
Course EPIB634: Proportional (and Non-proportional) Hazards Models {version 2008.03.28}
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EPIB 634 Survival Analysis & Related Topics                    regression models .. general

Déjà

1 (homogeneous) sample: "Survival" / "Time-to-event" data: (Parametric) Regression Models for Rates

• Model (event) rates or hazards• [equivalent] Functions: S[t] , hazard h[t] , pdf[t]
• (i) Models with 'multiplicative' rates/hazards

  log[rate] or log[hazard] = B0 + Bt t + ... B1 X1 + B2 X2 ...

Rates/hazards PROPORTIONAL (rate ratio parameter
constant over time-bands and covariate patterns... if no
product terms for 'effect modification/interaction)

In Generalized Linear Model, model the numbers of
events, with log link .. and log(PT) as offset

exp[ B]: rate ratio (RR) contrasting rates for two
X (or t) values 1 unit apart

• Links: e.g.  S[t] = exp[ – ∫ h[u] du ],  integral from u=0 to u=t

• Summaries of these functions (e.g. T25, T50, S[ T ] )

• Non-Parametric / Semi-Parametric Estimation
(point & interval) of S[t] , h[t] and pdf[t]

--- Lifetable [fixed-]  --- K-M / N-A  [data-determined intervals]

• Censored data not necessarily " time - to - event "
Y = PSA levels < detection limit, salaries in intervals, distance
travelled on set of tires, pages on single ink cartridge, etc.

• '1 (homogeneous) sample' structure
=> think of as "intercept-only" regression model

Comparison of 2 Survival/Hazard Curves or Distributions
• (ii) Models with additive rates/hazards

  rate or hazard = B0 + Bt t + ... B1 X1 + B2 X2 ...

Not as 'natural'. See pp59-- from Chapter 2 of Volume I
of Breslow and Day (in Resources) for empirical
evidence for proportional rate models (constant rate
ratio models) over to additive rates models (constant
rate difference models) in cancer epidemiology.

N.B.:  B&D use the term "relative Risk" very loosely,
when in fact they mean "relative Rates" or rate Ratios.

In Generalized Linear Model, model the numbers of
events, with identity link .. no intercept (no cases if
denominator is zero) and (as regressors) product of PT
denominator with each regressor in the rate model.

B: rate difference contrasting rates for two
X (or t) values 1 unit apart

•  think of as regression model with single binary X

• Risk Sets (match on time of event)

• Adjusted comparisons (non-regression methods)

Not covered: Parametric models for Lifetime Distributions
SAS  LIFEREG procedure fits parametric models to failure time data that can be
right, left, or interval censored. The models for the response variable consist of a
linear effect composed of the covariates and a random disturbance term. The
distribution of the random disturbance can be taken from a class of distributions
that includes the extreme value, normal, logistic, and, by using a log
transformation, the exponential, Weibull, lognormal, loglogistic, and gamma
distributions.

Stata streg performs maximum likelihood estimation of parametric regression
survival-time models.  Survival models currently supported are exponential,
Weibull, Gompertz, lognormal, log-logistic and generalized gamma.  Also see help
stcox for estimation of proportional hazards models.

R survival package: Regression for a Parametric Survival Model:  These are
all time-transformed location models, with the most useful case being the
accelerated failure models that use a log transformation.
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EPIB 634 Survival Analysis & Related Topics                    regression models .. general

New

Semi-Regression Models Sx[t] in terms of ( hx[t] and) S0[t]
• Restrict to multiplicative rate/hazard models • Remember general law:  S[t] = exp[ - H[t] ],

where H[t] is the integrated or "cumulative" hazard.
• Avoid modelling the nuisance ("t") part

don't fit parameters that (a) are not our focus (b) waste "d.f."

• Use risksets & conditioning to reduce # parameters and
avoid having to model "t". • Relationship b/w S[t] for x=1 and S[t] for x=0 ["corner"]

• Choice of Time-scale and "Time-zero" is important
(has implications for risksets)

if λ[t | x=1]  =  λ0[t] × exp[  B × 1 ]  =  λ0[t] × HazardRatio

then

integral of λ1[t]  =  HazardRatio  × intergral of λ0[t]

so,

S[t | x = 1 ] = exp[ - H[t | x = 0] × HazardRatio  ]

