Analyzing Simple
Epidemiologic Data

In this chapter, we provide the statistical tools to analyze simple epide-
miologic data. By simple data, we refer to the most elementary data that
could be obtained from an epidemiologic study, such as crude data from
a study with no confounding. Because our emphasis is on estimation ‘as
opposed to statistical significance testing, we concentrate on formulas
for obtaining confidence intervals for basic epidemiologic measures, al-
though we also include formulas to derive p values.

The formulas presented here give only approximate results and are
valid only for data with sufficiently large numbers. More accurate esti-
mates can be obtained using what is called exact methods. It is difficult
to determine a precise threshold of data above which we can say that
the approximate results are good enough and below which we can say
that exact calculations are needed. Fortunately, even for studies with
modest numbers, the interpretation of results rarely changes when ex-
act rather than approximate results are used to estimate confidence
intervals. True, for those who place emphasis on whether a confidence
interval contains the null value (thereby converting the confidence in-
terval into a statistical test), it may appear to matter if the limit changes
its value slightly with a different formula and the limit is near the null
value, a situation equivalent to being on the borderline of “statistical
significance.” As explained in the previous chapter, however, placing
emphasis on the exact location of a confidence interval, that is, placing
emphasis on statistical significance, is an inappropriate and potentially
misleading way to interpret data. With proper interpretation, which
ignores the precise location of a confidence limit and instead considers
the general width and location of an interval, the difference between

results from approximate and exact formulas becomes much less
important.
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Confidence Intervals for Measures of Disease Frequency

Risk Data cand Prevalence Data)

Suppose we observe that 20 people out of 100 becqme ill wit.h influenza
during the winter scason. We would estimate the risk, R, of influenza to
be 20/ 100 or 0.2. To obtain a confidence interval, we need to a.lpplyl a
statistical model. For risk data, the model usually applied is the binomial
model. To use the model to obtain a confidence interval, it helps to have
some simple notation. Let us use a to represent cases agd N to represent
people at risk. Using this notation, our estimate of risk Would be the
number of cases divided by the total number of people at risk: R = u/N .
We can calculate a confidence interval for the lower and upper confi-
dence limits of R using the following formula.

R, Ry = R = Z - SE(R) (7-1)

In this expression, the minus sign is used to obtain the lower.conﬁ-
dence limit and the plus sign is used to obtain the upper ‘con.flde.nce
limit. Z is a fixed value, taken from the standard normal dlStI‘lbutl'OI'I,
that determines the confidence level. If Z is set at 1..645, t?e resglt is a
90% confidence interval; if it is set at 1.96, the result is a 95 (o confidence
interval. SE(R) is the standard error of R. The standard. error is a measu}rle
of the statistical variability of estimate. Under the binomial model, the
standard error of R would be as follows.

a(N — a)
SE(R) =\ 5
Example: Confidence Limits for a Risk or Prevalence

Using this formula with the example of 20 cases of in.ﬂuenzaA in 10(1
people, we can calculate the lower bound of a 90% confidence interva

for the risk as follows.

’20 8
—R-Z- — 020 — 1.645 -4/ —— = 0.
R, = R — Z-SE(R) = 0.20 —

ined bstituting a plus sign for the
The upper bound could be obtained by suk . us s :
minuspI:ign in the above calculation. Making this §ubst1tut1on gives a
value of 0.27 for the upper bound. Thus, with 20 influenza cases in a
population of 100 at risk, the 90% confidence interval for the risk esti-

mate of 0.2 is 0.13-0.27.
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Wilson’s confidence limits for a binomial

