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PREFACE

The tenets of epidemiology, like those of every other science, have be-
come established piecemeal. Some are more useful than others, and some
exist in mutual conflict. In this book my aim has been to weave the diverse
threads of epidemiologic concepts and research methods into a single fab-
ric. I have tried to reconcile conflicting ideas and unify the conceptual
foundation, omitting needless partitions. In particular, I have labored to
tie the statistical topics of epidemiologic analysis—which have a way of
generating their own special goals, momentum, and lingo—to the basic
goals of epidemiologic research. I have also ventured to reconcile epide-
miologic principles with the broader goals and methods of scientific in-
quiry, as I understand them. In sewing the final cloth, I have been mindful
that I cannot succeed fully, but rather must fail in my attempts to varying
degrees. Intent readers will surely find holes in the fabric and an incorrect
stitch here and there. Some of these irregularities undoubtedly reflect in-
adequate understanding or communication on my part. Some mark con-
ceptual areas, such as confounding and interaction between causes, where
development is progressing rapidly. I hope that such problems are few,
and small enough not to impair the overall usefulness of the work.

Throughout this book I have strived to make the material accessible to
a novice to the field. Whenever possible the descriptions are verbal rather
than mathematical, despite the quantitative objectives of research. The first
eight chapters deal with fundamental issues of epidemiologic conceptual-
ization, measurement, and study design, and should be comprehensible
even to those who lack previous training in epidemiology or statistics; the
second eight chapters address the somewhat more technical issues of ep-
idemiologic data analysis, but even these topics are presented with step
by step explanations and simplicity as a central objective.

Chapters 1 through 5 form an introductory unit on basic epidemiologic
concepts and tools. Chapter 1 places epidemiology in its historical per-
spective. Chapter 2 ventures into the philosophic foundation for epide-
miology, providing a model for causal action that serves as a platform for
understanding etiology and its quantitative description. Chapters 3
through 5 continue with the fundamental measures of epidemiology (in-
cidence, prevalence, and risk) and the measures derived from them to
quantify causal actions.

Chapters 6 through 8 form a second unit that deals with epidemiologic
studies. The basic types of studies are presented in Chapter 6, where 1
have pursued steadfastly the objective of a unified approach, stressing the
theoretical connections among study types. Chapters 7 and 8 explore the
issues of study design without resorting to mathematical notation. They
emphasize the sources of error in effect estimates as well as the quantita-
tive nature of most aspects of study design.

Chapters 9 through 16 deal with data analysis. In this section some re-
liance on mathematical formulations has been unavoidable, and I have
assumed a basic knowledge of the relevant statistical distributions. Never-
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theless, the fundamental statistical principles are introduced and explained
in Chapters 9 and 10 using as little notation as possible. Chapter 11 intro-
duces the basic analytic formulations for crude data, which are extended’
ir Chapters 12 and 13 for stratified and matched data. Chapters 11 through
13 cover the routine analytic tasks that-an epidemiologist faces; conse-
quieritly, these are the most technical chapters in the book. Various ap-
proaches are described in detail, so that these chapters can be used as a
reference for researchers, as well as an instructional guide to the funda-
mental analytic methods. " '

The final three chapters turn to more advanced analytic topics, but the
emphasis is niot so much on formulas as on analytic strategies. Thus, Chap-
ter 14 on multivariate analysis is probably the least technical description
of multivariate analysis in any textbook; it provides practical guidance on
choosing, constructing, and interpreting multivariate models. Chapters 15
and 16 deal with the advanced topics of interaction and “dose-response”
evaluation, but the emphasis once again is on the principles and pitfalls of
sach analyses, rather than onthe technical aspects of the requisite calcu-
Jations. I could not avoid formulas ertirely and still provide an adequate
discussion of these topics, but the formulas 'presented illustrate ap-
proachies of conceptial simplicity amenable to a pencil-and-paper solu-
ton. o : :