= { exp[ - H[t | x = 0] ] } HazardRatio

= { S0[t] } HazardRatio

i.e., S curve  is constant power of "baseline" curve

• Models, and conditioning as a way of eliminating
parameters, applicable to matched case-control studies
and even to c-c and other (e.g. consumer choice*)
studies with no 'time' element ["conditional logistic
regression']
(* Daniel McFadden shared the Nobel Prize for his development of theory
and methods for analyzing discrete choice in Economics:
http://www.nobel.se/economics/laureates/2000/mcfadden-autobio.html)

  log[rate] or log[hazard] = U[t]  + ... B1 X1 + B2 X2 ...
or
λ[t |X1 X2 ..] = hazard = exp[ U[t] ] × exp[  B1 X1 + B2 X2 .. ]

Test of Proportionality

Two log[-log[S] ] functions (for x=1 & x=0) should be parallel

• H[t] is the integrated or "cumulative" hazard

• -log[S] = H[t], so -log[S1[t]] = HR × { -log[S0[t] ] }

 2 -log[S] curves should be proportional
(easier to judge if these parallel than hazards proportional)

• use as test of proportionality assumption

• hazard functions may not be stable enough
  (so cannot assess whether 2 h[t] curves are proportional)

where "U[t]" stands for "unspecified function of t" for log of
hazard function for persons with covariate pattern {X1=0,
X2=0, etc}. Note that exp[ U[t] ] is often denoted by λ0[t] and
often called the "baseline" hazard function.

N.B.: the word "baseline" does not refer to measurements
(covariates) recorded at T=0. Rather, it refers to the
"reference" category or covariate pattern, against which all
other categories or covariate patterns are compared.
Thus, it has the same meaning as the "corner" or "point of
departure" category used by Clayton and Hills (eg. "40-49
year olds, unexposed" in the regression example in Table
22.6 p 221 of Clayton and Hills.

The curve λ0[t] = exp[ U[t] ] is the "intercept curve".

Choice of time scale for Cox model

• the one over which the hazard function is the most difficult to
model .. avoid this challenge: match risksets on this scale.

page  2



EPIB 634 Survival Analysis & Related Topics                    regression models .. general

