11. ANALYSIS OF CRUDE DATA

The simplest type of epidemiologic analysis, which is based on crude (i.e.,
unstratified) data, applies when it is not necessary to take into account any
factors beyond the exposure and the disease of interest. Although it is not
unusual to see data presented solely in crude form, typically the investi-
gator needs first to explore more complicated analyses using stratification
or multivariate methods to evaluate the role of other factors. Vigorous
restriction by covariates in subject selection (so as to prevent confound-
ing) will often lead to a simple or crude analysis. Clinical trials using ran-
dom allocation of subjects also can often be analyzed satisfactorily in crude
form if the investigators are persuaded that the randomization has suc-
cessfully prevented confounding. A crude analysis, because of its simplic-
ity, possesses an appealing cogency that is lacking in more complicated
analyses.

HYPOTHESIS TESTING WITH CRUDE DATA

The epidemiologist, in conceptualizing types of epidemiologic data, tends
to separate follow-up data from case-control data. For statistical hypothesis
testing, however, statistical modeling leads to a different kind of separation
according to whether the data consist of person-time units or persons as
the basic observations. Whereas the units of observation are measured as
person-time only in follow-up studies, not all follow-up studies are pre-
sented with the data expressed as incidence rates with person-time de-
nominators. If all subjects are followed for a constant period, it may be
convenient to express the incidence rates as risk estimates, that is, cumu-
lative incidence data, in which the number of cases is related not to an
amount of person-time experience but to the total number of people who
were followed. Clinical trials are often presented in this manner. When the
denominators of incidence measures are presented as counts of persons
rather than as measures of person-time experience, the statistical model
that applies for hypothesis testing is the same one that applies to case-
control data, in which all observations also are counts of persons.

Hypotbestis Testing with Person-Time Data
Crude incidence-rate data consist of the total number of cases and person-
time units for both exposed and unexposed categories. We shall use the
notation in Table 11-1. The apparent simplicity of this table may mask an-
alytic subtleties that must be considered. Specifically, the person-time ex-
perience in the “exposed” column should be defined according to a plau-
sible or tentative model for induction time. Before an individual becomes
exposed, all of that individual’s person-time experience is, naturally, unex-
posed person-time (though it is often not included as such in an analysis).
If exposure occurs at a point in time and the induction-time model being
evaluated calls for a minimum induction time of 5 years, then the 5 years
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Table 11-1. Notation for crude incidence-
rate data with person-time denominators

"Expésgd' : Unexposed Total
Cases a . b M,
Person-time N, - N, T

after the point of exposure for each individual is likewise unexposed per-
son-time experience rather than exposed, because according to the induc-
tion-time model it relatés back to a period of time when exposure was
absent. Tallying the person-time units into-the appropriate exposure cate-
gories is a task that must be done subjeet by subject and may involve com-
plicated rules if the exposure is chronic. Incident cases are tallied into the
same category to which the concurrent person-time units are being
added—for example, an.incident case occurring 4 years after exposure
would be tallied in the “unexposed” category if the induction-time model
specified a minimum induction time of 5 years. .
The statistical model used for hypothesis testing of person-time data is
the binomial distribution [Shore et al., 1976). A random event that has only
two possible outcomes, X and Y, that occur with fixed probabilities is re-
ferred to as a Bernowlli trial. Flipping a coin is an example. Let the prob-
ability of one of the two outcomes, say X, be p. The probability distribution
of the total number of Xs occurring in N independent Bernoulli trials with
p constait is referred to as a binomial distribution. Mathematically, the
probability is expressed as '

Pr(total pumber of Xs = x) = "(E)p"(l - pyH

where (N> L .-
N X - xXI(N - x)
The mean of the binomial distribution. is Np, and the variance is Np(1 —
pr - : '

In applying the binomial model to crude person-time data, each case is
considered to be an independent Bernoulli trial, having as its “outcome”
the two possibilities of exposed or. unexposed. According to the null hy-
pothesis that exposure is unrelated to disease, the probability that a given
case will be classified as exposed or unexposed depends only on the pro-
portion of the total person-time experience that is allocated to the exposed
category; that is, each case has a probability equal to N/T of being classi-

fied as exposed under the, null hypdthesis.
The M, cases are thus considered to be M, independent Bernoulli trials,
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and the distribution of exposed cases has a binomial distribution under

the null hypothesis, with p = N/T. The ili
, . robability of th
under the null hypothesis can be1 writtenzs v © observed daa

Pr(number of exposed cases = a) = (M‘> (_&)“ (&>b
a T T

An exact one-tail Fisher P-value can be obtained as
My
k}_: Pr(number of exposed cases = k)

Tbe above summation gives the upper tail of the distribution: the lower
tail can be obtained by summing k over the range from 0 to a’ To obtain
the mlq-P value instead of the traditional Fisher P-value only oﬁe-half the
probab}lity of the observed data should be added to tl"le summation for
each tail. When the mid-P values are calculated, the lower and upper tails
of thf: distribution have the desirable property of summing to unity.

