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PREFACE 

The tenets of epidemiology, like those of every other science, have be- 
come established piecemeal. Some are more useful than others, and some 
exist in mutual conflict. In this book my aim has been to weave the diverse 
threads of epidemiologic concepts and research methods into a single fab- 
ric. I have tried to reconcile conflicting ideas and unlfy the conceptual 
foundation, omitting needless partitions. In particular, I have labored to 
tie the statistical topics of epidemiologic analysiswhich have a way of 
generating their own special goals, momentum, and ling-to the basic 
goals of epidemiologic research I have also ventured to reconcile epide- 
miologic principles with the broader goals and methods of scientific in- 
quiry, as I understand them. In sewing the final cloth, I have been mindful 
that I cannot succeed fully, but rather must fail in my attempts to varying 
degrees. Intent readers will surely find holes in the fabric and an incorrect 
stitch here and there. Some of these irregularities undoubtedly reflect in- 
adequate understanding or communication on my part Some mark con- 
ceptual areas, such as confounding and interaction between causes, where 
development is progressing rapidly. I hope that such problems are few, 
and small enough not to impair the overall usefulness of the work. 

Throughout this book I have strived to make the material accessible to 
a novice to the field. Whenever possible the descriptions are verbal rather 
than mathematical, despite the quantitative objectives of research The first 

I 

I 
eight chapters deal with fundamental issues of epidemiologic conceptual- 

I ization, measurement, and study design, and should be comprehensible 
I even to those who lack previous trainlng in epidemiology or statistics; the 

second eight chapters address the somewhat more technical issues of ep- 
idemiologic data analysis, but even these topics are presented with step 

1 by step explanations and simplicity as a central objective. 
Chapters 1 through 5 form an introductory unit on basic epidemiologic 

concepts and tools. Chapter 1 places epidemiology in its historical per- 

: spective. Chapter 2 ventures into the philosophic foundation for epide- 
miology, providing a model for causal action that serves as a platform for 
understanding etiology and its quantitative description. Chapters 3 
through 5 continue with the fundamental measures of epidemiology (in- 
cidence, prevalence, and risk) and the measures derived from them to 
quantify causal actions. 

Chapters G through 8 form a second unit that deals with epidemiologic 
studies. The basic types of studies are presented in Chapter 6, where I 
have pursued steadfastly the objective of a unified approach, stressing the 
theoretical connections among study types. Chapters 7 and 8 explore the 
issues of study design without resorting to mathematical notation. They 
emphasize the sources of error in effect estimates as well as the quantita- 
tive nature of most aspects of study design. 

Chapters 9 through 16 deal with data analysis. In this section some re- 
liance on mathematical formulations has been unavoidable, and I have 
assumed a basic knowledge of the relevant statistical distributions. Never- 
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theless, the fundamental statistical priil>iples are introduced and explained 
in Chapters 9 and 10 using as little notation as possible. Chapter 11 intro- 
duces the basic .arialjrtic formulations for crude data, which are extended. 
iil Chaprers 12 and 13 for stratified and matched data. Chapters 11 through 
13 cover the routine analytic tasks that.an epidemiologist faces; conse- 
quently, these are the most technical chapters in the book. Various ap- 
proqches are described in derail, so that these chapters can be used as a 
reference for febearchas, as well as an insrructional guide to the funda- 
mental analytic- methods. 

~he'final three ~habters turn t6 more advanced analytic topics, but the 
emphasis is not so much on formulas is on analytic strategies. Thus, Chap- 
ter 14 on mu!tivariate analysis is probably the least technical description 
of ingltivariate analysis in any &book; it provides practical guidance on 
choosing, coristfucting, and interpreEing rilultivariate models. Chapters 15 
md 1.6 deal yith the.advanced topics of interaction and "dose-response" 
evduiitim, but, the emphasis once again is on the principles and pitfalls of 
such kalyses, .rather .than onxhe technical aspects of the requisite calcu- 
l2tions. I could not avoid formulas entirely and still provide an adequate 
discussion of these topics, but the formulas presented illustrate ap- 
proaches of conceptual simplicity amenable to a pencil-and-paper solu- 
ri-on. I 

In my effora'td tie together epidemidogic concepts for all these topics, 
I have encountered some fossilized divisions that I consider no longer 1 
useful. Fo-r example, a rift has separated the traditional area of infectious I 
disese epidemiology from the more recent and growing area of "chronic" ! i 
disease. epidemiology. I have never been persuaded of any rationale for 1 
this,;distinct:ion:The terms "infectious" and "chronic" are neither mutually j 
exclusive i ~ o r  collectively exhaustive ,alternatives. Many diseases are both 
infectious and some, such as fatal traumatic injury, are neither. 
'"Ghroriic" h s  so~et imes been take'n to mean a long induction period, 
rather thm P long period of manifestation, but this redefinition still fails 
€0 ~ a k e  a .heeani&ful distinction, between C ~ O  conceptually different types 
of .epidkmiol&y ,Although some specialized methods have been 'devel- 

eitf5t between traditional and modern areas of epidemiology are certainly 
aped solely t'o s h d i  the spread df ~nfectious illness, whatever distinctions 

less i-mmportant'than the broad base of concepts that are shared. This book 
does not dealwith models for epidemic spread, but focuses on the general 
epidemio1ogic. co'n;epts that apply to all diseases, infectious or not, 
chronic or'not;.and 50 causes that have short or long induction periods. 

Another distinction that has been used to categorize epidemiologic 
w&k is its classification into 'descriptive and analytic epidemiology. My 
viqv isthat this demarcati0n.k also best forgotten. It has been used in 
fefet-ehce both to specific studyvhiables (so-called "descriptive" variables 
beiiig distinguished from putative causes) and to entire studies, but in 
fieither context'doei it hold as a sensible classification scheme. No quali- 

tative distinction, other than a completely arbitrary one, distinguishes "de- 
scriptive" variables from more fundamental risk factors. Any disease de- 
terminant can be specified in terms of more proximal determinants or 
previously unsuspected confounding factors. The division of epidemio- 
logic research into descriptive and analytic compartments has given rise 
to the illusion that there are diierent sets of research principles that apply 
to descriptive and analytic studies. This notion devolves from a mechanical 
view of scientific research, and diverges from prevailing doctrines of sci- 
entific philosophy. For example, the view that "descriptive data" from "ex- 
ploratory studies" generate hypotheses, whereas the data from "analytic 
studies" are used to test hypotheses, does not cohere with a broader un- 
derstanding of science. Hypotheses are not generated by data; they are 
proposed by scientists. The process by which scientists use their irnagi- 
nation to create hypotheses has no formal methodology and is certainly 
not prescriptive. Any study, whether considered exploratory or not, can 
serve to refute a hypothesis. It is not useful to regard some studies merely 
as "hypothesis generating" and others as "hypothesis testing," because the 
inexorable advance of scientific knowlege cannot be constrained by such 
rigidities. 