   Framingham study: TIME Scale =  YEAR_of_research_grant ...    TIME Scale = AGE  .(NOTE how delayed entry is specified)
FU_AGE | risk set( vertical ) based on deaths in calendar (project) year FU_AGE | risk set ( horizontal ) based on deaths at a particular age
       |        |
    88 +                                                          ^     88 +                                                          >
    87 +                                                          ^     87 +                                                          >
    86 +   time scale is 'rough', because of 2-year cycles    ^   ^     86 +                                                      >   >
    85 +                                                      ^   ^     85 +                                                      >   >
    84 +                                                  ^   ^   ^     84 +                                                  >   >   >
    83 +                                                  ^   ^   ^     83 +                                                  >   >   >
    82 +                                              ^   ^   ^   ^     82 +                                              >   >   >   >
    81 +                                              ^   ^   ^   ^     81 +                                              >   >   >   >
    80 +                                          ^   ^   ^   ^   ^     80 +                                          >   >   >   >   >
    79 +                                          ^   ^   ^   ^   ^     79 +                                          >   >   >   >   >
    78 +                                      ^   ^   ^   ^   ^   ^     78 +                                      >   >   >   >   >   >
    77 +                                      ^   ^   ^   ^   ^   ^     77 +                                      >   >   >   >   >   >
    76 +                                  ^   ^   ^   ^   ^   ^   ^     76 +                                  >   >   >   >   >   >   >
    75 +                                  ^   ^   ^   ^   ^   ^   ^     75 +                                  >   >   >   >   >   >   >
    74 +                              ^   ^   ^   ^   ^   ^   ^   ^     74 +                              >   >   >   >   >   >   >   >
    73 +                              ^   ^   ^   ^   ^   ^   ^   ^     73 +                              >   >   >   >   >   >   >   >
    72 +                          ^   ^   ^   ^   ^   ^   ^   ^   ^     72 +                          >   >   >   >   >   >   >   >   >
    71 +                          ^   ^   ^   ^   ^   ^   ^   ^   ^     71 +                          >   >   >   >   >   >   >   >   >
    70 +                      ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     70 +                      >   >   >   >   >   >   >   >   >   >
    69 +                      ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     69 +                      >   >   >   >   >   >   >   >   >   >
    68 +                  ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     68 +                  >   >   >   >   >   >   >   >   >   >
    67 +                  ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     67 +                  >   >   >   >   >   >   >   >   >   >
    66 +              ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     66 +              >   >   >   >   >   >   >   >   >   >
    65 +              ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     65 +              >   >   >   >   >   >   >   >   >   >
    64 +          ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     64 +          >   >   >   >   >   >   >   >   >   >
    63 +          ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     63 +          >   >   >   >   >   >   >   >   >   >
    62 +      ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     62 +      >   >   >   >   >   >   >   >   >   >
    61 +      ^   ^   ^   ^       ^   ^   ^   ^   ^     61 +      >   >   >   >       >   >   >   >   >
    60 +  ^   ^   ^   ^   ^   ^   ^   ^   ^   ^     60 +  >   >   >   >   >   >   >   >   >   >
    59 +  ^   ^   ^   ^   ^   ^   ^   ^   ^   ^    overall mortality     59 +  >   >   >   >   >   >   >   >   >   >    overall mortality
    58 +  ^   ^   ^   ^   ^   ^   ^   ^   ^     58 +  >   >   >   >   >   >   >   >   >
    57 +      ^   ^   ^   ^   ^   ^   ^   ^     57 +      >   >   >   >   >   >   >   >
    56 +  ^   ^   ^   ^   ^   ^   ^   ^     56 +  >   >   >   >   >   >   >   >
    55 +  ^   ^   ^   ^   ^   ^   ^   ^     55 +  >   >   >   >   >   >   >   >
    54 +          ^   ^       ^   ^     54 +          >   >       >   >
    53 +  ^   ^   ^   ^   ^   ^   ^  proc phreg data=sasuser.fram;     53 +  >   >   >   >   >   >   >
    52 +  ^   ^   ^   ^   ^   ^     52 +  >   >   >   >   >   >
    51 +  ^   ^   ^   ^   ^   ^      model fu_year*dead(0) = i_male ;     51 +  >   >   >   >   >   >  proc phreg data=sasuser.fram;
    50 +      ^   ^       ^     50 +      >   >       >
    49 +  ^   ^   ^   ^   ^          where (40 <= age <= 59);     49 +  >   >   >   >   >      model (age,fu_age)*dead(0) = i_male ;
    48 +  ^   ^   ^   ^     48 +  >   >   >   >
    47 +  ^       ^   ^ Total 3198 Event 1544  Censored 1654(51.72 %)     47 +  >       >   >            where (40 <= age <= 59);
    46 +     46 +
    45 +      ^   ^     45 +      >   >      Total 3198 Event 1544  Censored 1654(51.72 %)
    44 +  ^     44 +  >
    43 +  ^   ^     43 +  >   >
       |                                          FU_YEAR (Since 1948)        |                                                    FU_YEAR
       --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --        --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --
          1   3   5   7   9  11  13  15  17  19  21  23  25  27  29           1   3   5   7   9  11  13  15  17  19  21  23  25  27  29

Testing Global Null Hypothesis: BETA=0 Testing Global Null Hypothesis: BETA=0

-2LOGL W/out:24098.1 With:23968.1 Covariates; Chi-Sq(1) 130; p=0.0001 -2LOGL W/out:22819.8 With:22662.7 Covariates; Chi-Sq(1) 157; p=0.0001

Maximum Likelihood Estimates Maximum Likelihood Estimates

              Parameter  Standard    Wald     Pr >    Risk (hazard)               Parameter  Standard    Wald     Pr >    Risk (hazard)
Variable  DF  Estimate    Error     Chi-Sq   Chi-Sq   Ratio Variable  DF  Estimate    Error     Chi-Sq   Chi-Sq   Ratio
I_MALE     1  0.583       0.051      129.3   0.0001   1.79 I_MALE     1  0.643       0.051      156.3   0.0001   1.90

Risk-sets "68" "69" ... ... candidates for death at age 68, 69,...

Mortality rates vary much more (and in more complex way)
over 20 years of age, than over 20 calendar years  => "t"=age

Risk-sets "1" "3", ... candidates for deaths in FU-YEAR "1" "3" ...
(each set has persons with a range of ages)

page  3



EPIB 634 Survival Analysis & Related Topics        Proportional Hazards Model: how parameters fitted, their uncertainty estimated; how survival curves obtained, etc      1

Topics
Proportional hazards model

Simplest case (1 covariate z, 2 levels/groups which we will refer to as 0
and 1)

Compared with reference individuals (group 0), who have a hazard h0[t]
at time t, those in group 1 have a hazard that is a constant times h0[t], i.e.

  
h1[t]
h0[t] = constant

{Selvin uses 'c' and Collett uses 'ψ' for HR, the hazard ratio}.