In my efforts to tie together epidemiologic concepts for all these topics,
f have encountered some fossilized divisions that I consider no longer
useful. For example, a rift has separated the traditional area of infectious
disease epidemiology from the more recent and growing area of “chronic”
disease. epidemiology. 1 have never been persuaded of any rationale for
this distinction. The terms “infectious” 2and “chronic” are neither mutually
exclusive nor collectively exhaustive alternatives. Many diseases are both
infectious and chronic; some, such as fatal traumatic injury, are neither.
“Chroriic” has sometimes been taken to mean a long induction period,
rathier than a long period of manifestation, but this redefinition still fails
to make a meaningful distinction between two conceptually different types
of épidemiology. Although some specialized methods have been ‘devel-
oped solely to study the spread of infectious illness, whatever distinctions
exist between traditional and modern areas of epidemiology are certainly
less important than the broad base of concepts that are shared. This book
does not deal with models for epidemic spread, but focuses on the general
epidemiologic . concepts that apply to all diseases, infectious or not,
chronic or not;-and to causes that have short or long induction periods.

Another distinction that has been used to categorize epidemiologic

work s its classification into ‘descriptive and analytic epidemiology. My
view is that this demarcation is also best forgotten. It has been used in
reference both to specific study variables (so-called “descriptive” variables
being distinguished from putative causes) and to entire studies, but in
neither context does it hold as a sensible classification scheme. No quali-
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tative distinction, other than a completely arbitrary one, distinguishes “de-
scriptive” variables from more fundamental risk facto;s. Any disease de-
terrn'inant can be specified in terms of more proximal determinants or
previously unsuspected confounding factors. The division of epidemio-
logic research into descriptive and analytic compartments has given rise
to the illusion that there are different sets of research principles that appl
tg descriptive and analytic studies. This notion devolves from a mechar?ipc)ayl’
view of scientific research, and diverges from prevailing doctrines of sci-
entific philosophy. For example, the view that “descriptive data” from “ex-
ploratory studies” generate hypotheses, whereas the data from “analytic
studies” are used to test hypotheses, does not cohere with a broader un-
derstanding of science. Hypotheses are not generated by data; they are
proposed by scientists. The process by which scientists use théir imagi-
nation to create hypotheses has no formal methodology and is certainly
not prescriptive. Any study, whether considered exploratory or not, can
ser:ze to refute a hypothesis. It is not useful to regard some studies m’erely
as hypothesis generating” and others as “hypothesis testing,” because the
;rilgc?c:i?trizl;le advance of scientific knowlege cannot be constrained by such
I believe that epidemiology is much more coherent than these tradi-
tional divisions would suggest. Even the stark contrast between follow-u
stuc}ies and case-control studies has been softened as understanding of thg
basic principles of epidemiology has progressed. In writing this book, m
gr.eat<_est hope is to convey to the reader the conviction that epidemiolé)giz
principles can be understood as an integrated substrate of logical ideas
rather than as a jumble of isolated and sometimes conflicting postulates. ,

KJR




10. FUNDAMENTALS OF EPIDEMIOLOGIC
DATA ANALYSIS

In a well-planned study, the raw observations that constitute the data con-
tain the information that satisfies the objectives of the study. In Chapter 7
it was emphasized that a study is a measurement exercise and that the
overall goal for a study is accuracy in measurement. Accordingly, the goal
in data analysis is to extract the pertinent measurement information from
the raw observations.

Typically, there are several distinct stages in the analysis of data. In the
preliminary stage, the investigator should review the recorded data for
accuracy, consistency, and completeness; this process is ofien referred to
as data editing. Next, the investigator should summarize or transform the
data into a concise form for subsequent analysis, usually into contingency
tables that tabulate the distribution of the observations according to key
factors; this stage of the analysis is referred to as data reduction. Finally,
the edited and reduced data are used to generate the epidemiologic mea-
sures of interest, typically one or more measures of effect (such as relative
risk estimates), with appropriate confidence intervals. This last stage of
analysis is sometimes considered the analysis proper, but it is more con-
venient to refer to it as effect estimation (or perhaps just estimation, if the
goal of the analysis is to estimate disease frequency rather than to measure
an effect). For some investigators, the last stage of analysis inevitably in-
cludes statistical hypothesis testing. The previous chapter explained why
hypothesis testing is an undesirable feature of data analysis in most epi-
demiologic situations. Since the statistical theory behind interval estima-
tion is closely related to statistical hypothesis testing, however, it is useful
to consider the issues described in statistical hypothesis testing as a foun-
dation for understanding epidemiologic data analysis.