I believe that epidemiology is much more coherent than these tradi- 
tional divisions would suggest. Even the stark contr.ast between follow-up 
studies and case-control studies has been softened as understanding of the 
basic principles of epidemiology has progressed. In writing this book, my 
greatest hope is to convey to the reader the conviction that epidemiologic 
principles can be understood as an integrated substrate of logical ideas, 
rather than as a jumble of isolated and sometimes conflicting postulates. 

K. J. R. 



10. FUNDAMENTALS OF EPIDEMIOLOGIC 
DATA ANALYSIS 

In a well-planned study, the raw observations that constitute the data con- 
tain the information that satisfies the objectives of the study. In Chapter 7 
it was emphasized that a study is a measurement exercise and that the 
overall goal for a study is accuracy in measurement. Accordingly, the goal 
in data analysis is to extract the pertinent measurement information from 
the raw observations. 

Typically, there are several distinct stages in the analysis of data. In the 
preliminary stage, the investigator should review the recorded data for 
accuracy, consistency, and completeness; this process is often referred to 
as data editing. Next, the investigator should summarize or transform the 
data into a concise form for subsequent analysis, usually into contingency 
tables that tabulate the distribution of the observations according to key 
factors; this stage of the analysis is referred to as data reduction. Finally, 
the edited and reduced data are used to generate the epidemiologic mea- 
sures of interest, typically one or more measures of effect (such as relative 
risk estimates), with appropriate confidence intervals. This last stage of 
analysis is sometimes considered the analysis proper, but it is more con- 
venient to refer to it as effect estimation (or perhaps just estimation, if the 
goal of the analysis is to estimate disease frequency rather than to measure 
an effect). For some investigators, the last stage of analysis inevitably in- 
cludes statistical hypothesis testing. The previous chapter explained why 
hypothesis testing is an undesirable feature of data analysis in most epi- 
demiologic situations. Since the statistical theory behind interval estima- 
tion is closely related to statistical hypothesis testing, however, it is useful 
to consider the issues described in statistical hypothesis testing as a foun- , 
dation for understanding epidemiologic data analysis. 

DATA EDITING 
There is no excuse for failing to scrutinize the raw data intensely for errors 
and to correct such errors whenever possible. Errors are routinely intro- 
duced into data in a variety of ways; some errors are detectable in editing 
and some are not. 

The data in an epidemiologic study usually derive from a self-adrninis- 
tered or an interviewer-administered questionnaire or from existing rec- 
ords that are transcribed for research. The data from the questionnaire or 
record-abstraction form may be transcribed from this primary form to a 
code form for machine entry, usually by keypunching. Coding of re- 
sponses is often necessary. For example, occupational data obtained from 
interviews need to be classified into a manageable code, as does drug 
information, medical history, and many other types of data. Data such as 
age or year of birth (year of birth is usually preferable to age, since it tends 
to be reported more accurately and does not change with time), although 



oftei grouped:i.*to broad categories for reporting purposes, should be 
recorded in a precise.form rather than grouped because the actual values 
will ',allow greater 'flexibility later in the analysis: For example, different 
groupings may be necessary for compnisons with several other studies. 
Some nominal scale variables that have only a few possible values can be 
-precbded on the primary forms' by checking a designated box correspond- 
ing to the appcopriate category. For .nominal scale variables with many 
.possible categories; .however, such as country of birth or occupation, pre- 
co-ged questions are not practical. If all data items can be precoded, it may 
be f e ~ i b l e  to collect the data in ,a primary form that can be read directly 
by a machine, hy optical scanning, or,by some comparable method. Oth- 
emise, it will' us6ally be necessary to trawlate the information on the 
pfimry data fqrm before it is stored in a machine or in machine-readable 
fo-r-m. 

It is p0.ssibl.e ~d .usua l ly  desirable to avoid rewriting the data onto a 
secodary data form during the coding pprocess. Rather than generating 
addifi.orral fraimiiption errors, it is preferable to code the data while si- 
multaiieously keyings them into a computer storage system. A computer 
pc@rarii can be ,devised to prompt data entry item by item, displaying 
category codes on a terminal. screen to assist in coding. If the data are 
coded $d mtircen by hand, they will often require keypunching anyway, 
unless they'are coded onto optical scanning sheets; consequently, direct 
&G,'eritry duririg 'coding reduces,both costs and errors. The fewer the 
number- of rewriting 'operations between the primary record and the ma- 
chine-=stored version,, the fewer.the.errors that are likely to occur. If re- 
writing is unavoidable, it is useful to assess the extent of coding errors in 
the'f-i~e'n form by coding a pr6portion of the data forms twice, inde- 
pendently. Tlie.information thus obtained can be used to judge the mag- 
ri-it.u& of bias introduced by misclassification from coding errors. 

Basic editing of ,the data involves checking each variable for illegal or 
uhusuil values. For example, gender may be coded 1 for male and 2 for 
fmake. Usually 'a separate value, perhaps 3, is used to designate an un- 
known,value. It is preferable not to assign a code of zero if it can be 
avoided because:mi$sing information or non-numeric codes may be inter- 
preted by somemachines or programs as a zero. By not assigning zero as 
a specific code, nQt wen for unknown information, it may be possible to 
detect .keyp\iriching 'errors or missing information. The distribution of 
e ~ h  vafiiible should be exmined in the editing process. Any inadmissible 
values should be checked against the primary data forms. Unusual values 
Such as unknown gender or unusual age or birth year should also be 
checked 

In addition to checking for incorrect or unusual values, the distribution 
of each variable'should be examined to see if it appears reasonable. Would 
you expect about half of the subjects to be males, about 80 percent (a 
reasonable figure if the subjects have, say, upper respiratory cancer), or 
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about 2 percent (if the subjects are nurses)? Such an evaluation may reveal 
important problems that might not otherwise come to light. For example, 
a programming error could shlft all the data in each electronic record by 
one or more characters, thereby producing gibberish that nevertheless 
might not be detectable in, say, a multivariate analysis (an important draw- 
back of the multivariate approach). The potential for such a disaster 
heightens the need to check carefully the distribution of each variable 
during the editing of the data 

The ediung checks described so far relate to each variable in the data 
taken singly. In addition to such basic editing, it is usually desirable to 
check the consistency of codes for related variables. It is not impossible, 
but it is improbable that a person 18 years of age will have three children 
Males should not have been hospitalized for hysterectomy People over 2 
meters tall are unlikely to weigh less than 50 kilograms. Thorough editing 
will involve many such consistency checks and is best accomplished by 
computer programs designed to flag such errors [MacLaughlin, 19801. Oc- 
casionally an apparently inconsistent result may appear on checking to be 
correct, but many errors will turn up through such editing. It is importanr, 
also, to check the consistency of various distributions. If exactly 84 women 
in a study are coded as premenopausal for a variable, "type of meno- 
pause," then it is reassuring that exactly 84 are likewise coded as premeno- 
pausal for the variable "age at menopause" (for such a variable, the code 
"premenopausal" should take a different code number from that assigned 
to unknown-e.g., 98 for premenopausal and 99 for unknown). 