Equivalently, one can write

h1[t] = HR × h0[t]

The hazard ratio HR will be a number between 0 and infinity. To make it
easier to fit this parameter without having to constrain it within these
bounds, it helps to re express HR as

HR = eβ       { or ln[HR] = β }

so that the model becomes

 h1[t] =  eβ × h0[t]

or

ln[hz=1[t]] =  ln[hz=0[t]] + β × (z=1) .

One can think of the ln[h0[t]] as the intercept and z as the indicator
variable for group in a regression. Note that the 'intercept' here is a full
hazard curve over t; Unlike the case of other regressions, here the
intercept may be of interest. However we may not have enough data to
estimate it well, especially if, as is often the case, it varies considerably
over t, or we do not have many events.

• Fitting proportional hazards model to data

• estimating HR by (Partial) Likelihood approach

• "Information": how sharp is curvature of LogL fn

• Estimating HR via SAS PROC PHREG / Stata / R

• Estimating  h0(t) and  S0(t) [ the "corner"]

• Estimating  SX(t) [ X = a specified covariate pattern]

• Split Records
(also a way to handle time-dep. covariates)

• Estimation for stratified survival data

Readings [ http://www.epi.mcgill.ca/hanley/c681/cox ]

Clayton&Hills, Ch 30, sections 4-6
Collett Textbook, Chapter 3/4
Kleinbaum's 'Self-Learning' textbook, Chapter 3/4
Pair of expository articles by JH
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Relationship between S[t] for z=1 versus S[t] for z=0 ["corner" More general case (1 covariate z, with possibly several levels or  possibly
continuous; or several covariates, continuous/discrete/mixed}

(déjà, but in less detail.. can skip this page for now) For short, refer to set of covariates {z1, z2, ...,  zk} as z ; without loss of
generality, refer to a reference group of individuals as having{z1=0,
z2=0, ...,  zk=0} as z=0).

Compared with reference individuals (group with  z=0), who have a
hazard h0[t] at time t, those with covariate values {z1, z2, ...,  zk}  have a
hazard that is some multiple times h0[t], where the multiple depends only
on z i.e.

  
hz[t]
h0[t] = HR(z)

or

  hz(t) = HR(z) × ho(t)

Most often, HR(z) is taken as log-linear i.e. the log of HR(z) is taken as
linear in the k parameters {β1, β2, ...,  βk} i.e.

log[ HR(z) ] =  {β1z1 + β2z2 +  ... + βkzk}
or

HR(z) =  exp {β1z1 + β2z2 +  ... + βkzk}.

Since
exp{β1z1 + β2z2}= exp{β1z1} × exp{β2z2},

 we can rewrite model as

hz(t) = HR(z1) × HR(z2) × ... × HR(zk) × ho(t)

If  h1(t) = eβ h0(t),   and if H[t] is the integrated hazard,

then the integrated (or "cumulative") hazard for z=1 is

H1(t) = eβ H0(t),

so that the survival functions are

S1(t) = e–H1(t)

= e–eβH0(t) = [e–H0(t)]eβ

= [S0(t)]eβ
= [S0(t)]HR

Thus, the log[-log] functions should be parallel,

log[ -log[S1(t)] ]

= log[-log[S0(t)HR ] ]

 = log[ HR •  –log[S0(t)] ]
 = log[HR]  + log[–log[S0(t)] ] or

Sz(t) = [S0(t)]eβz
= [S0(t)]HR1 + HR2 + ... +HRk

where  HR1 is shorthand for  exp{β1z1}, same for HR2  etc.

Important to have the "corner" covariate pattern near the actual z values
(so, might want to 'center' the z values first, before fitting.

Not precluded from using products or powers of the z's.

and separated by the quantity log[HR].

Thus one can visually estimate  b = log [HR] from log[-log S ] plots.
If limited data, the hazard functions may be too unstable to use.