DATA EDITING
There is no excuse for failing to scrutinize the raw data intensely for errors
and to correct such errors whenever possible. Errors are routinely intro-
duced into data in a variety of ways; some errors are detectable in editing
and some are not.

The data in an epidemiologic study usually derive from a self-adminis-
tered or an interviewer-administered questionnaire or from existing rec-
ords that are transcribed for research. The data from the questionnaire or
record-abstraction form may be transcribed from this primary form to a
code form for machine entry, usually by keypunching. Coding of re-
sponses is often necessary. For example, occupational data obtained from
interviews need to be classified into a manageable code, as does drug
information, medical history, and many other types of data. Data such as
age or year of birth (year of birth is usually preferable to age, since it tends
to be reported more accurately and does not change with time), although
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often g‘rou’pe‘d_'i-n'.tO broad categories for reporting purposes, should be
recorded in a precise. form rather than grouped because the actual values
will ‘altow greater flexibility later in the analysis: For example, different
groupings may be necessary for comparisons with several other studies.
Sotne nominal scale variables that have only a few possible values can be
precoded on the primary forms by checking a designated box correspond-
ing to the appropriate category. For .nominal scale variables with many
possible categories, however, such as country of birth or occupation, pre-
coded questions are not practical. If all data items can be precoded, it may
be feasible to collect the data in a primary form that can be read directly
bya machine, by optical scanning, or by some comparable method. Oth-
erwise, it will usually be necessary to translate the information on the
primary data form ‘béfore it is stored in a machine or in machine-readable
form: : o

It is possible and- usually desirable to avoid rewriting the data onto a
secondary data form during the éodin‘g process. Rather than generating
additional transctiption errors, it is preferable to code the data while si-
multaneonisly keying them int6 a computer storage system. A computer
program can- be devised to prompt data entry item by item, displaying
category codes on a terminal’ screen to assist in coding. If the data are
codéd and rewritten by hand, they will often require keypunching anyway,
unless they are coded onto optical scanning sheets; consequently, direct
data entry during ‘coding reduces both costs and errors. The fewer the
fumber of rewriting operations between the primary record and the ma-
chine-stored version, the fewer-the errors that are likely to occur. If re-
writing is unavoidable, it is useful to assess the extent of coding errors in
the rewtitten form by coding a proportion of the data forms twice, inde-
pendently. The 'infor;n'at'ion thus obtained can be used to judge the mag-
nitade of bias introduced by misclassification from coding errors.

Basic editing of the data involves checking each variable for illegal or
unusual values. For example, gender may be coded 1 for male and 2 for
female, Usually a separate value, perhaps 3, is used to designate an un-
known .value. It is preferable not to assign a code of zero if it can be
avoided becausemissing information or non-numeric codes may be inter-
preted by some-machines or programs as a zero. By not assigning zero as
a specific code, not even for unknown information, it may be possible to
detect *keypuriching ‘errors or missing information. The distribution of
each variable should be examined in the editing process. Any inadmissible
vilues should be checked against the primary data forms. Unusual values
such as unknown gender or unusual age or birth year should also be
checked. - . - o

In addition to ‘checking for incorrect or unusual values, the distribution
of each variable should be examined to see if it appears reasonable. Would
you expect about half of the subjeets to be males, about 80 percent (a
reasonable figure if the subjects have, say, upper respiratory cancer), or
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about 2 percent (if the subjects are nurses)? Such an evaluation may reveal
important problems that might not otherwise come to light. For example,
a programming error could shift all the data in each electronic record by
one or more characters, thereby producing gibberish that nevertheless
might not be detectable in, say, a multivariate analysis (an important draw-
back of the multivariate approach). The potential for such a disaster
heightens the need to check carefully the distribution of each variable
during the editing of the data.