An important advantage of coding and enterlng data through a computer 
program is the ability to edit the data automatically during the entry pro- 
cess. Inadmissible or unusual values can be screened as they are entered. 
Inadmissible values can be rejected and corrected on the spot by program- 
ming the machine to print an error message on the screen and give an 
audible message as well to alert the operator about the error. Unlikely but 
legal values can be brought to the operator's attention in the same way. A 
sophisticated data-entry program can also check for consistency between 
variables and can eliminate some potential inconsistencies by automati- 
cally supplying appropriate codes. For example, if a subject is premeno- 
pausal, the program can automatically supply the correct code for "age at 
menopause" and skip the question. (On the other hand, some investiga- 
tors may prefer the redundancy of the second question to guard against 
an error in the first.) 

Even with sophisticated editing during data entry, it is still important to 
edit the stored data before analysis, to check on the completeness of the 
data and the reasonableness of the distribution of each variable. Neither 
of these features can be evaluated by a data-entry program. 

Every experienced investigator knows that even the most meticulous 
data collection efforts sufFer from errors that are detectable during careful 
editing. If editing is planned as a routine part of handling the data, the 



existence of such errors is usually not a serious problem. If editing is 
ignored, momentous problems can result. 

DATA %DUCTION , 

The mtion fufunclarilental to data reduction is that certain observations in a 
set of data are equivalent, and it is easier to deal with equivalent observa- 
tions %ftei they havelbeen summarized. The summary form usually is a 
ca;iidrigency.rab-le in which the frequency of subjects (or units of obser- 
~~tion) with every specific combination of variable values is tabulated for 
variabkes of interest. 'such a table is presumed to contain, in summary 
form, .essentiaily.all, the relevant information in the data. From the contin- 
gen-q table, the investigator c.an proceed with effect estimation.. In addi- 
tim, @e, ~ b l e  displays the distiibuticsn of subjects according to key vari- 
ables and thus conveys directly to the investigator an intimacy with the 
claa t h t  is fiat easily obtained &,any 6ther way 

D%t:?i r~duction .into a contingehcy table is predicated on an analysis in 
whi.cti there is no concern for confounding or effect modification or there 
are at most only .a~small number of variables that might be confounders 
or effect modfiers. If the analysis must take account of a large number of 
vziabke5, a multivariate analysis using mathematic modeling will be nec- 
essay. For such multivariate analyses, it is not necessary to reduce the data 
into a contirigency table. Nevertheless, to ensure that the investigator ac- 
quires some f?miliaritjr with the data, it is advisable, even when planning 
a muktkiriste analysis, ro reduce ihe data into contingency table format 
for $e variables of central interest. Indeed, proceeding with an abridged 
mdysSis based on.'thc contingency table data is a good idea even if the 
n e ~ d  f o ~  the rnuioiriiriate analysis is certain. 

~oi laps i r i~  die edired data into. categories for the contingency table may 
i-iecesshte satne.iLecision making: The process is straightforward.for nom- 
iiial scale variablks such as religion or race, which are already categorized. 
For cantinuous variables, however, the investigator must decide how many 
categories to make and where the category boundaries should be. The 
number i?f categories will usually depend on the amount of data available. 
If the data are. abundant, it is always preferable to divide a variable into 
nta~iv'c?tegoi-ies. On the other hand,.the purpose of data reduction is to 
Summarize tlie data concisely and conveniently; creating too many cate- 
godes would defeat this purpose. For control of confounding, it is rarely 
iie'cesSsary to M e  &ore than about five categories [Cochran, 19681. If an 
expcjsure vafiabl? is categorized to examine effect estimates for various 
level< &f exposure; again it would be unusual to require more than about 
Five categories.. ~rtqiuentl~, however, the data are so sparse that it is un- 
desirable to create as many as five categories for a given variable. When 
the observations &e stretched over .too many categories, the numbers 
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within categories become statistically unstable and produce large random 
errors in the effect estimates. 

Since most of the confounding from a given factor can be removed by 
a stratified analysis based on only two categories of a continuous variable 
[Cochran, 19681, it is desirable with sparse data to keep the number of 
categories small, perhaps two or three. Even a large body of data can be 
spread too thin if the contingency table involves too many dimensions, 
that is, if too many variables are used to class* the subjects. With three 
variables, apart from exposure and disease, and three categories for each 
variable, there will be 27 2 X 2 tables (assuming that both exposure and 
disease are dichotomous). With an addirional two variables of three cate- 
gories each, there will be a total of 243 2 X 2 tables, enough to stretch 
even a considerable body of data too thin, siince a study of 10,000 people 
would average only about 10 subjects per cell of the multidimensional 
table. If a stratified analysis is planned and it is necessary to strat* by 
several variables, it is probable that only a few, perhaps as few as two, 
categories can be used for each variable. With only two categories per 
variable, stratification by five variables requires 32 rather than 243 2 x 2 
tables, and a study of 10,000 subjects would average 78 subjects per cell 
rather than 10, thereby gaining precision at the cost of some potential 
residual confounding within categories. 

The investigator must also decide where to draw the boundary between 
categories. There is no accepted method for doing this. A frequently ex- 
pressed concern is that boundaries might be '"gerrymandered," that is, 
shifted after a preliminary examination of the'effect estimates in such a 
way that the estimates are altered in a desired direction. This concern 
imputes a level of dishonesty to the investigator that is presumably uncom- 
mon. Furthermore, the shift of a boundary in categorization rarely has a 
substantial effect on the magnitude of an estimate and then only because 
of a large random error component. On the other hand, it is frequently 
useful to inspect the distribution of a variable before deciding at which 
points to carve categories. There may be "natural" categories if the distri- 
bution has more than one mode. The distribution may be sufficiently 
skewed that preconceived category boundaries would lead to an ineffi- 
cient separation of subjects, with too few in some categories and too many 
in others. For these reasons, it is often preferable to define the final cate- 
gories after reviewing the data, notwithstanding the common advice that 
it is somehow more "objective" to do so in ignorance of the distribution 
of observations in hand. Nevertheless, if meaningful category boundaries 
are inherent in the variable, these can and should be specified a priori. 
For example, in categorizing subjects according to analgesic consumption, 
it is desirable to create categories that contrast the various therapeutic 
indications for analgesic use, the recommended doses for which can be 
specified in advance. It is often desirable, especially for an exposure vari- 
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able, to retain exrreme. categories in 'the analysis without merging these 
with neighboring Gtegories, since the extreme categories are often those 
fiat permit the m ~ s t  biologically infotinative contrasts. 