With largg numbers, these exact calculations are unnecessary bécause
an asymptotic test statistic will give accurate approximations for the £-
value. The test statistic is computed from formula 11-1, using the number
of exposed cases as the random variate. Based on the formulas for the
mean and variance of the number of successes in a binomial distribution
the null expectation for the number of exposed cases is N;M,/T, and thé
variance is M;N,Ny/T?, which gives o

_a = NM/T '
X = —F—/—— (11-1]
M,N,N,

T

The x values can then be translated in
to P-values from tables of -
dard normal distribution. the sen

For Example 11-1, the probability of the observ
h ! ed data unde
ypothesis may be calculated as r the null

_ (56Y {28010\" [19,017\"
Pr(41 exposed cases) = ( 41> <m> (m = 0.0122

An e>‘;act upper-tail Fisher P-value may be calculated by repeating the cal-
culation for the more extreme positive outcomes up through 56 exposed
cases. For 42 exposed cases, the calculation gives

> _ (56Y (28,010)* [19,017\"
| r(42 exposed cases) = < 42) (W) W = 0.0064
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Exarnple 11- 1. Breast cance'r cases and person years of obsetvation for
women with tuberculosis repeatedly exposed to multiple x-ray fluoroscopies,
and women with. tuberculosis not so exposed [Boice and Monson, 1977]

Radiation exposure.

TYes No . . ' Total

Breast cancer - . - 41 S 15 56
Person-years - 28,010 19,017- 47,027

Slmllarly, Pr(43 exposed cases) 0.0031, Pr(44 exposed cases) = 0.0013,
and Pr(45 éxposed cases) = 0.0005. The small magnitude of this last prob-
ability indicates that it should not be necéssary to calculate the additional
terms in the: summation, since their contribution would be evenssmaller
and therefore would not affect the sum materially. The one-tail P-value
thus equals 0.0122 + 00064 + 0.0031 + 0.0013 + 0.0005 = 0.024. The
one-tail mid-P would have ¥2(0.0122) as the first term, giving 0.017 as the
P-value (it is actually 0.0174 and would be rounded to 0.018 if the sum-
mation were carried a few terms more) Two-tail P-values can be obtained
simply by doubling the correspondmg onie:tail P-values. :

The numbers in the example are large enough to use the normal ap-
proximation in fo"rr’nula_ 11-1, whi-ch isa gimpler calculation:

56 ) :
— 28 010 .
4 (47 027/ 41— 3335 _ 7.65

= = 208
V1349 367

X = 4
- [(56) (28,010) (19,017)
o " (47,027

From tables of the siaﬁ'dard normal distribution, a x value of 2.08 corre-
sponds to a one-tail P-value of 0.019, Wthh agrees closely with the exact
one-tail mid-P value a

Hypotbesis Testmg wztb Count Data
Follow-up data or prevalence data w1th ‘denominators consisting of the

number of persons at risk can be treated like case-control data for statis-
tical hypothesis testing. For each of these types of data, the basic infor-
mation can be displayed in'a 2 X 2 table in which all four cells of the
table are frequencies of subjects classified according to the presence oOr
absence of exposure and dlsease The notatlon we shall use is given in
Table 11-2.

Superﬁaally, Table 11-2 resembles Table 11-1 except for the addition of
an added row for noneases. The denomindtors in Table 11-2, however, are
frequencies; or counts, of subjects rather than person-time accumulations.
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Table 11-2. Notation for crude 2 X 2 table

Exposed Unexposed Total
Cases a b M,
Noncases C d M,
Total N, N, T

Again, the apparent simplicity of the table may mask some subtleties in
determining the classification of subjects.

For case-control data, classification according to exposure depends on
an appropriate and meaningful definition of exposure according to a bio-
logic model of induction time that specifies the timing of exposure in
relation to disease. In a study of oral cavity cancer, for example, patients
with cancer may tend to use mouthwash regularly more frequently than
controls, but such use may occur as a consequence of early symptoms of
the disease or of its subsequent treatment (radiotherapy in the region of
the oropharynx tends to shrink the salivary glands and cause foul breath).
A meaningful model for induction time should classify as unexposed only
those individuals who were exposed to the agent outside the time window
during which exposure might have been etiologically related to the dis-
ease.

For follow-up data analyzed with a 2 X 2 table, presumably all subjects
were free of disease at the beginning of the follow-up period; the classifi-
cation of exposure refers to the time of initiation of follow-up, and the
classification of disease refers to the time of completion of follow-up. Dis-
ease occurrence should not count as such unless it occurs during the time
window specified by a meaningful induction-time model. An instance of
the illness of interest occurring before or after the hypothesized induction
time window should be ignored, if illness occurs before the time window,
it may be reasonable to exclude the subject as not being free of disease at
the start of the relevant period of follow-up. If the follow-up period has
been so long that a substantial proportion of subjects have been lost or
have died from causes unrelated to the outcome of interest, it is preferable
to use person-time denominators rather than to analyze the data with a 2
X 2 table,

The 2 X 2 table can be considered as representing two independent
series of observations: For case-control studies the observations are ex-
posure observations and the two ihdependent series of subjects are the
cases and the controls; for follow-up studies the observations are disease
observations and the two independent series are the exposed and unex-
posed groups. The observations made on each of the two independent
series can be considered as conforming to the model of a binomial distri-
bution; under the null hypothesis, the probability of a “positive” observa-
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tion in each of the two. independently observed binomial series is the
same. ' S I

Consider a follow-up study of N, exposed subjects and N, unexposed
subjects. In the exposed series, “a” subjects develop disease, and in the
unexposed series, “b” subjects develop disease. The probability that ex-
actly a and'b subjects will develop disease among the exposed and unex-
posed, respectively, is, according to the binomial model,

Pr(a exposed cases anid b unexposed cases).
= (T)(wa =y (Iﬁ;’)(po)b(l - po [112]

which is the p’r‘odﬁjct of the binomial probabilities for each of the two
independent groups, exposed and unexposed. The probability of devel-
oping disease among the éxposed is p;; among the unexposed, it is p,.