The application of the preceding formula to risk data to obtain confi-
dence limits is straightforward, but the approach is useful only as a
large-number approximation. With scanty data, and especially for risks
that are considerably less than (or greater than) 50%, the confidence
limits are apt to be inaccurate. Suppose we have 20 people, among
whom there is one case, for a risk estimate of 1/20 or 0.05. The text
formula on page 131 would give a 90% confidence interval from —0.03
to 0.13. The lower limit is a negative risk, which does not even make
sense. The lower limit should theoretically never go below 0, and the
upper limit should never go above 1. These numbers are too small to
use the binomial standard error formula. Because the risk estimate for
this example is 0.05, there is less room for the risk to vary in the low
direction than in the high direction, and an exact calculation of the
confidence interval would produce limits that were not symmetrically
placed around 0.05. The exact procedure, a more complicated calcula-
tion that goes beyo;d the scope of this book, gives a 90% confidence
interval of 0.005-0.19. There is an approximate approach that comes
close to exact limits for a binomial distribution, however. The formula
was proposed in 1927 by Wilson:!

N

a 72 alN —a) 72
—_—— +
N + 72

L E LY —]
N 2N N® 4N?

As before, a is the number of cases (numerator), N is the number at
risk (denominator), and Z is the multiplier from the standard normal
distribution that corresponds to the confidence level. This formula,
much easier than an exact calculation, gives a 90% confidence interval
for risk of 0.01-0.20, close to the exact confidence limits even for these
small numbers. With this formula, there is little reason to obtain an
exact binomial confidence interval for any data.

Incidence Rate Data

For incidence rate data, let us use 4 to represent cases and PT to repre-
sent person-time. Although the notation is similar to that for risk data,
these data differ both conceptually and statistically from the binomial
model used to describe risk data. For binomial data, the number of cases
cannot exceed the total number of people at risk. In contrast, for rate
data, the denominator does not relate to a specific number of people but
rather to a time total. We do not know from the value of the person-time
denominator, PT, how many people might have contributed time. For
statistical purposes, we invoke a model for incidence rate data that al-
lows the number of cases to vary without any upper limit. It is the Pois-
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son model. We take a/PT as our estimate of the disease rate and calculate
a confidence interval for the rate using formula 7-1 with the following

standard error.
a
SE(R) = Al —
(R) e

Do rates always describe population samples?

Some theoreticians propose that if a rate or risk is measured in an
entire population, there is no point in calculating a confidence interva'l,
because a confidence interval is intended to convey only the impreci-
sion that comes from taking a sample from a population. According to
this reasoning, if one measures the entire population instead of a sam-
ple, there is no sampling error to worry about and, therefore, no confi-
dence interval to compute. There is another side to this argument,
however: others hold that even if the rate or risk is measured in an
entire population, that population represents only a sample of people
from a hypothetical superpopulation. In other words, the study popu-
lation, even if enumerated completely without any sampling, repre-
sents merely a biologic sample of a larger set of people; therefore, a
confidence interval is justified.

The validity of each argument may depend on the context. If one i.s
measuring voter preference, it is the actual population in which one is
interested, and the first argument is reasonable. For biologic phenom-
ena, however, what happens in an actual population may be of less
interest than the biologic norm that describes the super-population;
therefore, the second argument is more compelling.

Example: Confidence Limits for an Incidence Rate

Consider as an example a cancer incidence rate estimated from a regis-
try that reports 8 cases of astrocytoma among 85,000 person-years at
risk. The rate is 8/85,000 person-years or 9.4 cases per 100,000 person-
years. A lower 90% confidence limit for the rate would be estimated as
follows.

8 8
=R - Z SER) = —1.645~\/
Ru= R ® 85,000 person-years (85,000 person-years)”

= 3.9 / 100,000 person-years

Using the plus sign instead of the minus sign in the above expression
gives 14.9/100,000 person-years for the upper bound.
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Byar’s confidence limits

With very small numbers, the approximate formula given in the text
for confidence limits for incidence rate data will be inaccurate. Once
again, the ideal would be to calculate exact confidence limits, but as
for risk data, there is also a convenient approximate formula that is
nearly as good as exact methods and much easier to use. This formula,
adapted from D. Byar (unpublished), is:

Ry, Ry =

where a4’ equals a + 0.5, PT is the rate denominator, and Z is the mul-
tiplier from the standard normal distribution that corresponds to the
level of confidence. As before, the minus sign is used to calculate the
lower limit and the plus sign, the upper limit.