The editing checks described so far relate to each variable in the data
taken singly. In addition to such basic editing, it is usually desirable to
check the consistency of codes for related variables. It is not impossible,
but it is improbable that a person 18 years of age will have three children.
Males should not have been hospitalized for hysterectomy. People over 2
meters tall are unlikely to weigh less than 50 kilograms. Thorough editing
will involve many such consistency checks and is best accomplished by
computer programs designed to flag such errors [MacLaughlin, 1980}. Oc-
casionally an apparently inconsistent result may appear on checking to be
correct, but many errors will turn up through such editing, It is important,
also, .to check the consistency of various distributions. If exactly 84 women
in a study are coded as premenopausal for a variable, “type of meno-
pause,” then it is reassuring that exactly 84 are likewise coded as premeno-
pausal for the variable “age at menopause” (for such a variable, the code
“premenopausal” should take a different code number from that assigned
to unknown—e.g., 98 for premenopausal and 99 for unknown).

An important advantage of coding and entering data through a computer
program is the ability to edit the data automatically during the entry pro-
cess. Inadmissible or unusual values can be screened as they are entered.
Inadmissible values can be rejected and corrected on the spot by program-
ming the machine to print an error message on the screen and give an
audible message as well to alert the operator about the error. Unlikely but
legal values can be brought to the operator’s attention in the same way. A
sophisticated data-entry program can also check for consistency between
variables and can eliminate some potential inconsistencies by automati-
cally supplying appropriate codes. For example, if a subject is premeno-
pausal, the program can automatically supply the correct code for “age at
menopause” and skip the question. (On the other hand, some investiga-
tors may prefer the redundancy of the second question to guard against
an error in the first.)

Even with sophisticated editing during data entry, it is still important to
edit the stored data before analysis, to check on the completeness of the
data and the reasonableness of the distribution of each variable. Neither
of these features can be evaluated by a data-entry program.

Every experienced investigator knows that even the most meticulous
data collection efforts suffer from errors that are detectable during careful
editing. If editing is planned as a routine part of handling the data, the



existence of such errors is usually not a serious problem. If editing is
ignored, momentous problems can result.

DATA REDUCTION

The notion fundamental to data reduction is that certain observations in a
set of data are equivalent, and it is easier to deal with equivalent observa-
tions after they have:be'e'n summarized. The summary form usually is a
cofitirigency table in which the frequency of subjects (or units of obser-
vation) with every specific combination of variable values is tabulated for
variables of interest. Such a table is presumed to contain, in summary
form, essentially-all the relevant information in the data. From the contin-
gency table, the investigator can proceed with effect estimation, In addi-
tion, the table displays the distribution of subjects according to key vari-
ables and thus conveys directly to the investigator an intimacy with the
data tHat is not easily obtained in any other way.

Data reduction.into a contingency table is predicated on an analysis in
whiich there is no concern for confounding or effect modification or there
are at tost only a‘small number of variables that might be confounders
or effect modifiers. If the analysis must take account of a large number of
variables, a multivariate analysis using mathematic modeling will be nec-
essary. For such multivariate analyses, it is not necessary to reduce the data
info a contingency table. Nevertheless, to ensure that the investigator ac-
quires some familiarity with the data, it is advisable, even when planning
a multivariate analysis, to reduce the data into contingency table format
for the variables of central interest. Indeed, proceeding with an abridged
analysis based on the contingency table data is a good idea even if the
weed for the multivariate analysis is certain. :

Go-ﬂ'absing the edited data into,_categories for the contingency table may
fiecessitate sone.decision making. The process is straightforward for nom-
inal scale variablés such as religion or race, which are already categorized.
For cantinuous variables, however, the investigator must decide how many
categories to make and where the category boundaries should be. The
number of categories will usually depend on the amount of data available.
If the data are abundant, it is always preferable to divide a variable into
mafly'c‘at'egories'." On the other hand,.the purpose of data reduction is to
summarize the data concisely and conveniently; creating too many cate-
gories would defeat this purposé. For control of confounding, it is rarely
necessary to have more than about five categories [Cochran, 1968}. If an
exposure variable is categorized to examine effect estimates for various
levels of exposure; again it would be unusual to require more than about
five citegories.. Frequently, however, the data are so sparse that it is un-
desirable to create as many as five categories for a given variable. When
the observations dre stretched over too many categories, the numbers
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within categories become statistically unstable and produce large random
errors in the effect estimates.

