5.63 Prob > chi2 =

* model with tx.. gives beta_hats, not HR_hats
stcox tx, nohr

Iteration O: log likelihood = -5.074435

LR chi 2(1) = 1.12

Log likelihood = -5.07 Prob > chi2 = 0. 2898

_t] Coef. Std. Err. z P>l z| [95% Conf. Int]
tx | 1.143 1.161 0.98 0.325 -1.13  3.41

* model with tx..
stcox tx

t | HazRatio Std. Err. z P>| z| [ 95% Conf. Int]

gi ves HR_hats, not beta_hats

Estimating HR via survival packagein R

require(survival); event=c(1,0,1,1,0,1,1);
time=c(2,4,6,8,10,12,14); tx =c(1,1,0,1,0,1,0);

fit=coxph( Surv(time, event) ~ tx); summary(fit)

coef exp(coef) se(coef) z p
tx 1.14 3.14 1.16 0.984 0.33

hr

exp(coef) exp(-coef) |ower .95 upper .95
t X 3. 14 0. 319 0. 322 30.6
Li kelihood ratio test= 1.12 on 1 df, p=0. 29
Wl d test = 0.97 on 1 df, p=0. 325
Score (logrank) test = 1.07 on 1 df, p=0. 3
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Estimating hg(t) and Sy(t) [see Collett 83.8]

Once one has estimated HR, using FRy = exp[ /BM L], one can estimate
the baseline hazard (and S) via a procedure similar to the Kaplan-Meier
product method. One might have expected this type of non-parametric
approach, since no form is specified for hy(t).

One uses al the events (in both groups) even though the estimateis
supposed to represent individuals with z=0. The reason for thisisthat in
adataset with continuous covariates, there may be nobody with the
specific configuration of z'sthat one considers the 'reference’ population.

Aswith al modelling and regression, we are being 'synthetic’ and
borrowing strength from al thedata. As Collett explains, the derivation
is complex, but one can get some sense of the logic from the 2-sample
case where there isone event at atime [see Collett's ‘particular case
following his equation 3.16]. The way JH thinks of it isto imagine atwo
sample situation where we were given 2 samples of death times, 1 for
males and 1 for females (reference group), and told that the ratio (HR) of
the death rates in the population of males and females was say 2. Would
you just estimate aK-M curve for females using the data for females and
call it your best estimate of the 'reference’ of female S or would you try
to use al the data, including the deaths from males, to estimate a better
K-M curvefor females?

Cox [and later Kalbfleisch and Prentice] take the 'synthetic' approach.
One estimates a quantity Collett callsx for each riskset. Thisisthethe
‘conditional probability of survival'; estimates of these various success
probabilities are multiplied together to give the unconditional probability

X1 of surviving past the time of the 1st riskset, x1x» for surviving past the
2nd, etc asin the K-M approach.

If there are multiple events per riskset, one must iteratively solve equation
3.16 for x1. If thereisonly one, X, can be calculated directly as

/\_{ }1/HR
X= 1‘a° HR

where HR isthe calculated HR for the individual who suffered the event,
and the summation of the HR'sfor all the personsin the risk set.

To go back to our example of males and females and aHR of 2 for
malesrelativeto a"1" for females: suppose the risk set had 100 men and
50 women. From a hazard point of view, one can think of thisas

100" 2 + 50" 1= 250 "women equivalents'
at risk. Now if the one event occursto awoman, that is like saying that
we had afailure of 1/250 and thus

A—{l 1}1/1_{1 1 VY1 249
X=117aHR = ~ 250 = 250

If however the one event occursto aman, that islike saying that we had a
failure of 2/250 (or a success of 248/250) in two trials, so that in 1 tria
of 250, we should have a success of

{ aHR}llz { 250}U2@24§5%98
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Obvioudy, in smaller n's the differences would be more dramatic. For
example, with the data above, we had HRy. = 3.14 which for simplicity
wewill roundto HRy = 3. Thusin the 5 risksets, we had the
following structure

o=d; 1 0 1 1 -
1 3 2 1 0 -
n 4 2 2 1
d O 1 0 0 1
s 3 2 2 1 0
n 3 3 2 1 1
or in "z=0 equivaents', replacing each person in z=1 group with HR=3
o=d; 3 0 3 3 -
s1 9 6 3 0 -
n 12 6 6 3
d O 1 0 0 1
S 3 2 2 1 0
n 3 3 2 1 1

or, summing and putting al individualsinto "z=0 equivalents'...
do 3 1 3 3 1
S 12 8 5 1 0
No 15 9 8 4 1