Under the nuil hypothesis, these two probabilities are equal: p; = p, =
p, which gives . '

Pr(a exposed cases and b unexposed cases) -
(N N . M — p)Mo 11-
.—(_a) (b) (e = p*  [11-3]

To calculate the value of expression 11-3 for a particular 2 X 2 table, it is
necessary to have an estimate of p. Usually p is estimated directly from the
data, usingthe overall disease proportion from the margins of the table,
M,/T. Substituting M,/T for p gives” | - B

Pr{(a exposed cases and'b -_une)iposed cases)

Nl . NO . My Mo »
= (a) (b) M/TYSMTY  [114]

From expression 11-4 it is possible to obtain a P-value that represents an
exact test'biased on two independent binomial distributions, provided that
it is clear how the departures from the null state that are more extreme
than those observed are calculated. Let us assume that a positive associa-
tion is observed between exposure and disease. Assume that a and b are
the number of exp'osé;:d and unexposed cases actually observed. For other
possible realizations of the data in which the number of exposed cases
exceeds a while the number of unexposed cases is b or less, the overall
departure from the null ‘condition is more extreme than that actually ob-
served. Similarly, if the number of exposed cases is a but the number of
unexposed cases is less than b, again the departure from the null would
be more extreme than that actually ebserved. The preceding possibilities
are easy to classify, but what if the number of exposed cases were a + 1
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and the number of unexposed cases were b + 1? What about other com-
binations such as a + 1and b + 2? It is difficult to say whether these’
possibilities represent situations that depart from the null to a greater ex-
tent than the actual observations. To decide definitively if a departure is
more extreme, it would be necessary to evaluate an effect measure for
each hypothetical outcome of the data and compare that measure with the
effect measure calculated from the actual observations. Interestingly, the
decision about which outcomes are more extreme would depend on
which effect measure was used.

To illustrate, consider example 11-2. The “observed” data indicate an
estimated risk difference of 0.03, a risk ratio of 1.11, and an odds ratio of
1.22. Variations 1 and 2 are two other possible outcomes for the data,
presuming that the same number of exposed and unexposed subjects are
studied. Using the risk difference measure to determine departures from
the null, variation 2, but not variation 1, is a more extreme departure from
the null. Using the risk ratio measure, neither variation 1 nor variation 2
is more extreme. For the odds ratio measure, both variations are more
extreme.

The different measures each designate a distinct set of outcomes as
more extreme. This ambiguity makes it problematic to use two indepen-
dent binomial distributions as a model for hypothesis testing for 2 2 X 2
table. Another problem with the use of two binomials is the large number
of possible outcomes. For example, if N; = N, = 25, there are 676 pos-
sible outcomes for the dara [(N;, + 1) - (N, + 1)]. To simplify the calcu-
lation, an assumption can be made that addresses both of these problems.
The assumption, for follow-up or prevalence data, is that the total number
of cases actually observed is taken to be a constant [Mantel and Hankey,
1971]. For case-control data, the two binomial distributions refer not to the
exposed and unexposed series but to the case and control series, and the
corresponding assumption is that the total number of exposed subjects is
constant. These assumptions essentially fix all the marginal totals of the 2
X 2 table; therefore, if the a cell increases, the b and ¢ cells must each
decrease an equivalent amount, and the d cell increases by the same
amount. With all the margins held constant, there is only one random
variable to describe: variation in any cell of the 2 X 2 table with fixed
marginal totals is locked together with concomitant variation in each of
the other cells. Usually, then, the focus becomes simply the a cell of the
table, which is taken to be the random variable.

The assumption that all the marginal totals are fixed ina 2 X 2 table
can be justified methodologically as a means of focusing the problem (of
hypothesis testing) directly on the association between exposure and dis-
ease. In the jargon of statistics, the “nuisance parameter” is removed by
fixing the marginal totals: Testing the null hypothesis using a model of two
independent binomials requires assessing the values for fwo parameters,
the proportions p; and p,, whereas the analytic problem can be reduced
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3 Example 11-3. History of chlordiazopoxide use in early
8 pregrancy for mothers of children born with congenital beart
, % o o defects and mothers of normal children [Rothman et al,, 1979]
3| & ¥ 3
' '§ =N = Chlordiazopoxide use
R 899
3 E S = Yes No Total
§' ~ Case mothers 4 386 390
) ;'g ’ é § Control mothers 4 1250 1254
| &
% § E* o~ g Totals 8 1636 1644
®
-8
Q. '

_ g g to assessing the value of a single measure. That measure is the odds ratio,
~ J % equal to p;(1 — pe)p(1 — py)l, which is completely determined by the
§ iy ' value of the a cell if the marginal totals are taken as fixed. Testing a depar-
E %' & § ture of the odds ratio from unity is equivalent to testing a departure of p;

- § . , - o from p,, since the null condition of p, = p, is equivalent to an odds ratio

' &, 22q of unity, but fixing the margins of the 2 X 2 table greatly simplifies the
g . calculations by reducing the number of parameters in the model from two
g' S . to one.