Since most of the confounding from a given factor can be removed by
a stratified analysis based on only two categories of a continuous variable
[Cochran, 1968], it is desirable with sparse data to keep the number of
categories small, perhaps two or three. Even a large body of data can be
spread too thin if the contingency table involves oo many dimensions,
that is, if too many variables are used to classify the subjects. With three
variables, apart from exposure and disease, and three categories for each
variable, there will be 27 2 X 2 tables (assuming that both exposure and
disease are dichotomous). With an-additional two variables of three cate-
gories each, there will be a total of 2432 X 2 wbles, enough to stretch
even a considerable body of data too thin, since a study of 10,000 people
would average only about 10 subjects per cell of the multidimensional
table. If a stratified analysis is planned and it is necessary to stratify by
several variables, it is probable that only a few, perhaps as few as two,
categories can be used for each variable. With only two categories per
variable, stratification by five variables requires 32 rather than 243 2 X 2
tables, and a study of 10,000 subjects would average 78 subjects per cell
rather than 10, thereby gaining precision at the cost of some potential
residual confounding within categories.

The investigator must also decide where to draw the boundary between
categories. There is no accepted method for doing this. A frequently ex-
pressed concern is that boundaries might be “gerrymandered,” that is,
shifted after a preliminary examination of the effect estimates in such a
way that the estimates are altered in a desired direction. This concern
imputes a level of dishonesty to the investigator that is presumably uncom-
mon. Furthermore, the shift of a boundary in categorization rarely has a
substantial effect on the magnitude of an estimate and then only because
of a large random error component. On the other hand, it is frequently
useful to inspect the distribution of a variable before deciding at which
points to carve categories. There may be “natural” categories if the distri-
bution has more than one mode. The distribution may be sufficiently
skewed that preconceived category boundaries would lead to an ineffi-
cient separation of subjects, with too few in some categories and too many
in others. For these reasons, it is often preferable to define the final cate-
gories after reviewing the data, notwithstanding the common advice that
it is somehow more “objective” to do so in ignorance of the distribution
of observations in hand. Nevertheless, if meaningful category boundaries
are inherent in the variable, these can and should be specified a priori.
For example, in categorizing subjects according to analgesic consumption,
it is desirable to create categories that contrast the various therapeutic
indications for analgesic use, the recommended doses for which can be
specified in advance. It is often desirable, especially for an exposure vari-
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able, to retain extreme. categories in the analysis without merging these
with neighborting categories, since the extreme categories are often those
that permit the most biologically informative contrasts.

A common problem in creating categories is the question of how to deal
with the-ends of the scale. Open-ended categories can provide an oppor-
tunity for c'onsider_a_lbl_e residual confounding, especially if there are no
theoretical bounds. for the variable. For example, age categories such as
65+ with no upper limit, allow a considerable range of variability within
which the desired homogeneity- of exposure or outcome may not be
achieved. Another example is the separation of the effects of alcohol con-
sumption and tobacco smoking on the risk of oral cancer; within cate-
gories' of heavy smoking, it is a reasonable possibility that the heaviest
smokers drink more alcohol than those who smoke less within that cate-
gory {Rothman dnd Keller, 1972]. When residual confounding from open-
ended categories is considered likely, strict boundaries should be placed
on every category, including those at the extremes of the scale.

A convenient method of assembling the final categories is to categorize
the data initially' much more finely than is necessary. A fine categorization
will facilitate review of the distribution for each variable; more usable cat-
egories can then be created by coalescing adjacent categories. The coalesc-

ing of adjacent strata for a tank-ordered confounding variable can be jus-
tified by, the, lack of confounding that is introduced by merging the
caregories; this merging will not introduce confounding if the exposure
distribution is the-same among the controls or person-time denominators
between thie strara, or if the proportion of cases or the disease rate is the
same among nonexposed subjects between the strata [Miettinen, 1976b).
The advantage of starting with more categories than is ultimately necessary
is that the merging of categories can be conveniently accomplished with
pencil and paper in seconds or minutes, whereas separating categories
ifito subcategories cannot be done without reading through the entire data
file, thus adding’ another computer run.