The "baseline" hazard function h0(t) can be from some parametric family
[e.g. h0(t) = constant {negative exponential distribution of failure times},
Weibull, ...] or can be unspecified. In the latter case, the mixture of a
parametric form for HR and a 'free' form for h0(t) is why the model is
called "semi-parametric".
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Fitting proportional hazards model:  Risksets

Our prime interest is in estimating the parameters of HR; we will also, as
a secondary objective, estimate ho(t). The keys to the estimation are the
Risk Sets, the collections of candidates for (individuals at risk just
before) each distinct failure time (event)

Estimating HR by (Partial) Likelihood approach

It helps to lay it out the 5 risk sets as follows (note that in the 5th riskset
there is 'no contest') ...

o=d1 1 0 1 1 -
    s1 3            2            1            0            -
    n1 4 2 2 1

    d0 0 1 0 0 1
    s0 3            2            2            1            0
    n0 3 3 2 1 1

Simplest case (1 covariate z, 2 levels or Tx groups which we will

distinguish using indicator variable z= 0 and z=1). In e.g. below, a •

denotes a failure (event), a + denotes a censored observation; and time

runs from left to right [note: to estimate HR function we do not need the

failure & censoring times themselves, only their order with respect to z]. In the Maximum Likelihood method, we find that value of the HR which

maximizes the likelihood of the observed data pattern (the sequence

is indicated in bold above) The likelihood is a function of HR.
Raw data..( 7 individuals).

z=1   •   +       •          •
z=0           •        +           •

To construct the Likelihood function, we need a probability model for

each table (i.e., for the outcome in each riskset) and an assumption

regarding the separate tables. In the calculation of a variance for the MH

statistic (log rank test) we already assumed that the 2x2 tables were

realizations of hypergeometric (urn sampling) models and that the tables

could be treated as if they were independent of each other. We could do

the same here to set up a likelihood.

It is easier to lay them out as separate time lines [in the 'early days'

before computers, some investigators would represent survival data on

their patients using lines of thread along a wall].

z=1 ––•
z=1 ––––––+
z=1 ––––––––––––––•
z=1 –––––––––––––––––––––––––•

z=0 ––––––––––•
z=0 –––––––––––––––––––+
z=0 ––––––––––––––––––––––––––––––•

For each risk set, we ask

"Given that the event occurred, what is the chance that it ocurred
to the individual it happened to, rather than to someone else in the
risk set?"

Riskset #  1       2   3          4    5

Cox argued that since there are no failures (events) between the •'s, we

do not know much about the hazards in these gaps [unless we want to

posit parametric form for ho(t) or So(t)]. In any case our prime interest

is in HR, and so we will concentrate just on these risk sets.
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Consider a risk set where the event happened at t to a person with z=1.

If the hazard for persons with z=1 is HR×ho(t) and 1×ho(t) for those
with z=0, and if in the risk set there are n1 and n0 persons respectively,
then the [conditional] probability that the event happened to that
particular person with z=1  out of the n1 and n0 'at risk' is

HR × h0[t]
n1 × HR × h0[t]    +    n0 × 1 × h0[t]

which simplifies to

HR
n1 × HR    +    n0 × 1 

Conversely, in a risk set where the event happened to a person with z=0.
then the [conditional] chance that the event happened to that particular
person with z=0  out of the n1 and n0 'at risk' is

1
n1 × HR    +    n0 × 1 

Thus, for the example above, the product of the probabilities of the
observed outcome (likelihood) in each of the 4 informative risksets is

L = 
HR

4HR+3  ×  
1

2HR+3  ×  
HR

2HR+2  ×  
HR

HR+1

This likelihood L(HR)= prob(data | HR) can be evaluated for a range of
HR values in order to find the value  HR̂ML which mazimises  L. e.g.

HR 1/2 1 2 4 8 16

Lx103 1.4 3.6 5.8 6.1 4.8 3.0

The function L & derived functions are shown graphically on next page.

0 10 20 30 40 50
HR

0.002

0.003

0.004

0.005

0.006

Likelihood

Or with the parameter B = Log[HR] ...
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or in the log Likelihood scale... Uncertainty / Information concerning log [HR]

The 'sharpness' or 'flatness' of the logL(HR) curve in the vicinity of B =
1.14 gives an indication of how sensitive logL is to changes in log[HR]
i.e. of how well or badly other values of log[HR] would do in producing
a large likelihood. This can be measured by the 2nd derivative of logL
(or if you like by the tangent to the 1st derivative curve) with respect to
B. Note that the L curve increases until B = 1.14 then decreases. Thus
the slope dlogL/dB goes from positive to negative over this range. ie the
2nd derivative is negative. Since we are simply interested in the curvature
we use the negative of the 2nd derivative; it will be a big positive quantity
when the curvature is very sharp, and a small positive quantity when the
curvature is very slow.