Suppose that the observed rate were 3 cases in 2500 person-years,
for a rate of 12 cases per 10,000 person-years. The large-number for-
mula for confidence limits in the text gives a symmetric 90% confi-
dence interval of 0.6-23 cases per 10,000 person-years, whereas the
above formula gives a 90% confidence interval of 4.3-28 cases per
10,000 person-years, which is much more accurate. (The exact confi-
dence limits are 4.0 and 29.) Like Wilson’s binomial formula and the
exact confidence interval, the Byar confidence interval is asymmetrical.

Confidence Intervals for Measures of Effect

Studies that measure the effect of an exposure involve comparison of
two or more groups. Cohort studies may be conducted using a fixed
follow-up period for each person, obtaining effect estimates from a com-
parison of risk data; or they may allow for varying follow-up times for
each person, obtaining effect estimates from a comparison of incidence
rate data. Case-control studies come in several varieties, depending on
how the controls are sampled; but for the most part, the analysis of case-
control studies is based on a single underlying statistical model that de-
scribes the statistical behavior of the odds ratio. Prevalence data, ob-
tained from surveys or cross-sectional studies, may usually be treated as
risk data for statistical analysis because, ltke risk data, they represent
proportions. Similarly, case fatality rates, which are more aptly described
as data on risk of death among those with a given disease, may usually
be considered risk data.
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Cohort Studieos with Risk Data (or Prevalence Data)

Consider a cohort study of a dichotomous exposure with the categc.)ries
exposed and unexposed. If the study followed all subjects. for a fixed
period of time and there were no important competing risks and no
confounding, we could display the essential data as follows.

Exposed Unexposed
Cases a b
People at risk Ny Ny

From this array, one can easily estimate the risk difference, RD, and the
risk ratio, RR.

a b
RD = — — —
Nl N(]
a b
RR=— [/ —
Ny/ N

To apply formulas 6-1 and 6-2 to obtain confidence intervals for the
risk difference and the risk ratio, we need formulas for the standard
error of RD and the In(RR):

Ny —a) bNo — b
SE(RD)=\ja(13a)+ (Oz) 7-2)

Ny Ng’

T 1 1 1 o
E[In(RR)] = 4 - — — + — — — -
SE[In(RR)] PRI

Example: Confidence Limits for Risk Difference and Risk Ratio

As an example of risk data, consider Table 7-1, which describes recur-
rence risks among women with breast cancer treated with either tamox-
ifen or a combination of tamoxifen and radiotherapy.

Table 7-1. Risk of recurrence of breast cancer in a randomized trial of
women treated with tamoxifen and radiotherapy or tamoxifen alone*

Tamoxifen and Radiotherapy Tamoxifen Only
Women with recurrence 321 411
Total women treated 686 689

*Data from Overgaard et al?
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From the data in Table 7-1, we can calculate a risk of recurrence of
321/686 = 0.47 among women treated with tamoxifen and radiotherapy
and a risk of 411/689 = 0.60 among women treated with tamoxifen
alone. The risk difference is 0.47 — 0.60 = —0.13, with the minus sign
indicating that the treatment group receiving both tamoxifen and radio-
therapy had the lower risk. To obtain a 90% confidence interval for this
estimate of risk difference, we use formulas 6-1 and 7-2 as follows.

321 - 365 411 - 278
1.645 -

RD. = —-0.13 — +
686° 689°
= —0.13 — 1.645 - 0.027 = —0.17
321 -365 411 -278
RDy = ~0.13 + 1.645 - +
686° 689°

i

—-0.13 + 1.645-0.027 = —-0.08

This calculation gives 90% confidence limits around —0.13 of —0.17 and
—0.08. In other words, the 90% confidence interval for the risk differ-
ence ranges from a benefit of 17% smaller risk to a benefit of 8% smaller
risk for women receiving the combined tamoxifen and radiotherapy
treatment.