' @ % 2 The statistical model that describes the variability of the a cell ina 2 X

5|5 Sl o w o 2 table with fixed marginal totals is the hypergeometric distribution. The
= el o probability of a exposed cases occurring under the assumption that the
E-RE null hypothesis is correct can be expressed simply as follows [Fisher,
g 1935]:
X
B u@ I, -uUUJ) Nl NO

& &, a b
5 g . Pr(a exposed cases) = ———— {11-s}
S 5 KA § < T )

§1. oo M)
Ll =3 .
§ '_g For the data in example 11-3, the hypergeometric probability for four
§ & 3 exposed cases is
35|39
NIEAR
NI <g) <1636>
: § ' pecs p _ \4/ \386/ 3901 12541 81 1636!
st (4 exposed cases) = 1644\ 16441 41 413861 12501
- ‘% : . 390
Es . 5 o _ (390) (389) (388) (387) (1254) (1253) (1252) (1251) (8) (7 (6) (5) _ 0.0748
= 3 5y g F (1644) (1643) (1642) (1641) (1640) (1639) (1638) (1637) (4) (3) (2)
2 ‘6 e} % ° _; '8
& ) § - 'g 23 The probability for an outcome more extreme, five exposed cases, under
. ,g 82 3 the hypergeometric model, would be
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)

Pr(i'e)rposed cases) = ————— = 0.0185
) : 16_4’4
'-390

The probabiltty for six exp()sed cases would be 0. 0028, for seven exposed
cases, 0.0002; and for- the most extreineé outcome, eight exposed cases,
0.000009. The total one-tail P-value calculated according to Fisher would
be 0.0748 + 0.0185 + 0.0028 + 0.0002- + 0.000009 = 0.096. The one-
tail mid-P would be 0.0374' + 0.0185 + 0.0028 + 0.0002 + 0.000009 =
0.059. The two-tail P-value, either Fisher.or mtd P, could be obtained by
doubling the one-tail P-value. :

For this example, the hypergeometric model requrres the calculation of
only five probabilities. Had the model of two independent binomial dis-
tributions, with 390 cases and 1,254 controls as the two independent se-
ries, been used instead, thousands .of calculations would be necessary to
determine which outcomes were .equally or more extreme, and then the
probability of each of these outcomes would have to be calculated as well.
The simplifying assumption of the hypergeometric distribution, which
fixes all the marginal totals, reduces the complexrty of the calculations
enormously. -

The reasoriableness of the hypergeometr:c assumption, even for data
such as those given in example 11-3.in which two of the four cell frequen-
cies are small, is evident by comparing the- results with the results obtained
by using the two-binorial model. Usmg thé two-binomial model and us-
ing the miagnitude of ‘the odds ratio to determine: which outcomes are
equally or more extreme departures from the null, the Fisher P-value was
found to'be 0.094, and the mid-P, 0.071. (This calculation took several
hours using a BASIC program on a mlcrocomputer) The agreement be-
tween the two approaches is striking when one considers that only five
separate. probabllttles aré included in the hypergeometric calculation,
whereas thousands are included ‘in the two-binomial model. With larger
cell frequencies, the agreement between the results obtained from the
different models improves. Whatever drsagreement exists between the re-
sults from the two-approaches does not indicate any inaccuracy with the
hypergeometrlc approach since the assumption of fixed marginal totals
yields 2 valid test, even if the margins were.not actually fixed by the study
design, a test of the null hypothesis based on the hypergeometric model
is just as valid as & test based on the two-binomial model. Since the hy-
pergeormetric approach is eXtraordmarrly simpler, it is clearly the pre-
ferred model, B

Unfortunately, even the hypergeometrtc model can require an onerous
number of calculations if all the cell frequencies are sizable. In most ap-
pltcatlons therefore, an asymptottc test statistic is used to calculate the P-
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value. The asymptotic test statistic can be derived starting from either the
two-binomial model or the hypergeometric model. With the hypergeo-
metric model, the random variable would be the a cell, the number of
exposed cases. The null expectation for the number of exposed cases is
N;M/T, and the hypergeometric variance for the number of exposed cases
is MiMgN,N/[TX(T ~ 1)}. The  statistic is

a — N\M/T

X = —pF——— (11-6]
M,MN,N,
VIT - D

which appears similar to equation 11-1 for person-time data. If an asymp-
totic test statistic were derived from the two-binomial model rather than
from the hypergeometric, one would compare the two observed binomial
proportions, a/N, and b/N,. Under the null hypothesis, the expectation of
the difference between these proportions is zero, The variance might be
estimated in several ways; the usual way is to use a pooled common, vari-
ance for the two binomial proportions, since under the null hypothesis
the binomial probabilities for the two binomial distributions are equal.
Thus, My/T is taken to be an estimate of the pooled binomial probability,
and the variance of the difference in proportions can be expressed as

(%) (& 1.1
T/\1/[N "N,
which gives

a b

N, N,
X = 1 g [11-7]

Y () [5+3]

Algebraic manipulation of equation 11-7 gives an expression nearly iden-
tical to equation 11-6:

_a-— NMT

X = —F——= (11-8]
MM NN,
T

The only difference between the two formulas is the T ~ 1 in the denom-
inator expression in equation 11-6, which is replaced by T in equation 11-
8. Since neither formula is applicable unless T is large, for practical pur-
poses these formulas are identical.
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If an asymptotic test statistic had been used to calculate the P-value for
the data in éxarhpl‘e 11-3, we would have thained, using equation 11-6,