-1 0 1 2 3 4

-7

-6.5

-6

-5.5
LogL

B = Log[HR] The plot below shows that the curvature of logL is quite small
(approximately 0.7412 at  B = 1.14). This negative of the 2nd derivative
of the log likelihood, evaluated at the ML estimate, is called the
"Information" in the data. Its reciprocal is a good measure of the
variance of the ML estimate of B.The Derivative of the log Likelihood ...
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B
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0.8

1

- d (d LogL / dB ) / dB

-1 0 1 2 3 4

-0.5

0.5

1

1.5

2

d LogL / dB

B = Log[HR]

We usually work with B =log[HR], since the sampling variability of b is
more symmetric. The I[Β] calculated at b = 1.14 is approximately
0.7412, yielding  SE[b] =  √(1/0.7412) = 1.16, yielding a 95% CI for
HR=exp[B] of {0.3 to 31}.The 4 informative risk sets provide just a
small amount of information about log[HR] and our confidence in
values near the ML estimate is low.

Tangent to logL curve is zero at B = 1.14 (we call this B_hat or b];

So...    HR̂ML = exp[b] = 3.14.
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Estimating HR via SAS PROC PHREG 7 obs., representing 5 failures in single record/single failure data
56  total analysis time at risk, at risk from t =  0
earliest observed entry t = 0 last observed exit t =  14DATA a;
.

INPUT event  time   tx ;  /* Note arbitrary times              */
* null modelLINES;                    /* only ORDER matters                */
stcox, estimate        1     2     1     /* event=0 stands for censored obsn. */

        0     4     1          failure _d:  event
        1     6     0    analysis time _t:  time
        1     8     1

Iteration 0:   log likelihood = -5.6347896        0    10     0
        1    12     1

Log likelihood  =   -5.63   Prob > chi2     =         .        1    14     0
; * model with tx.. gives beta_hats, not HR_hats
title null model; proc phreg ; model time*event(0) = ; stcox tx, nohr
Dependent Variable: TIME       Number of Event & Censored Values Iteration 0:   log likelihood =  -5.074435
Censoring Variable: EVENT

LR chi2(1)      =     1.12Censoring Value(s):            Total   Event  Censored  %Censored
Log likelihood  =    -5.07   Prob > chi2     =    0.2898Ties Handling:      BRESLOW        7       5         2    28.57

 _t |    Coef. Std. Err.   z    P>|z|  [95% Conf. Int]NOTE: No explanatory variables in this model.  -2 LOG L = 11.27

JH: LOG L = log[{1/7} x {1/5} x {1/4} x {1/2}] = LOG[1/280] = -5.63 ---------------------------------------------------------
  tx |   1.143    1.161  0.98   0.325    -1.13   3.41

title model with tx; proc phreg data=a; --------------------------------------------------------
                     model time*event(0) = tx / RISKLIMITS; .

. * model with tx.. gives HR_hats, not beta_hats
    Testing Global Null Hypothesis: BETA=0 . stcox tx
         Without   With Covariates        Model Chi-Square

 _t | HazRatio Std. Err.  z    P>|z|   [95% Conf. Int]
-2 LOG L  11.27   10.15              1.12  with 1 DF (p=0.29) ---------------------------------------------------------

 tx |  3.14      3.64   0.98   0.325     .32    30.55ML Estimates
--------------------------------------------------------         Parameter Standard  Wald    Pr >     Risk*      95% CL

Variable  Estimate   Error  Chi-Sq  Chi-Sq    Ratio    Lower  Upper Estimating HR via survival package in RTX         1.14      1.16** 0.9685   0.33     3.14     0.32    30.6

require(survival);      event=c(1,0,1,1,0,1,1);
time=c(2,4,6,8,10,12,14); tx =c(1,1,0,1,0,1,0);

* Technically speaking, should be called Hazard Ratio;  Obtained as exp[1.14]
** See 2nd Derivative graph on left:   SE[b] = Sqrt[var] = sqrt[1/Information]

fit=coxph( Surv(time, event) ~ tx); summary(fit)
Estimating HR via Stata    coef exp(coef) se(coef)     z    p
1.input event time tx tx 1.14      3.14     1.16 0.984 0.33
          1     2   1               hr
          0     4   1   2. stset time , failure(event)

   exp(coef) exp(-coef) lower .95 upper .95          1     6   0
          1     8   1 tx      3.14      0.319     0.322      30.6
          0    10   0 Likelihood ratio test= 1.12  on 1 df,   p=0.29
          1    12   1 Wald test            = 0.97  on 1 df,   p=0.325          1    14   0

Score (logrank) test = 1.07  on 1 df,   p=0.3   end
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Estimating  h0 (t) and  S0 (t) [see Collett §3.8] ξ1 of surviving past the time of the 1st riskset, ξ1ξ2 for surviving past the

2nd, etc as in the K-M approach.Once one has estimated HR, using  HR̂ML = exp[ β̂ML], one can estimate

the baseline hazard (and S) via a procedure similar to the Kaplan-Meier

product method. One might have expected this type of non-parametric

approach, since no form is specified for h0(t).