A &-unon problem in creating categories is the question of how to deal 
with .the.erids of the'scale. 0pen:ended categories can provide an oppor- 
mity for considerable residual confounding, especially if there are no 
tl-iecsrerical boungs..for the variable. For example, age categories such as 
65 + ;with ilo upper limit, allow a considerable r a g e  of variability within 
which 'the desired ho;mogenejQ. of exposure or outcome may not be 
achieved. Another exapple is the separation of the efects of alcohol con- 
sumption, and fobado smoking on the risk of oral cancer; within cate- 
gdrik~.of heavy smoking, it is a reasonable possibility that the heaviest 
smqkers drink more aalcohol th& those who smoke less within that cate- 
g o q  .[Rdth-man ind ~el le r ,  19721. When residual confounding from open- 
ended categories is considered likely, strict boundaries should be placed 
017. every:catego~,'including those at the extremes of the scale. 

A convenient method of assembling.the final categories is to categorize 
the &fa ini~ial~~mucfimore finely than is necessary A fine categorization 
will facili6te revi .7 of the distribution for each variable; more usable cat- 
egoria cm thenbe created by coalescing adjacent categories. The coalesc- 
ing of adjacent strata for a rankordered confounding variable can be jus- 
tified byY the, lack of confounding that is introduced by merging the 
categories.; this merging will not introduce confounding if the exposure 
diswibotion is +-same among the controls or person-time denominators 
betw&en t.he stran,lor if the proportion of cases or the disease rate is the 
same among non,exposed subjects between the strata [Miettinen, 1976bI. 
The aclvaiitage of starting with more categories than is ultimately necessary 
is that the merging of categories can be conven~ently accomplished with 
pencil and paper in seconds or minutes, whereas separating categories 
i*ro &xi-iceg;ories c@ot be done without reading through the entire data 
file, thus xdding.&other computer run. 

EFFECT E S T ~ ~ T I O N  (AND HYPOTHESIS TESTING) 
Hypothesis .Testing 

h data analvsts, is opposed to the broader area of scientific inference, --- ~ , . . - -  
hypothesis resting generally refers to the evaluation of a null hypothesis. 
The tntrodwtion of the concepts of statistical evaluation early in the men- 
-riethcentury ied to an appreciatjonof the importance of assessing the role 
of r'afidom error in observations. Hypothesis testhg is directed at the ques- 
ti-on of whether random error might account entirely for an observed as- ..--. . 

sockkion. The statist$ used to evaluate this question is the P-value. 
The P:"alue is usually interpreted as the probability that an association 

at k+t .  as srrong,as *at actuall? seen in the data might have arisen if the 
hull hypothesis,were true, that is, by chance alone. Because a low P-value 

. , 
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V1 Two-tailed P-value 
c 
O) = sum of A and B P 

.- 

0 bbsekad value 
L .  ,. - Effect measure 

Fig. 10-1. Distri'bution of effect eshhn26tates under the null hypothesis in large 
studies (continuous d&tnbution). 

indicates a low probability, under the null hypothesis, of results as extreme 
or more extreme than those observed, low P-values are taken as an indi- 
cation that the data are more compatible with the alternative hypothesis 
of a nonzero effect than with the null hypothesis. A P-value should not be 
coz-hsed with the probability that the null hypothesis is correct; it is cal- 
culated o n  the assumption that the null hypothesis is correct. Extremely 
low P-values can-occur even when the null hypothesis is true; in fact, they 
are guaranteed to occur a small proportion of the time. The informative- 
ness of the P-value derives solely from the interpretation that small P- 
values indicate relatively less consistency between the data and the null 
 hypothesis and relatively more consistency with the alternative hypothesis 
of a nonzero effect. 

Imagine that an estimate had a continuous sampling distribution on its 
scale of measurement, with a value of zero corresponding to the null hy- 
pothesis of no effect. Figure 10-1 illustrates the hypothetical probability 
density of the estimated effect; the bell shape of the curve is ensured for 
large studies by the central limit theorem in statistics. Values of the esti- 
mate equal to or more extreme than that observed correspond in the like- 
lihood of their outcome to the shaded area in the diagram. The definition 
of more m m e  can be unidirectional, in which case the P-value is said to 
be "one-tailed'' or "one-sided" and is represented only by the shaded area 
under one end of the curve, or it can be bidirectional, in which case the 
"two-tailed" P-value corresponds to the sum of the shaded areas under 
both ends of the curve. 

To calculate the P-value, it is necessary to postulate a statistical model 
that describes the probability distribution of the data on the assumption 
of the null hypothesis. If the distribution of effect estimates that are cal- 
culable from the data were actually continuous, it would be inconsequen- 

i tial whether the tail area of the curve is defined as the area corresponding 
, 
i 
1 



b ~dserved value 
. Effect measure 

Fig. .lo-2. ~rktribut& of e$ect atiinates under the null hypothesis (discrete 
t i )  , ' .  

. , .  

. . 
ro effect estimates equal to or more extreme than those actually observed, 
or simply the sea correspond@g,to estimates more extreme than those 
observed.. T*icdly, .however, in epidemiology, the data from which the 
effect estimates art? calculated are discrete frequencies, and the distribu- 
tion of effect estimates is discrete rather than continuous. The area repre- 
seiifing a P-value ?or a discrete- dis'tribution is illustrated in Figure 10-2. 
Traditionally, the ~ A l u e  has been defined as the sum of both the lightly 
shaded areas and the heavily shaded areas in Figure 10-2. The lightly 
shaded areas correspond to the probability of the actual observations (and 
t h k ' c o i r e ~ ~ ~ n d l ~ ~ ~ v a l u e  in the opposite direaion), whereas the darkly 
shxded are* correspond to the .probability of more extreme departures 
from the null~valua than those actually observed. Obviously, for discrete 
di&fibutions'it',do&. matter yhether the P-value is defined as including the 
probability of &e' observed outcome or just the more extreme values. 