_id- ® e

X =
 [(8) (1636) (390) (1254)

o\ (16442 (1643) -
which gives a one-tzi»ili P:value of 0.040. As one would expect, the P-value
resulting from the asymptoiip test is closer to the mid-P exact value than
to the Fisher exact value (see Chap. 10), but the approximation is not very
good. Notice that under the hypergeometric model there are only. nine
possible outcomes for the a cell; evidently the number of outcomes is too
few for the normal approximation to be valid. A rule of thumb that is often
used is that the asymptotic test statistic should be applied only when the
smallest null expectation of any cell in the 2 X 2 table, based on the
marginal totals, is greater than about 3. If there is any doubt, however,
about the adequacy-of the asymptotic approximation, it is best to evaluate
the P-value exactly. - ' :

ESTIMATION OF EFFECTS WITH CRUDE DATA -
Estimation with Follow-up Data ' :

POINT ESTIMATION .~ L

Point estimation of either difference -or ratio measures of effect involyes
taking the difference or ratio of the observed values of incidence or risk.
Thus, the point estimate of incidence rate’ difference (IRD) would be

o =
N,

Zlo -

and the poirit estimate of incidence rate ratio (IRR) would be

Iﬁﬁ _ N
bN,

Similarly; for risk (cumulative incidence) data, in which denominators are
counts rather than measures of person-time, the point estimate of risk
difference (RD) would be E

Z|»
Zlo
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and the point estimate of risk ratio (RR) would be

& < 2N

b/N,

If the object of inference is the ratio of incidence rates rather than risk
ratio, then the ratio of risks that is directly calculable from risk data using
the above formula leads to an underestimate of the effect. The degree of
underestimation depends on the level of the risks, being slight for small
risks and greater for large risks (see Chap. 4 and Table 6-1). An alternative
approach to point estimation with count denominators is to use the odds-
ratio formula

/R = 2
bc

which overestimates the effect to roughly the same extent that the risk ratio
underestimates it (Table 6-1) but has the advantage of being the same es-
timator used in case-control studies (formula 6-1).

INTERVAL ESTIMATION

Exact Interval Estimation with Follow-up Data. Interval estimation can be
€xact or approximate. For exact interval estimation, like the calculation of
an exact P-value, an appropriate statistical inodel must be used to describe
the probability distribution of the data. The model will generally be an
extension of the model used for calculation of an exact P-value. For testing
the null hypothesis, an effect of zero is assumed and incorporated into the
statistical model; for calculation of exact confidence limits, the statistical
model must be able to accommodate nonzero effects.

INCIDENCE RATE (PERSON-TIME) DATA. For incidence rate difference, a dif-
ficulty arises in attempting to postulate a statistical model from which an
exact confidence interval can be calculated. For hypothesis testing, the
binomial model rests on the assumption that M;, the total number of cases,
is a constant. This assumption is analogous to the assumption of fixed
marginal totals in the hypergeometric model for 2 X 2 tables. For interval
estimation, the problem with assuming M, to be constant is that, with re-
spect to incidence rate difference, the value of M, is not simply a “nuisance
parameter” that statistically has no bearing on the effect measure; the value
of M, imposes a limit on the magnitude of the incidence rate difference (a
small value of M, is compatible only with small values of the rate differ-
ence), therefore requiring the sampling variability of M, to be taken into
account in estimating the incidence rate difference. Thus, the single-bi-
nomial model with a fixed M, cannot be used to calculate exact confidence
limits for incidence rate difference with person-time data. The counterpart
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for person—tlme data of the more general two-binomial model for 2 X 2
tables would be a model of two independent Poisson distributions, in
which exposed and unexposed cases each occurred independently with
frequéncies described' ‘by a Poisson distribution. The Poisson distribution,
however, has no upper-limit for the number of events (i.e., cases) that can
occur, so it cannot be used for the above calculations without arbitrary
truncation. For these reasons, exact. interval estimation for incidence rate
difference is not easily possible. - ‘

It is appropriate, however, to fix M, for' estlmatlon of incidence rate ratio
because the ratio measure depends on the ratio of exposed to unexposed
cases, not on the absolute magnitude of the frequencies. Therefore, M, can
be considered a nuisance parameter that is statistically independent of the
rate ratio measure. For estimation, the simple single binomial model used
for hypothesis testing must be modified to accommodate a nonzero effect.
This can be accomplished by noting that the probability that a case is ex-
posed, given M,, is related to incidence rate ratio as follows:

No-Pf(case' is exposed) -
N, -Pr(¢ase is unexposed)

CIRR =

“Exact confidence limits for IRR can be obtained by setting the tail proba-

bility of the binomial distribution equal to &/2 and 1 — /2, where 1 — «
equals the desired level of confidence. If we denote u as the lower confi-
dence bound for the probablhty that a case is exposed and u as the exact
upper conﬁdence bound, then :

ulN, :

IRR = T-un ' [11-9]
and

N,

IRR AN (11-10]

where u and u are the solutlons to the following equations (for Fisher
limits): .

‘w2

and -

k=a+1

: . . Ml. ' - _
1-d2= D (1‘14(') U (1 ~ uyak

The preceding -.cqna_ti_ons assume that IﬁR > 1, and consequently cal-
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culate the upper tail of the distribution. If IRR < 1, then the lower end of
the distribution could be used to calculate the tail probabilities:

w2z = (M) a - Gy
S\ k
and

a—1 M
1-w2=3 <k> (1 - upr

k=0

If calculations are performed based on the mid-P exact P-value, then the
tail probabilities are calculable as

o2 = l (M1> Ea (1 - E)b + ﬁ (bﬁl> Ek (1 —_ E)Ml—k

2\a k=a+1

and

1-a2=1 (M‘> e (Mk‘> T - uya

2\a k=a+1

These equations must be solved iteratively, by choosing trial values for u
and u and calculating the tail probability repeatedly until it is equal to o/
2 or 1 — a/2. Notice the similarity to the calculation of an exact P-value,
which involves taking u = N,/T and calculating the tail probability once.
For exact confidence limits, the value of u is adjusted until the tail proba-
bility equals the predefined values, a/2 or 1 — /2.