We can also compute the risk ratio and its confidence interval from
the same data. The risk ratio is (321/686)/(411/689) = 0.78, indicating
that the group receiving combined treatment faces a risk of recurrence
that is 22% lower (1 — 0.78) relative to the risk of recurrence among
women receiving tamoxifen alone. The 90% lower confidence bound for
the risk ratio is calculated as follows.

1 1 1

1
RR; = @78 - 1645\ 37 655" TT 689

2670.24v1.645-0.051 — 870.327 = 0.72

Substituting a plus sign for the minus sign before the z-multiplier of
1.645 gives 0.85 for the upper limit. Thus, the 90% confidence interval
for the risk ratio estimate of 0.78 is 0.72-0.85. In other words, the 90%
confidence interval for this benefit of combined treatment ranges from a
28% lower risk to a 15% lower risk. (It is common when describing a
reduced risk to convert the risk ratio to a relative decrease in risk by
subtracting it from unity; thus, a lower limit for the risk ratio equal to
0.72 indicates a 28% lower risk because 1 — 0.72 = 0.28, or 28%.) These
percentages indicate a risk measured in relation to the risk among those
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receiving tamoxifen alone: the 28% lower limit refers to a risk that is 28%
Jower than the risk among those receiving tamoxifen alone.

Confidence intervals versus confidence limits

A confidence interval is a range of values about a point estimate that
indicates the degree of statistical precision that describes the estimate.
The level of confidence is set arbitrarily, but for any given level of
confidence, the width of the interval expresses the precision of the
measurement: a wider interval implies less precision, and a narrower
interval implies more precision. The upper and lower boundaries of

the interval are the confidence limits.

Cohort Studies with Incidence Rate Data

For cohort studies that measure incidence rates, we use the following
notation.

Exposed Unexposed
Cases a b
Person-time at risk PT, PT,

The incidence rate among the exposed is 4/PT; and that among the
unexposed is b/PT,. To obtain confidence intervals for the incidence
rate difference (ID), a/PT; — b/PT,, and the incidence rate ratio (IR),
(a/PT,)/ (b/PTy), we use the following formulas for the standard error of
the rate difference and the logarithm of the incidence rate ratio.

a b
SE(ID) = A|l— +
( PT2  PTy?

[1 1
SE[In(JR)] = 4/- + — (7-5)
a b

Example: Confidence Limits for Incidence Rate
Difference and Incidence Rate Ratio

(7-4)

The data in Table 7-2 are taken from a study by Feychting et al.’ com-
paring cancer occurrence among the blind with occurrence among those
who were not blind but had severe visual impairment. (The study hy-
pothesis was that a high circulating level of melatonin protects against
cancer; melatonin production is greater among the blind because, among
those who see, visual detection of light suppresses melatonin production
by the pineal gland.)
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Table 7-2. Incidence rate of cancer among a blimd pogiidation i .
population that is severely visually impaired but not blind:

Blind Severely Visually Impaired but Not Blind
Cancer cases 136 1709 -
Person-years 22,050 127,650

*Data from Feychting et al’

From these data we can calculate a cancer rate of 136/22,050 person-
years = 6.2/1000 person-years among the blind compared with 1709/
127,650 person-years = 13.4/1000 person-years among those who were
visually impaired but not blind. The incidence rate difference is (6.2 —
13.4)/1000 person-years = —7.2/1000 person-years. The minus sign in-
dicates that the rate is lower among the group with total blindness,
which is here considered the “exposed” group. To obtain a 90% confi-
dence interval for this estimate of rate difference, we use formula 61 in
combination with formula 7-4, as follows.