The problqi'yith the traditional definition of. the P-value is that it leads 
to irkonsistencies:'~& example, what if the observed value of the effect 
esti'mate wefe irl the,center of the distribution, right on the null value? In 
rhe~~aditiorid~defmition, each tail w.ould then include more than half the 
dlstribufion, 'md.the two-tailed ?-value would be greater than 100 percent, 
which is inccinsistent with the view that the, P-value represents a probabil- 
ity alternative definition of the P-value that overcomes this problem is 
one inwhsch the probability of the 6bsesed value of the effect is parti- 
tioned, generally by.splitting it into equal parts [Lancaster, 1949; Lancaster, 
1361]. Thus, ,the one-tailed P-value would correspond to the probability of 
the' more extreme values plus one-half the probability of the observed 
vake,.~his'defiriition of the P-value his been referred to as the "mid-P" 

. . . . 

. . . . 
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[Lancaster, 1961). The two-tailed P-value is generally obtained by doubling 
the one-tailed P-value, however the P-value is defined. 

With discrete data, the probability distributions used to calculate the P- 
value can give rise to intricate calculations; P-values calculated directly in 
this way are referred to as exact P-values. usually it is simpler to use an 
approximation to the discrete distribution, relying on the fact that a normal 
curve will approximate the shape of the distribution reasonably well; the 
larger the frequencies involved in the discrete data, the greater the num- 
ber of values that can be assumed by the effect estimate and the better the 
normal approximation to the discrete distribution. The advantage of using 
the normal distribution is that the calculations necessary to obtain the P- 
values are considerably simpler than those needed to get the exact P-value. 

In an attempt to make the normal approximation better when frequen- 
cies are small, Yates [I9341 suggested a "correction" procedure that 
amounts to shifting the observed value of the effect estimate toward the 
null value by a distance that corresponds to half of the probability of the 
actual data undefthe null hypothesis. This adjustment is intended to com- 
pensate for the fact that the observed value of the effect actually represents 
the central value of a range that corresponds to the region on the scale of 
the effect measure representing each discrete value. Since the probability 
of the entire range for the observed value is included in the definition of 
the traditional P-value, the Yates "correction" usually improves the ap- 
proximation to the traditionally defined exact P-value. If, however, the 
mid-P definition were used, then the Yates "correction" would actually 
make the approximation worse, since the observed value already repre- 
sents the central value of its discrete range. In this text, the Yates "correc- 
tion" is ignored. 

The general form for statistical testing based on a normal distribution 
around the null value is given by equation 10-1: 

A - E  
X = - fl 

A is the observed value of the effect estimate, E is the expected value 
for A under the null hypothesis, and V is the variance of A under the null 
hypothesis. Provided that under the null hypothesis A is normally distrib- 
uted, then under the null hypothesis x will also be normally distributed 
but with a mean of zero and a standard deviation of unity A normally 
distributed random variate with a mean of zero and a standard deviation 
of unity is referred to as a standard n o d  devkte, synonyms are critical 
ratio and Z-value. In this text, x is used as the notation in the formula to 
emphasize that the square of the standard normal deviate has a chi-square 
distribution with "one degree of freedom"-indeed, that is how the one 
degree of freedom chi-square statistic is defined. (Chi-square with n de- 



gre& of freedom is, simply the,sum of n independent chi-squares with one 
degree of freed&.) The P-value is pbtained from the x value from tables 
(or 'komputatio,nal formulas) of the stz+dard 'normal distribution. In es- 
senc:e, :equation i0-1 converts '5 normally distributed statistic with a cal- 
cdated expectactation and variance into a standard normal deviate (expec- 
udd;n of zero and standard deviation of unity) for which detailed tables 
zrtt.convenientiy aviilable to obtain P-values. It would be possible to 
square tlie x and obtain the P-value from tables of chi-square, but since 
the& usually Ra"e considerably less detail than tables of the s & w d  nor- 
mal'distribution, there is no reason to do so. 

To, this p~ii l t  this 'discussion has presumed that the observation of inter- 
est& the es,t@ate of effect derived from tlie data. Although this is generally 
so, in calcula'kg the x it is usually more convenient to postulate for the 
ran$om vtiriab'1e.A a measure.-that contains all the essential statistical in- 
for'kiation about .the effect but for which the variance is more easily and 
accur~kly calculated. It is convcnieht to designate A as the number of 
exposed subjects with disease in,the study; with this substitution, the ex- 
pecr~d number for A under the null hypothesis will not be zero but must 
be cdcdated f@ the data based on the relevant probability model. The 
mudels relevant t~ epidemiologic studies will be described in Chapters 11 . . .&d '1.2. 

. . .  
. . 

EstimPiofl of Efects .. ' .. 

Tee singke b&srhuinerical estimate. of effect frbrn a set of data is referred 
to. 3 a point estirizate. ~ecaus'e a point estimate is only one point on a 
co'ntinvous scale with an infiriite number of possible values, there is es- 
s&ntially zero probability that it is correct, even if there is no source of 
bias. Therefore,:although point estimates serve as useful indicators of the 
magnitude of ~JI effect, it is importarit to supplement the information that 
they provide.with a metisure of the random error in the data. Hypothesis 
tsaiig can acco-mpli.sh this goal, bgt the P-value is an undesirable statistic 
for evaluating'random error because it provides no information about 
magnitude of effect and only indirectly allows assessment of the extent of 
rindom error in aj-~ estimate. As was emphasized in Chapter 9, the greatest 
drawback of ~ivaibes is that they tend to be used for "significance" testing 
as .an analytic. goal; diverting the focus away from the proper goal of esti- 
trratioi of effects. :A better approach is the use of confidence intervals, 
which have none of the drawbacks of P-values. ' 

A corifidence interval denotes a range of values surrounding the point 
e~rimate that a-$u~ts to a "sampling'range" for the estimate. The level of 
confidence, Mhich is arbitrzily'selected by the investigator, is the frame 
of-reference.bj. which the sampling range can be interpreted. Most inves- 
r$gators repeatedly use the same level of confidence to ease comparison; 
90 and 95 are commonly used values. 

The connection between c ~ ~ d e n c e  intervals and P-values, described 
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Fig. 10-3. Sampling range of the data in reference to the null value and the 
lower 90percent confidence limit. 

in Chapter 9, should be expressed in more formal terms. Like a confidence 
interval, the P-value also measures a sampling range, but it specifically 
measures the sampling range of the data under the null hypothesis. The 
null point on the effect scale is the reference point for hypothesis testing, 
and the P-value is a measure of the discrepancy of the data with the ref- 
erence point in probability terms. A confidence interval, in contrast, fixes 
the probability to an arbitrarily chosen value, which is dependent on rhe 
desired level of confidence, and varies the reference point, which be- 
comes the limit to the confidence interval. Thus, in determining the lower 
boundary of a 90 percent confidence interval, the reference point is ad- 
justed until the upper tail area is exactly 5 percent (Fig. 10-3). For 90 per- 
cent confidence limits, the direction of the adjustment of the reference 
point will be from the null value toward the point estimate if the one-tail 
P-value is less than 5 percent, leading to a lower confidence bound above 
the null value (for positive effects). If the one-tail P-value is greater than 5 
percent, the reference point must be adjusted away from the null value in 
the direction opposite the point estimate to bring the tail area down to 5 
percent, resulting in a confidence interval that will bracket the null value. 
If the one-tail P-value is exactly 5 percent, then one boundary of the 90 
percent confidence interval will be equal to the null value. 