Consider again the person-time data in example 11-1. Exact Fisher-type
90 percent confidence limits for the IRR would be calculated from equa-
tions 11-9 and 11-10 as follows:

56
0.05 = Z (51(6) y_k — E)SG—k

k=41

56
095 = Y <5ké> Uk (1 — u)s-k
k=42
These calculations are best done by computer or by a shortcut method
that involves the F-distribution [Rothman and Boice, 1982; Brownlee,
1965). A trial and error solution of the preceding equations gives u =
0.618 and u = 0.827, which gives JRR = 1.10 and IRR = 3.25.
If the limits are calculated based on the mid-P exact P-value, then the
equations to be solved are

005 = z (26) E41 (1 -_ E)IS + iz (51(6) l_]_k (1 — E)se—k

k=4
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and

095 (26) AT S (56) da - o
1 k=42 k
The upper and lower 90 percent confidence limits determined by the
above mid-P based equatlons are u = 0.626 and u = 0 8205, correspond-
1ngtoIRR—114andIRR—31O : .

CUMULATIVE INCIDENCE DATA: If the denominators are counts rather than
persori-time units, an exact ‘confidence interval for risk difference could
theoretically be' calculated from the two-binomial model. The calculation,
however, would involve iterative determination of the exact tail probability
based on two independent binomials and is therefore not readily feasible.

Confidence limits for the risk ratio measure are also subject to the same
computauonal d1ff1culty bécause the value of the measure is dependent on
the total number of cases and requires the use of two independent binomi-
als. If, however, the odds ratio measure is used for estimation, both mar-
gins of the 2: X- 2 table may be considered fixed, and the calculations can
be greatly sunpllﬁed ‘because the odds ratia measure'is independent of
the total number of cases. Because the odds ratio is only an approximation
of the risk ratio, the calculation of exact- limits for the odds ratio does not
produce exact -confidence limits for the. risk ratio. The approximation is
good only.if the risks are small, in which case the exact confidence interval
for the odds ratio can be used as a reasonable surrogate confidence inter-
val for the risk ratio. -

The statistical mode] that describes the variation of the acellina 2 X
2 table with fixed margins is the hypergeometric, but for the nén;null
situation the “noncentral” form of the hypergeometric distribution must
be used. The noncentral hypergeometric is more complicated than the
null form of the hypergeometric distribution given in formula 11-5 be-
cause it accommodates.the strength of assoc1at10n between exposure and
disease measuied by the odds ratio. Given the value of the odds ratio, R,
the probability of obgerving a exposed cases is [Fisher, 1935; Gart, 1971]

i@ﬂ@w

SRGIRNE
k= max(O,M1 ~No) k) \M -k

When R = 1, the above formula rediices to expressibn 11-5. Exact confi-
dence limits for R withra confidence level of 1 — a can be calculated from
the formulas

Pr(a exposed- &seé) =
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m‘m%Ml) <N1> No Rk
k=a k Ml - k/ -
min(ile]) N1 N
0 k
k= max(0,M) — No) k (M1 —'k> -

min(ﬁl:,Ml) (Nl NO Ek
k=a+1 k M1 -k

1 - a2 = (11-12]

mln(ile]) <N1) N _
o Rk
k= max(0,Mj — Np) k M1 - k)

I

/2

[11-11]

and

for the Fisher limits and

Nl No min(Nj,M1) N N
R* + 1 0 k
(;;) (b)— 20 L) L 2 i) B

=

0?2 = (11-13)
min(N1,M
S () )
k=max(0,M1 — No) k M, -k

1 N,) (N0> _ min(Nj,M1) N N _

_ R + 1 0 k

2 (a b k=23+1 k M, — k R
1- a2 = [11-14]

min(N1,M1) )
> +{ M Moo )R
k= max(0,M1 — No) k M -k

for mid-P limits. The solution of the foregoing equations can be time-
consuming, since each iteration in the process calls for calculating a com-
plicated sum, but it is not nearly as complicated as the calculations that
would be required using a statistical model of two independent binomials.

The data in example 11-4 describe partial results from a follow-up study
evaluating risk of diarrhea in breast-fed infants in Bangladesh during an

Example 11-4. Diarrbea during a 10-day follow-up period in
30 l?reastfed infants colonized with Vibrio cholerae 01, according to
antilipopolysaccharide antibody titers in motber’s breast milk [Glass et al., 1983]

Antibody level
High : Low
Diarrhea 7 12
No diarrhea 9 2
Totals 16 14




170

11-day period fOllOWiflg: the determination of various antibody titers in the
mothers’ breast milk. An exact P-value of the null hypothesis of no asso-
ciation gives P, = 0.02 for the Fisher P-value and P;, = 0.01 for the mid-
P value. The estimate of relative risk from these data comparing the group
exposed to high titers with the group exposed to low titers is [7/16}[12/
14] = 0.51. The odds ratio estimate differs considerably from the relative
risk estimate because the risks are so high; the 6dds ratio estimate is (7 X
2)[12 % 9] = 0.13. An-€xact confidence ifiterval can be calculated for the
odds ratio using formulas 11-11 and 11-12 to set the Fisher limits. The 90
percent confidence limits are 0.017 anid 0.751, obtained by the trial-and-
error solution of equations 11-11 and 11-12. If the mid-P exact limits were
desired instead, these could be obtainéd from equations 11-13 and 11-14
as 0.025 and 0.608. These exact limits for the odds ratio, however, cannot
be used as confidencelimits for the risk ratio, since the odds ratio is a
poor approximation to the risk ratio with these data.