—-7.2 136 1709
IDp= —— 1645 Al—— + —
1000 person-years 22,0507  127,650%
-7.2 0.62 —82
= 1645 = >

1000 person-years 1000 person-years ~ 1000 person-years

-72 136 1709
Dy=—— + 1645 A|—— + ——
1000 person-years 22,050 127,650°
~72 0.62 -
+ 1.645 - 62

1000 person-years 1000 person-years 1000 person-years

This calculation gives 90% confidence limits around the rate difference
of ~7.2/1000 person-years of —8.2/1000 person-years and —6.2/1000
person-years. \

The incidence rate ratio for the data in Table 7-2 is (136/22,050)/
(1709/127,650) = 0.46, indicating a rate among the blind that is less
than half that among the comparison group. The lower limit of the 90%
confidence interval for this rate ratio is calculated as-follows.

f T 1
IR, = elr\(OA46)-1.645» 36 909

— »—0.775-1.645-0.089 —0.922
=¢ = = 0.40
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v corncponding calculation tor the upper fimit gives IR, = 0.53, for a
D0 contidene e mterval around the incidence rate ratio of 0.46 of 0.40-

(NI

¢ ase Control Studies

flere and in later chapters we deal with methods for the analysis of a
density case-control study, the most common form of case-control study.
I'he analysis of case-cohort studies and case-crossover studies is slightly
different and is left for more advanced texts. For the data display from a
case-control study, we will use the following notation.

Exposed Unexposed
Cases a b
Controls c d

The primary estimate of effect that we can derive from these data is
the incidence rate ratio, which in case-control studies is estimated from
the odds ratio (OR), ad/bc. We obtain an approximate confidence interval
for the odds ratio using the following formula for the standard error of
the logarithm of the odds ratio:

1 1 1 1
SE[In(OR)] = A[-+ -+ -+ — (7-6)
a b ¢ d

Example: Confidence Limits for the Odds Ratio

Consider as an example the data in Table 7-3 on amphetamine use and
stroke in young women, from the study by Petitti et al’?

For these case-control data, we can calculate an OR of (10)(1016)/
[(5)(337)] = 6.0. An approximate 90% confidence interval for this odds
ratio can be calculated from the standard error expression 7-6 above in
combination with formula 6-1.

T 1 1.1
OR, = ¢n60-1645 \N1To" 337 "5 1016

= pl797— 16450551 _ 17970507 . 0890 _ 34
Table 7-3. Frequency of recent amphetamine use among stroke cases and
controls among women age 15-44*

Amphetamine Use No Amphetamine Use

Stroke cases 10 337
Controls 5 1016

*Adapted from Petitti et al.*

o
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Using a plus sign instead of the minus sign in front of the z-multiplicr of
1.645, we get ORy = 14.9. The point estimate of 6.0 for the odds ratio 1»
the geometric mean between the lower limit and the upper limit of the
confidence interval. This relation applies whenever we set confidence
intervals on the log scale, which we do for all approximate intervals for
ratio measures. The limits are symmetrically placed about the point esti-
mate on the log scale, but the upper bound appears farther from the
point estimate on the untransformed ratio scale. This asymmetry on the
untransformed scale for a ratio measure is especially apparent in this
example because the OR estimate is large.

Calculation of p Values

Although the reader is better off relying on estimation rather than tests
of statistical significance for inference, for completeness we give here the
basic formulas from which traditional p values can be derived that test
the null hypothesis that exposure is not related to disease.

Risk Data

For risk data, we will use the following expansion of the notation used
earlier in the chapter.

Exposed Unexposed Total
Cases a b M,
Noncases c d My
People at risk Ny Ny T

The p value testing the null hypothesis that exposure is not related to
disease can be obtained from the following formula for x.
NiM,
T
NiNoeMiMp
T2 (T - 1)

a —

7-7)

>
i

For the data in Table 7-1, formula 7-7 gives x as follows.

686 - 732
1375 321 — 365.20 .
= = —478
V85.64

321 —

686 - 689 - 732 - 643
1375% - 1374

The p value that corresponds to the x statistic must be obtained from
tables of the standard normal distribution (see Appendix). For a x of
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478 (the minus sign indicates only that the exposed group had a
lower risk than the unexposed group), the p value is very small (roughly
0.0000009). The Appendix tabulates values of x only from -3.99 to
+ 3.99.