The most accurate way to determine a confidence limit is to use exact 
calculations analogous to the exact calculations used to calculate P-values. 
The calculations for confidence limits are considerably more diacult, 
however, for two reasons. First, the adjustment of the reference point in 
calculating the tail area amounts to the testing of a non-null hypothesis. 



The statistical models, that describe the non-null situation are highly com- 
plicated .in comparison with the nuh-hypothesis models and demand 
much inore iivolved calculations'. Secqiid, these intricate calculations have 
to be repeated in an iterative process fer ti-ial values of the reference point 
uatil the tail mea conforms with the desired Ievel ofconfidence. There- 
fore, c$lculation'of exact confidence limits is practically infeasible without 
pr~grammabke eiect+nic computing equipment. 

Formarely, many simple tecluliq6es exist, analogous with formula 10- 
1, ro b'btain approximate confidence limits. As with hypothesis testing, the 
ac-cur%cy' of all .the. approximate rechhiques depends on the number of 
obseiyations because all the methods depend on the normal distribution 
of effect estimares'.guaranreed b$ the central limit theorem for observa- 
t-ions that. are suffciently numerous: . 

A siiiiplifving'assumption that is ofteb made is that the sampling variabil- 
icy ijf iin effect estihate is constant along its scale of measurement, that is, 
the varihce oF,the effect estimate. is a constant, independent of the value 
of the esrimare. .This assumption is not necessary for hypothesis testing, 
sincee the P-value is calculated on the assu.mption that the null hypothesis 
hol-ds, and therefore the concern in.hypothesis testing is to estimate the 
vari-ance Only at the null value. With a large set of observations, the Sam- 
pl:iiig i-ange f& the effect esrimare is n l r o w  enough to make this assump- 
t.ion apprij;pi-iare; even'if the vxriance changes substantially along the scale 
of measurement of the effect measure, in a narrow enough range it will 
be nearly co.&t&t. Therefore, the simpllfylng assumption that the variance 
is Coo;lsrant is asyrnptofically correct; that is, the assumption becomes more 
xpprispriare as the number of observations u.sed in the estimation process 
increses . . ... 

. . 
The usual and sim'plest approach to calculating approximate confidence 

l:iirii&. is to estimate the standard deviation of the normal curve that rep- 
resen6 the approfimate sampling distribution of the effect estimate. The 
area under a syfnnletric segment of a. normal curve is a specific function 
of thk staildad d,eviation; in fact, this relation provides the only interpret- 
ability for .the standaid deviation a+s a nieasu.re of variability: If the distri- 
~ u a &  is not ioirnai; there is no meaiiingful interpretation of standard 
d-miation, thoxigh confidence intervais might nevertheless be obtained by 
exzct cdcu1;rridn. Forany normal curve, 68 ~ercen t  of the area under the 
c r v e  lies in the fegion within one s k d a r d  deviation (SD) of the central 
paint. Thus, keaigkement values reported with t- SD as a measure of 
variability ainount .to.a point estimate with an accompanying 68 percent 
coiifidence irite.rva1, provided that the sampling distribution is indeed nor- 
ma;l..when a Eve1 of confidence"is chosen, usually the value is not 68 
percent but commonly 80, 90, or 95 percent. These levels of confidence 
cor&pand ro regions that are bounded by points 1.282, 1.645, and 1.960 
srmdard deviation.ufiits, respectively, from the central value in either di- 
rection (Fig. 10;4)., ., 

. . . . 
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~g 10-4. Area under a normal curve. 

To obtain a confidence interval based on the assumption of a normal 
sampling distribution it is necessary to estimate both the expected (mean) 
value of the effect and the standard deviation. The expected value is esti- 
mated by the point estimate, and the standard deviation is usually also 
estimated simply from the observed data. To construct confidence inter- 
vals, with rate difference as the effect measure, the resulting formula 
would be 

in which F6l indicates the point estimate of rate difference (the caret sig- 
nifies an estimate), Z is the multiplier for the standard deviation corre- 
sponding to the desired level of confidence, and ~ % ( a )  indicates the 
estimated standard deviation of the point estimate; the minus sign gives 
the lower limit for the interval, and the plus sign gives the upper limit. 
The point estimate and the standard deviation are derived from the data, 
and a value for Z is arbitrarily selected to give the desired confidence level, 
for example, 1.645 for 90 percent confidence, and so on. Frequently, in a 
formulation such as that given in equation 10-2, the standard deviation is 
referred to as the standard error (abbreviated SE). In some circumstances 
there is an important distinction to be made between standard deviation 
and standard error: The standard error is the standard deviation of the 
sampling distribution of mean values; if the original observations come 
from a normal distribution, it is important to distinguish the standard de- 
viation of the latter from the standard deviation of mean values, thus giving 
rise to the need for a separate term, standard error. In the context of this 
book, however, we shall generally be interested in the sampling distribu- 
tion of point estimates, which corresponds to the standard error, although 
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n is also perfectly ?cceptable to use the term standard deviation, since a 
standard error is a specific type of standard deviation. 

If ,the effect mekure of inceresr were rare ratio rather than rate differ- 
efice; &.,might be riasonable to use formu.la 10.2 and simply substitute 
I6? for &. It Is pf&ferable, ho%ever, to use a different equation because 
the sampltng distiibution for I& is asymmetric, and consequently the Sam- 
pring distribution of.rate ratio estimates is not normally distributed unless 
a r&tively large number of observati0:n.s is available. Why is the sampling 
d,srribution for & asymmetric? The minimum value for RR is zero, 
whei,?as the 'maximum value is infiriity. Random errors can lead to larger 
discrepahcies on the. high side of the mean than corresponding discrep- 
zn-ciCs on rhe law side of the mean. Notice that for & the sampling dis- 
triljution is. symmetric. ~ l t h o u ~ h  the sampling distribution for ap- 
proaches a normal Curve f0.r a.suffi&ntly large number of observations, 
~t~ @ cptomary to use a scale transformarion to introduce symmetry and to 
set confidence. rjn;jn;its on a scale of measurement that gives a better ap- 
priximatian to the nor,mal distribution when the observations are rela- 
rively spzifse. This is convenienilf accomplished by using a logarithmic 
t~-msforniai~fi.' For settiilg confidence limits after logarithmic transfor- 
mation of r2re ratio, the for.mula is ' 