Approximate Interval Estiration with Follow-up Data. Approximate inter-
val estimation from:crude follow-up data is straightforward.

INCIDENCE RATE (PERSON-TIME) DATA. Consider first incidence rate data
with person-time denominators. Two . effect-measures can be estimated,
rate difference and rate ratio. Because'the rate-difference measure has a
symmietric sarmpling distribution, no'scale transformation is needed to ob-
tain accurate approximate confidence limits. The number of exposed and
unexposed cases can €ach be assumed t have a Poisson distribution, from
which the variance for each rate can be estimated as a/N,? and b/N¢? for
exposed ‘and- unexposed groups, respectively. The standard deviation of
the rate difference, ther, is the square root of the sum of the variances of
each rate,.. - L :

o . la . b
SD(Incidence rate difference) = % + Nz [11-15]
- ' . 1 )

From the data in exatnple 11-1, we can estimate the rate difference as

e e 15 675
28010yt 19,017 yr. 10,0007

with a standard deyiat’ion for the rave differerice of

o 41 ‘ 15 3.06
= . +- = !
b \/ (28010 yry (19017 yrF 100007
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To (.)b‘tain'an approximate 90 percent confidence interval, the standard
deviation is multiplied by 1.645 to get the limits as follows:

675 3.06 17
wqes| 306 117 oms
10000 7" > [10,000 ve 10,0007 " 10,000 7"

Another approach would be to use formula 10-6 for test-based limits,
RD 1 = Zr)

Ea.lrlier we calculated x to be 2.08. Using that value in the above formula
with Z = 1.645 yields an approximate 90 percent confidence interval of
1.4/(}0,000 yr), 12.1/(10,000 yr), which compares well with the other ap-
proximation.

For the estimation of rate ratio, it is desirable to use a logarithmic trans-
.formation to compensate for the asymmetric sampling distribution. By tak-
ing confidence limits that are symmetric about the logarithm of the rate
ratio and then reversing the transformation by taking antilogarithms, much
greater accuracy can be achieved than by taking limits calculated symmet-
rically around the rate ratio itself. Thus, we calculate

exp{In(RR) + Z - SD[In(KR)]} (11-16]

The standard deviation of the incidence rate ratio can be approximated
by

sD(n(RR)) = /2 + L
a b
Again using the data from example 11-1, we can estimate the incidence
rate ratio to be '

41/28,010 yr
——— =186
15/19,017 yr

and In(1.86) = 0.618. The standard deviation of the log-transformed point
estimate is '

V1AL + 115 = V0.091 = 0302
A 90 percent confidence interval for the In(RR) would then be

0.618 = 1.645(0.302) = 0.12, 1.1
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which, after taking antilogarithms to reverse the transformation, gives a
confidence’ interval of 1 110 3 0. The .whole process can be summarized
as follows: -

" explIn(1.86) + 1.645 VAT T VI3 = 11,30

These limits agree well with the exact mid-P 90 percent limits calculated
previously as 1.1 and-3:1:
An alternatlve approach would be to use the test based formula

RR(I *Tx)

in which’ X has the value of 2.08 for the data in example 11-1. Using Z =
1.645 for 90 percent limits, the test-based approach gives an interval of 1.1
to 3.0, which is also in excellent agreement with the €xact mid-P limits.

CUMULATIVE INCIDENCE DATA. To get approximate limits for follow-up data
with denominators consisting of persons rather than person-time, slightly
different formulas are needed to estimate the $tandard deviations. For the
risk difference, the standard dev1atxon is. derlved from the sum of two bi-
nomial vanances and is estlmated as’

. . :.‘ N - vt
" SD(Risk difference) = \/ aN, — a) 4 (Ny )]

N . e [11-17]
1 [}

From the data’in example 114, the point esti_mate of rate difference is

7 12.= —0.42

16 14

with an approximate 90 percent confidence interval of

D, 12 @
asy T4y

—042 + 1645(0 155)
—068 ~016

- 0.42 = 1.645

N

Alternatively, the test-based 'calculation gives.

.- 042 [1 = igi] = —071,~0.12
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Considering the small numbers involved in these calculations, the agree-
ment between these two approaches seems good.
For the risk ratio, it is again desirable to use a logarithmic transforma-

tion, that is, to apply formula 11-16. The standard deviation, however, is
estimated as

SDlin(fR)) = [ + %
1 0

For example 11-4, the risk ratio estimate is {7/16}/{12/14] = 0.51, and
In(RR) = —0.673

The estimated standard deviation of In(RR) is

2 2 o304
716 T 1214 3

and the 90 percent confidence interval is
xpl —0.673 = 1.645(0.304)] = 0.31, 0.84
Alternatively, test-based limits could be calculated as
RRO=20 = 0.510%165-230 = (32, 0,82
Once again the two approximate methods for confidence interval estima-
tion are in good agreement.
If the inference from follow-up data with count denominators is to be

based on the odds ratio rather than on the risk ratio, then the formula for
standard deviation is {Woolf, 1955]