N
Then the x 's are estimated as

{12 1/3 8 {5}113{4}1/3

or 0.93 089 0.86 0.63

yielding a Product Limit estimate of the § ] function for the z=0 group:

1.00 093 083 071 044 O
For the z= 1 group, the corresponding estimateis
1.00 0.933 0.83% 0.713 0443 0

or
100 080 057 036 009 O

or (roughly)
&y(t) (estimated from 5risk sets)  and S(t) = { So(t) }3

1.00

0.93

| |

| [
| | |

0.83 | | |

| I

| |

0.71 | | [
|

|

|
|
|
0.44 |
|
|

|
0.00 |

to €] to t3 t4 t5

Following isthe estimate of Sp(t) and S;(t) produced by PHREG.

First one must set up afile with the covariate patter ns for which one

wants survival (and other) curves.. Here thereisjust one covariate z, with

2 values, so there are only 2 possible covariate patterns.

1. 2.
DATA cov_val s;

title nodel with tx, and obtai n curves;

I NPUT tx ; proc phreg data=a;
LI NES; nodel time*event(0) =tx / RSKLIMTS;
0 BASELI NE OUT = curves
1 COVARI ATES = cov_vals
; SURVI VAL = SURVI VAL
RUN LOGSURV = LOGSURV
LOGLOGS = LOGLOGS;
inR

fit = coxph( );
plot( survfit(fit) )
basel i ne(fit)

* use newdata in survfit to specify covariate patterns.
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PROC PRI NT DATA=curves ROUND; RUN;
X TI ME SURM VAL LOGSURV LOGA.OGS

0 0 1.00 0.00 .
0 2 0.93 -0.07 -2.63 *
0 6 0.83 -0.19 -1.68 **
0 8 0.71 -0.34 -1.08 ***
0 12 0.45 -0.79 -0.23 *x*x
0 14 0.00 . .
1 0 1.00 0.00 . (di fference)#
1 2 0.80 -0.23 -1.49 * (1.14)
1 6 0.56 -0.58 -0.54 ** (1.14)
1 8 0.35 -1.06 0.06 *** (1.14)
1 12 0.08 -2.48 0.91 **** (1.14)
1 14 0.00 . .

0.57* 0 1.00 0.00

0.57 2 0.87 0.14 1.98

0.57 6 0.70 -0.36 -1.03

0.57 8 0.52 -0.65 -0.43

0.57 12 0.22 -1.52 0.42

0.57 14 0.00 .

* 0.57 is the average, in the dataset, of the z val ues

# It is not a coincidence that there is a constant difference of 1.14
between thetwo FITTED log[ - log[S] ] curves: thisis a consequence
of the proportiona hazards assumption..

Plotting the EMPIRICAL log[ - log[S] ] curvesto seeif they are
reasonably parallel allows a visual check on the proportional
hazar ds assumption.

Stata

* store fitted survival for baseline group into new variable called s
stcox tx, basesurv(s)

* generate corresponding curve for tx=1 .. * ="to power of')
gens 1=s"(exp(1.14))

* graph -log[S] i.e., cumulative hazard curves (na= Nelson-Aalen)
stsgraph, na by(tx)

* graph -log[-log[ S]] versustime, so check if parallel
stsphplot, by(tx)

* stcoxkm plots Kaplan-Meier observed survival curves and compares
them to the Cox predicted curves for the same variable.

ML estimatesfor stratified survival data
(exercise.. follow Fig 3in part |1 of JH's expository article)

Consider the following pattern of observations for two treatments where
* denotes afailure (event) and + denotes a censored observation and
time runs from left to right. The observationsare in 2 strata.

Stratum 1
R(l ° + ° °
Rx2 . + .

Stratum 2
RxL * + .
Rx2 + . .

The above cd culations used the data for stratum 1.
For the second stratum
a setuptherisk sets.

b set up thelikelihood contribution from each set and the overall
likelihood for the stratum (follow e.g. of stratum 1)

¢ cdculatethelikelihood for severa values of b

d draw asmooth sketch of the likelihood function (the numbers may
be so tiny that you prefer to plotting the log of the likelihood
function)

e at what value (approx) of b isthe function a maximum?

f cdculate numerically the 1st and 2nd derivatives of the log likelihood
function in the neighbourhood of b_hat

Multiply thelikelihood (or add thelog Likelihoods) from the 1st
stratum and thelikelihood from b to produce the overall
likelihood (or log Likelihood) from the 2 strata combined. Then
maximize the combined likelihood (or log likelihood).

Individuals from different strata cannot be in same riskset
(but, if stratatoo fine, may have uninformative risksets)