This is malogousto formula 10-2, differing only in that ln(&) has been 
~"bitituted'for. F@. Having set confidence limits on the logarithmically 
wmformed scale, it is necessary.to reverse the transformation so that the 
h i t s  cari be .interpreted on the original scale. To do so requires taking 
the' antilogari* of.the 1imits.resulting from formula 10-3. The whole 
process can be. summarized by the formula 

Wigreas foimbla 10-2 gives .confidence limits that are equidistant from 
the. poht  estimate, formula 10-4, because of the scale transformation, gives 
rodiderne lwits ,that are asymmetre about the point estimate. The limits 
are. ssym.metric on the logzrithinic scale, but on the original scale the point 
estimate $ the geometric mexi bekeen the lower and upper limits; that 
b,'&e rgtio'of thk.upper bound to the point estimate equals the ratio of 
the'poirit esfimate to the lower .bound 
-.F~rrnuks 10-2 and 10-4 are the siinplest general formulas for deriving 
appfoxiinace,cb;lfidence limits for.the rare difference and rate ratio mea- 
sure of effect, respectively. Many specific techniques have been proposed, 
eiich'strikirrg a difTerent balance bekeen computational ease and accuracy. 
~o r i l e . fmu la s  discard the a&umption that the standard deviation is uni- 

. . 

form along its scale of measurement and use iterative techniques to esti- 
mate the value of the standard deviation at the boundary of the interval; 
the method of Cornfield [I9561 for calculating confidence limits for the 
odds ratio is an example of this approach; Miettinen and Nurminen [I9851 
have extended Cornfield's approach to the risk ratio and risk difference 
measures. Iterative calculations usually require programmed computing 
assistance, so that the theoretical advantages are accompanied by practical 
disadvantages. 

The simplest specific technique for performing interval estimation is the 
"test-based" method [Miettinen, 1976a1, which assumes that the estimate 
of the standard deviation of the sampling distribution of the effect estimate 
obtained at the null value is a reasonable estimate of the standard deviation 
of the distribution elsewhere along the scale. This assumption differs 
slightly from the usual assumption that the estimated value of the standard 
deviation at the point estimate will be appropriate at the bounds of the 
interval; although both approaches assume that the value of the standard 
deviation estimated at one point along the scale will apply for both lower 
and upper bounds, the value estimated at the point estimate is more or 
less centrally placed between the limits of the interval, whereas the null 
value is not and might even be outside the interval. If the standard devia- 
tion changes along the effect-measure scale, the degree of error in the 
approximate limits is probably less severe if the standard deviation is es- 
timated at a point central to the confidence interval rather than at the null 
point, which has no connectionLto the location of the limits. On the other 
hand, by choosing the null point as the point at which the standard devia- 
tion is estimated, the resulting confidence limits will tend to be more ac- 
curate when they fall in the vicinity of the null point, and it may be argued 
that it is worth obtaining greater accuracy in the vicinity of the null value 
even if it means sacrificing some accuracy for limits calculated to be far 
from the null value. 

Applying the assumption of test-based limits leads to a concise formu- 
lation for obtaining confidence limits, based on the test statistics from 
equation 10-1. Consider the reformulation of equation 10-1 for rate differ- 
ence: 

where E, the expectation of under the null hypothesis, is zero, and 
&)(I@) is calculated on the assumption that the null hypothesis is true. 
This gives 

F 
i a 
k X = s"Do(6) [lo-51 



where $%,,(a) indicates that the SD is estimated at the null value. Equa- 
tion ,10-5 can be'rewritten as 

and substituted into formula 10-2, gi\;ing, for the lower and upper limits 

The x in formula 10-6 was assumed to be a test statistic evaluating RD per 
se. Miettinen recommended inserting into formula 10-6 any x statistic that 
represents an equally efficient test of the null hypothesis based on the 
same dan. For example, the usual x based on the distribution of the num- 
ber of exposed cases could be substituted (see Chap 11 for the specific 
application). , 

The counterpart d equation 10-5 using the rate ratio measure of effect, 
after logarithmic transformation, is 

which can be rewritten as 

and substituted inro formula 10-4 to give 

which simpiifies to 

with form& 10-6, the attraction of.formula 10-8 rests with the substi- 
tutiqn for the x statistic based on & an alternative and more convenient 
x testihg the null hypothesis. Indeed, the same x statistic can be used in 

. . 
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formulas 10-6 and 10-8 to generate confidence limits for rate difference 
and rate ratio. Note that when the x value equals the Z multiplier, the 
lower bound should and does correspond exactly to the null value, which 
is zero for rate difference and unity for rate ratio. 

The test-based formulas for approximate confidence limits given in for- 
mulas 10-6 and 10-8 are exceedingly easy to apply and produce usable 
confidence intervals in a wide variety of situations. The only numbers re- 
quired from\the data are an appropriate point estimate of the effect esti- 
mate and the x statistic from hypothesis testing. Indeed, the use of the x 
statistic in these test-based formulas is the main justification for any de- 
tailed discussion of statistical hypothesis testing in modern epidemiology, 
since the estimation of a confidence interval is preferable to the use of P- 
values to evaluate random error, and the P-value adds very little informa- 
tion if a confidence interval is given. 

Unfortunately, the principle of test-based limits is invalid as a general 
method of interval estimation [Halperin, 1977; Gart, 19791. Simulations 
have borne out the predictably poor performance of the method for large 
departures of the odds ratio from the null value [Brown, 1981; Gart, 19821, 
and Greenland [I9841 has provided a counterexample with the SMR that 
refutes the general validity of the approach. Greenland [I9841 states 

[Tjhe problem withyest-based limits 1s not (as has been suggested) lack of variance 
stabilization in specific applications, but rather that the principle requires us to 
equate two Merent large-sample test statistics. Since these statistics are equivalent 
only in the neighborhood of the null hypothesis, the principle itself is fallacious. 
. . . Unfortunately, the size of the neighborhood for which the principle holds will 
vary from parameter to parameter. 

Despite the theoretical drawbacks, test-based limits can be useful as a 
"quick-and-dirty" method of interval estimation. The method is known to 
perform well for odds ratio limits when the odds ratio is between 0.2 and 
5.0, and it can also be an acceptable tool in other situations. A comparison 
of the various methods of confidence interval estimation is illustrated for 
some simple data in the next chapter. 