If there are multiple events per riskset, one must iteratively solve equation

3.16 for ξ1. If there is only one, ξ1 can be calculated directly as

ξ̂= {1 – 
 HR
∑HR }1/HR

where HR is the calculated HR for the individual who suffered the event,

and the summation of the HR's for all the persons in the risk set.

To go back to our example of males and females and a HR of 2 for

males relative to a "1" for females: suppose the risk set had 100 men and

50 women. From a hazard point of view, one can think of this as

100 × 2  +  50 × 1 = 250 "women equivalents"

at risk. Now if the one event occurs to a woman, that is like saying that

we had a failure of 1/250 and thus

One uses all the events (in both groups) even though the estimate is

supposed to represent individuals with z=0. The reason for this is that in

a dataset with continuous covariates, there may be nobody with the

specific configuration of z's that one considers the 'reference' population.

As with all modelling and regression, we are being 'synthetic' and

borrowing strength from all the data.  As Collett explains, the derivation

is complex, but one can get some sense of the logic from the 2-sample

case where there is one event at a time [see Collett's 'particular case'

following his equation 3.16]. The way JH thinks of it is to imagine a two

sample situation where we were given 2 samples of death times, 1 for

males and 1 for females (reference group), and told that the ratio (HR) of

the death rates in the population of males and females was say 2. Would

you just estimate a K-M curve for females using the data for females and

call it your best estimate of the 'reference' of female S or would you try

to use all the data, including the deaths from males, to estimate a better

K-M curve for females?

ξ̂ = {1 – 
 1

∑HR }1/1
  =   {1 – 

 1
250 }1/1

=   
249
250

If however the one event occurs to a man, that is like saying that we had a

failure of 2/250 (or a success of 248/250) in two trials, so that in 1 trial

of 250, we should have a success of

ξ̂ = {1 – 
 2

∑HR }1/2
  = {1 – 

 2
250 }1/2 

≅   
248.998

250

Cox [and later Kalbfleisch and Prentice] take the 'synthetic' approach.

One estimates a quantity Collett calls ξ for each riskset. This is the the

'conditional probability of survival'; estimates of these various success

probabilities are multiplied together to give the unconditional probability
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Obviously, in smaller n's the differences would be more dramatic. For
example, with the data above, we had HR̂ML = 3.14 which for simplicity
we will round to  HR̂ML = 3. Thus in the 5 risksets, we had the
following structure

o=d1 1 0 1 1 -
    s1 3            2            1            0            -
    n1 4 2 2 1

or (roughly)

 Ŝ0(t) (estimated from 5 risk sets)      and  Ŝ1(t) = { Ŝ0(t) }3

       1.00                   
   |    |

       0.93   |    |                 
   |    |    |

       0.83   |    |    |                 
   |    |                    |
   |    |    |

       0.71   |    |    |                 
   |    |    |
   |    |    |
   |    |                    |
   |    |    |
   |    |    |
   |    |    |

       0.44   |    |    |                 
   |    |    |
   |    |                    |
   |    |    |
   |    |    |
   |    |    |
   |    |    |
   |    |    |
   |    |    |
   |    |                    |
   |    |

       0.00    |                                                                                                    |                 

      t0 t1 t2 t3 t4 t5

    d0 0 1 0 0 1

    s0 3            2            2            1            0

    n0 3 3 2 1 1

or in "z=0 equivalents", replacing each person in z=1 group with HR=3
o=d1   3 0 3 3 -
    s1   9          6            3            0            -
    n1 12 6 6 3
    d0  0 1 0 0 1
    s0  3           2            2            1            0
    n0  3 3 2 1 1

or, summing and putting all individuals into "z=0 equivalents"... Following is the estimate of S0 (t) and  S1 (t) produced by PHREG.

 d0   3 1 3 3 1
 s0 12          8            5            1            0
 n0 15 9 8 4 1

First one must set up a file with the covariate patterns for which one
wants survival (and other) curves.. Here there is just one covariate z, with
2 values, so there are only 2 possible covariate patterns.
1.