Incidence Rate Data

For incidence rate data, we use the following notation, which is an ex-
panded version of the table we used earlier:

Exposed Unexposed Total
Cases a b M
Person-time PT, PT, T

We can use the following formula to calculate x.

e 7-8)

Applying this formula to the data of Table 7-2 gives the following result
for x.

22,050 - 1845
136 = 149,700 136 — 271.76 - g
X R ‘
22,050 127,650
\/ > 129700 149,700

This x is so large in absolute value that the p value cannot be readily
calculated. The p value corresponding to a x of —8.92 is much smaller
than 10~%, implying that the data are not readily consistent with a

chance explanation.

Case-Control Data
For case-control data, we can apply formula 7-7 to the data in Table 7-3.

15 - 347
B 10 — 3.80
= 1368 - - —370
V281

\/ﬁ 1353 - 347 - 1021
13682 - 1367

This result corresponds to a p value of 0.00022.



142 Epidemiology: An Introduction

Questions

1. With person-time data, the numerators are considered Poisson random
variables and the denominators are treated as if they were constants,
not subject to variability. In fact, however, the person-time must be
measured and is therefore subject to measurement error. Why are the
denominators treated as constants if they are subject to measurement
error? What would be the effect on the confidence interval of taking
this measurement error into account instead of ignoring it?

2. The usual approximate formula for confidence limits for risk or preva-
lence data, based on the binomial distribution, will not work if there
are zero cases in the numerator. The Wilson formula, however, is still
useful in such situations. It gives zero for the lower limit, which is
appropriate, and it gives a meaningful upper limit. Suppose that you
were interested in the case fatality rate among patients undergoing
bypass cardiac surgery in a new cardiac surgery unit. Among the first
30 patients to undergo surgery, none died within 30 days. Using the
Wilson formula, calculate a 90% confidence interval for the risk of
dying within 30 days after surgery.

3. Why do you suppose that the estimation formulas to obtain confidence
intervals are the same for prevalence data and risk data (formulas 72
and 7-3)?

4. Why do you suppose that the estimation formulas for confidence inter-
vals differ for risk data and case-control data (formulas 7-3 and 7-6)
but the formula for obtaining a x statistic to test the null hypothesis is
the same for risk data and case-control data (formula 7-7)?

5. Does it lend a false sense of precision if one presents a 90% confidence
interval instead of a 95% confidence interval?

6. Calculate a 90% confidence interval and a 95% confidence interval for
the odds ratio from the following crude case-control data relating to
the effect of exposure to magnetic fields on risk of acute leukemia in

children.*
Median night-time exposure
=22 uT <2 uT Total
Cases 9 167 176
Controls 5 409 414
Total 14 576 590
References .

1. Wilson EB: Probable inference. The law of succession and statistical infer-
ence. | Amer Stat Assn 1927; 22:209-212.

2. Overgaard, M, Jensen, M-B, Overgaard, ], et al: Postoperative radio-
therapy in high-risk postmenopausal breast-cancer patients given adju-

Pl

Vb e Sonple Fprdennologie Data 143

: e 82 _
cant Lianositen Dansh Breast Cancer Cooperative Group DBCG 820 ran
doteand tral Lameet 19993531641 1648,

Feve iy, A Osterlund, B, Ahlbom, A. Reduced cancer incidence among

the blind. Fpadentology 1998,9:490-494. A
Peutti, DB, Sidney, S, Quesenberry, C, et al: Stroke and cocaine or amphet-
amine use. Fpidemiology 1998;9:596-600.

_ Michaelis, ], Schuz, J, Meinert, R, et al: Combined risk estimates for two

German population-based case-control studies on residential magnetic
fields and childhood acute leukemia. Epidemiology 1998;9:92-94.

—A