Adjushzent for Multiple Comparisons 
Many statisticians have voiced concern about the interpretation of P-values 
or "significance" tests when multiple comparisons are made. The basis for 
concern rests on the following argument: Suppose a complex set of com- 
pletely random numbers were evaluated for 1,000 associations. The prem- 
ise is that there are no real associations in the data but that 1,000 different 
measures of association are examined. If "significance" testing is per- 
formed, at the 5 percent level of "significance" there would be about 50 
"significant" associations in the data, all representing type I or alpha-er- 
rors, that is, "statistically significant" associations that occur only by chance. 
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~he'@oiflt is $at chance guarantees a certain proportion of such associa- 
tions; ajid when mahy associacioris are studied, many false positive asso- 
riaiioiis are po-ogible: 
The tl-adtianal statistical approach to this "problem" has been to make 

.thz "sign-ific~ce',' test.more stringent, either by changing the criterion to 
a more stririgem'value, such ,&.l percent instead of 5 percent, or by ac- 
tually infl~iiting the .calculated Pivalues by some factor that depends on the 
number of comparisons made: since epidemiologists, in their usually 
tliorough evaluation of expensively obtained data, typically make multiple 
Cdmpaiisons, they'have freq.uently been admonished to be wary of the 
problem. '.", 

Ir is not clear, however, that the recommended solution is an improve- 
ment. In the fiist.place, the above argument, like all hypothesis testing, 
 st&^^ from the premise that the kxpl~at ion for all the so-called "signifi- 
c-mt" results is chance, a sort of grarid null hypothesis. But why should we 
assuine that chance .is a likely explanation for the associations that are 
observed? ~iidged, one might argue that it seldom is (some would say 
never is) the'explq?t~on for findings. If chance is not the explanation for 
a "significantljr" posi'dve asso.ciationi then the finding does not represent a 
type' I or a l p h a - 2 r r o ~ . . ~ ~  making the screening criterion for statistical "sig- 
nificance" more stringent, a penalty is paid: Real non-null associations may 
go undetected (a type I1 error) because they fail to meet the more strin- 
gent rriteri.on. &I elementary consideration of screening principles, which 
apply here, mikes it c les  that born a single criterion (the "significance" 
level) the num4er of false positives can be reduced only at the expense of 
an:increased frequency of false negatices. Is it worthwhile to reduce false 
pdisifives at the expimse of false. negatives?   he question cannot be an- 
swei;ed, gelierdly; it requires a deepet understatlding of the consequences 
of false positive and false negative results in the context of the research 
setting. One thing, however, is exrremely clear Whatever the arguments 
migh~ be for reducing the chance of a false positive in favor of a false 
negative, they have nothing to do with multiple comparisons; they would 
apply equally well to a single comparison. 

, The crux hffhe multiple comparison problem seems to be that in per- 
forn?iirrg m&iy &mptirisons m d  reporting only those that are "statistically 
sign-ificarit," it is. d&cult to impute.the intended interpretation to the P- 
value; in the null hypothesis, a well-defined proportion of tests would be 
"significant;". but, if the denominator, the number of comparisons, is large 
arid ur&no%,.a reasonable interljretation of the P-values reported is hin- 
dered. 

Lf many comparisons were made and each one were reported individ- 
ually, let us say in a separate publication, it would be absurd to make 
adjhstments to the reported P-values in each report based on the total 
number of such reports. If such adjustments were indicated, it would also 
follow that an investigator should keep a cumulative total of comparisons 
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made during a career, and adjust all "significance" tests according to the 
current total of comparisons made to date. The more senior the investi- 
gator, the more the P-value would have to be inflated. For that matter, 
wouldn't such adjustments have to take into account the anticipated num- 
ber of future comparisons as well as those already made? It should be 
obvious that these concerns are irrelevant to the research problem; they 
convert the P-value from a statistic conveying information about a specific 
association in the data to one that depends omthe unrelated experiences 
or psychologic state of the investigator. No one has yet suggested making 
adjustments for multiple comparisons if the results are reported individ- 
ually in separate publications. But is it not inconsistent then to consider 
making such adjustments if the same results are aggregated into one or 
several publications? Would a review paper of individually reported asso- 
ciations have to adjust the P-values? If no adjustments should be made to 
P-values when they are reported individually in separate publications, it 
follows that the process of lumping the results together in one place 
should not affect the results themselves, regardless of when and how the 
lumping is done. Therefore, no adjustments for multiple comparisons 
should be made even if a large number of comparisons are reported at 
one time, provided that it is clear how many comparisons have been made 
and that all "negative" (that is, "nonsignificant") results have been re- 
ported along with the "positive" or "significant" results. 

A problem does exist when the negative results are not reported; it is 
then more difficult to interpret properly the P-values for the positive find- 
ings that are reported. It is still a mistake, however, to believe that inter- 
pretation can be improved by adjusting the P-value or changing the crite- 
rion for "significance." The adjusted values are also impossible to 
interpret, since they divulge even less about the actual association; chang- 
Ing the criterion for "significance" does not actually solve the problem; as 
discussed earlier, it merely produces a smaller type I error at the expense 
of a greater type I1 error 

As usual, some clarity is gained by considering the use of confidence 
intervals rather than "significance" tests. The equivalent of multiplying the 
P-value by some adjustment factor to compensate for multiple compari- 
sons would be broadening the confidence interval. But the broader inter- 
val has no relation to the amount of information in the data about the effect 
in question; it depends instead on the number of comparisons that the 
investigator might have made. The problem with this approach is that it 

j seems to defy the logical presumption that the reported results about an 
L effect should reflect the amount of information about the effect in the data, 
R nothing more and nothing less. If broader cofidence intervals were re- 
A o r t e d  to compensate for multiple comparisons, a reader with an interest 

focused solely on the one item would pay an unnecessary penalty in terms 
of the information imparted by the reported findings simply because the 
original investigator did not also focus solely on that problem. 



since no problem calling for any Adjustments seems to exist unless the 
pasiiive results from, a large number.of comparisons are reported without 

.in£orrnstion 'about the total number: df comparisons, and since even 
&eir,it appezrs that adjustments in the results dnly make them more dif- 

. ficult t ~ )  inferpret, ,the best course forthe epidemiologist to take when 
ifl~aking multiple. ~omparisons. is. to ignore advice to make such adjust- 
menrs .in repor.tcd results. Each finding should be reported as if it alone 
were the soke hcus of a study. If a large number of comparisons makes it 
infeasible to report all findings, it is important to make it clear how many 
associations were: evaluated. If it cannot be determined how many com- 
parisons were made, then associations not previously reported should be 
considered merely suggestive. It is worth emphasizing, however, that any 
new findings should always be considered only suggestive, even if only 
one. comparison is made. ~indirrgs. *at address a previously reported as- 
sociation or lack of Gsoc~ation should.not beco,me a weaker confirmation 
or refutation 'siniply because they are accompanied by many other unre- 
he: d cofiparisons, shce  the previ~ously reported findingSon the question 
.mount to a prior hypothesis. 

. .  . 
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