DATA cov_vals;
INPUT         tx ;
LINES;
              0
              1
;
RUN;

2.

title model with tx, and obtain curves;
proc phreg data=a;
 model time*event(0) = tx / RISKLIMITS;
 BASELINE OUT = curves
          COVARIATES  =  cov_vals
                SURVIVAL =  SURVIVAL
                LOGSURV  =  LOGSURV
                LOGLOGS  =  LOGLOGS;

Then the ξ̂ 's are estimated as

     {12
15}

1/3
    

8
9     {5

8}
1/3   {1

4}
1/3

  0

or  0.93 0.89 0.86 0.63     0

yielding a Product Limit estimate of the S[ ] function for the z=0 group:
1.00 0.93 0.83 0.71 0.44 0 in R

For the z= 1 group, the corresponding estimate is fit = coxph( );
1.00 0.933   0.833 0.713   0.443 0

   or
plot( survfit(fit) )
baseline(fit)

1.00 0.80 0.57 0.36 0.09 0 * use newdata in survfit to specify covariate patterns.
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PROC PRINT DATA=curves ROUND; RUN; ML estimates for stratified survival data
(exercise.. follow Fig 3 in part II of JH's expository article)   TX     TIME    SURVIVAL    LOGSURV    LOGLOGS

Consider the following pattern of observations for two treatments where
• denotes a failure (event) and + denotes a censored observation and
time runs from left to right. The observations are in 2 strata.

    0      0       1.00        0.00        .
    0      2       0.93       -0.07      -2.63 *
    0      6       0.83       -0.19      -1.68 **
    0      8       0.71       -0.34      -1.08 ***
    0     12       0.45       -0.79      -0.23 **** Stratum 1    0     14       0.00         .          .

Rx1   •   +       •          •
    1      0       1.00        0.00        .     (difference)# Rx2           •        +           •
    1      2       0.80       -0.23      -1.49 *    (1.14)
    1      6       0.56       -0.58      -0.54 **   (1.14)

Stratum 2    1      8       0.35       -1.06       0.06 ***  (1.14)
Rx1 •           +         •    1     12       0.08       -2.48       0.91 **** (1.14)

    1     14       0.00         .          . Rx2     +   •       •
  0.57*     0       1.00        0.00        .

The above calculations used the data for stratum 1.

For the second stratum

  0.57      2       0.87       -0.14      -1.98
  0.57      6       0.70       -0.36      -1.03
  0.57      8       0.52       -0.65      -0.43
  0.57     12       0.22       -1.52       0.42
  0.57     14       0.00         .          .

* 0.57 is the average, in the dataset, of the z values
a set up the risk sets.

b set up the likelihood contribution from each set and the overall
likelihood for the stratum (follow e.g. of stratum 1)# It is not a coincidence that there is a constant difference of 1.14

between the two FITTED log[ - log[S] ] curves: this is a consequence
of the proportional hazards assumption.. c calculate the likelihood for several values of β
Plotting the EMPIRICAL log[ - log[S] ] curves to see if they are
reasonably parallel allows a visual check on the proportional
hazards assumption.

d draw a smooth sketch of the likelihood function (the numbers may
be so tiny that you prefer to plotting the log of the likelihood
function)Stata

* store fitted survival for baseline group into new variable called s e at what value (approx) of β is the function a maximum?
stcox tx, basesurv(s)

f calculate numerically the 1st and 2nd derivatives of the log likelihood
function in the neighbourhood of β_hat* generate corresponding curve for tx=1   ..  ^ = 'to power of' )

gen s_1 = s^(exp(1.14))
Multiply the likelihood (or add the log Likelihoods) from the 1st
stratum and the likelihood from b to produce the overall
likelihood (or log Likelihood) from the 2 strata combined. Then
maximize the combined likelihood (or log likelihood).

Individuals from different strata cannot be in same riskset
(but, if strata too fine, may have uninformative risksets)

* graph -log[S] i.e., cumulative hazard curves (na =  Nelson-Aalen)
sts graph, na by(tx)

* graph -log[-log[S]] versus time, so check if parallel
stsphplot, by(tx)

* stcoxkm plots Kaplan-Meier observed survival curves and compares
them to the Cox predicted curves for the same variable.