SD[In(odds ratio)] = + =+

® =
+
ol

T =
o {=

For example 11-4, the odds ratio is {7-2)[9-12] = 0.13 and the logarithm
is In(0.13) = —2.04. The standard deviation is

SD{In(odds ratio)] = -;- + =+ 1—12- = 0915

O | =
Nl»—l
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and the 'ap'pro;(imat'e 90 :pénbent cc_)nfidence ‘ipterval is’
| exp[lﬁ(Q.l?)_ + 1.645(09_15)]I = 003,058
The tést-béggd confidence limits are calgqlat_ed as R
d.1$<' <16-230 = 003,055

Considering the very small numbers involved.in the calculations, the
above pwo_approximeité interval estimates for the odds ratio agree tolera-
bly well not only with one another but also with the exact mid-P confi-
dence interval for the odds ratio, calculated previously to be 0.025 to 0.608.

The Cornfield [1956] approach, which is described in greater detail in
Chapter 12, is a theoretically preferable’ approximate technique since it
involves. recalculating the standard error using fitted-cell frequencies that
correspond to the value of the confidence limit. Thus, the procedure is
iterative and involves -substantially more calculation than the other ap-
proximate methods. For the data of example 11-4, the Cornfield approach
gives a 90 .pé‘rcent confidence intetval of 0.03 to 0.55, agreeing in this
instance with the test-based approach.

Case-Control Data”

For case-control data, the épidemiologic measure of central interest is the
odds ratio, the point estimator for which is

R =

gla -

Exact confidence interval estimation for the odds ratio is identical for case-
conitrol and follow-up data and is based on formulas'11-11 through 11-14.
Approximate confidence intervals for the odds ratio from case-control data
are determined using the same method used for follow-up data, using the
logarithmic transformation with one of the following formulas:

. Ro=#0  or ékp{ln'(ﬁ) + Z-SD[{In(R)}}
where Lo ’

(S N
o=
+ L.
Al

SD[In(odds ratio)] = /= + % +
Consider example '11'-"3. Exact 96 percent, confidence limits for the odds
ratio, using equations 11-11 and 11-12 for the Fisher limits, are 0.77, 13.6;
using equations 11-13 and 11-14 for the mid-P limits, the results are 0.94,
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111.1. Approximate 90 percent confidence limits can be determined as fol-
OWS:

In(R) = In(3.24) = 1.175

SD}In(odds ratio)] = \/% + 3—28 + % + é(}

= 071
exp[in(3.24) * 1.645(0.71)) = 1.0, 10.4

or, using the test-based approach,
3_24(1:1.645/1.75) —_ 11 98

As_ expected, these results agree better with the mid-P exact limits than
Wth the Fisher exact limits. The approximation is not perfect, but neither
15 it very poor considering that two of the four cells of the ’2 X 2 table
have observed frequencies of only four. The Cornfield method gives a 90

percent interval of 1.1 to 9.8, identical to that gi
proach, given by the test-based ap-
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12. STRATIFIED ANALYSIS

Two different analytic concerns motivate the division of data into strata:
one is the need to evaluate and remove confounding; the other is to eval-
uate and describe effect modification. Because stratification is the pre-
ferred means of dealing with both of these analytic issues, the beginning
student is apt to become bewildered in the attempt to distinguish between
the aims and procedures involved in considering these two aspects of ep-
idemiologic data analysis.

Effect modification fefers to a change in the magnitude of an effect
measure according to the value of some third variable (after exposure and
disease), which is called an effecr modifier. Effect modification differs from
confounding in several ways. The most central difference is that, whereas
confounding is a bias that the investigator hopes to prevent or, if necessary,
to remove from the data, effect modification is an elaborated description
of the effect itself. Effect modification is thus a finding to be reported
rather than a bias to be avoided. Epidemiologic analysis is generally aimed
at eliminating confounding and discovering and describing effect modifi-
cation.

It is a useful contrast to think of confounding as a nuisance that may or
may not be present depending on the study design. Of course, confound-
ing originates from the interrelation of the confounding factors and study
variables in the source population from which the study subjects are se-
lected. Nevertheless, restriction in subject selection, for example, can pre-
vent a variable from becoming a confounding factor in a situation in which
it otherwise would be confounding. Effect modification, on the other
hand, rather than being a nuisance the presence of which depends on the
specifics of the study design, is a natural phenomenon that exists indepen-
dently of the study. It is 2 phenomenon that the study is intended to divulge
and describe if at all possible. Whereas the existence of confounding with
respect to a given factor depends on the design of a study, effect- modifi-
cation has a conceptual constancy that transcends the study design.

Although effect modification is a constant of nature, in its most general
sense it cannot correspond to any biologic property because there is one
aspect of the concept that is not absolute: Effect modification in its most
general context includes modification of an effect without specifying
which effect measure is modified. Since there are two effect measures, the
difference and ratio measures, that are commonly used in epidemiology
as well as others that are used less often, the concept of effect modification
without further specification is too ambiguous to be useful as a description
of nature.

In Figure 12-1, age can be considered a modifier of the effect of expo-
sure, since the incidence rate difference between exposed and unexposed
increases with increasing age. On the other hand, the ratio of incidence
among exposed to incidence among unexposed is constant over age. Thus,
age modifies the effect of exposure with regard to the difference measure