EFFECT ESTIMATION (AND HYPOTHESIS TESTING) -
Hypobesis Testirg : '

In data analysis, as opposed to the broader area of scientific inference,
hypothesis testing generally refers to the evaluation of a null hypothesis.
The introduction of the concepts of statistical evaluation early in the twen-
tieth century led to an appreciation-of the importance of assessing the role
of fandom error in observations. Hypothesis testing is directed at the ques-
tion of whether random error might account entirely for an observed as-
socidtion. The statistic used to évaluate this question is the P-value.

The P-value is ysually interpreted as the probability that an association
at Yeast- as strong as that acally seen in the data might have arisen if the
null hypothesis were true, that is, by chance alone. Because a low P-value
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Two-tailed P-value
=sum of A and B

Probability density

0 Observed value
ANUSe Effect measure

Fz'g, 10-1. Distribution of effect estimates undi s &
Steeclies (¢ continuous distribution). o the Tl ypothests in large

indicates a low probability, under the null hypothesis, of results as extreme
or more extreme than those observed, low P-values are taken as an indj
cation that the data are more compatible with the alternative hypoth.-esils:
ofa nonzero effect than with the null hypothesis. A P-value should not be
confused with the probability that the null hypothesis is correct; it is cal
culated on the assumption that the null hypothesis is correct E’xtremel-
low P-values can’occur even when the null hypothesis is true: 'in fact theY
are guaranteed to occur a small proportion of the time. The ’inform,ative}—’
ness of the P-value derives solely from the interpretation that small P
;zlaluefh in'dicate relatively less consistency between the data and the nuli
Ogonoiszlzrasg ﬁreeclstlvely more consistency with the alternative hypothesis
Imagine that an estimate had a continuous sampling distribution on its
scale -of measurement, with a value of zero corresponding to the null hy-
pothc_eSJS of no effect. Figure 10-1 illustrates the hypothetical probabih’y
density of the estimated effect; the bell shape of the curve is ensured fot}rl
large studies by the central limit theorem in statistics. Values of the esti-
rpate equal to or more extreme than that observed correspond in the like-
lihood of their outcome to the shaded area in the diagram. The definition
of r’)‘zore axjtrerfze can be unidirectional, in which case the P-value is said to
be “one-tailed” or “one-sided” and is represented only by the shaded area
Btr;?er (l)ln(ej ”end of the curve, or it can be bidirectional, in which case the
o u? Zi de; Ofl:h \;alcu:: r;:eo.rresponds to the sum of the shaded areas under
To calculate the P-value, it is necessary to postulate a statistical model
that describes the probability distribution of the data on the assumption
of the null hypothesis. If the distribution of effect estimates that arg cal-
c.ulable from the data were actually continuous, it would be inconsequen-
tial whether the tail area of the curve is defined as the area corresponding
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Two-tailed P-value

=A+C+B+D
or

=A+B+%(C+D)

Probability

T 1
, 0 Observed value
Effect measure

.;ig. 10-2. Dﬁﬁbﬂtfoﬁ of effect estimates unider the null bypothesis (discrete
distyibution). ' S -

to effect estimates equal to or more extreme than those actually obseélved,
or éimply the area corresponding to estimates more extreme thar‘lch ctﬁe
obiserved. Typically, however, in epidemiology, the Flata from wh% . e
effect estifhatés are calculated are discrete frequepaes, and the distribu-
tion of effect estimates is discrete rather than continuous. The area repre-
senting a P-value for a discrete distribution is illustrated in Flgurei 1312
Traditionally, the P-value has been defined as the sum of both the %ghtl y
shaded areas and the heavily shaded areas in Figure 10-2. TT}e lig (yjr
shiaded areas correspond to the probability of thg actual observations (2111{11
the corresponding value in the opposite direction), whereas the darkly
shaded areas correspond to the probability of more extreme depgrtures
from the nullvalue than thosé actually observed. Obv10uslyj for d}scrge
distributions it does matter whether the P-value is defined as mcit;ldmg e
probability of the observed outcome or just the more extreme \%ei. “
The problem with the traditional definition of. the P-value is that it Tfa
to iriconsistencies. For example, what if the obs.erved value of the e ?eIct
estimate wete in the-center of the distribution, right on the null value? hr1
thee"traditional definition, each tail would then ipclude more than half the
distribution, :arid_;he two-tailed P-value would bé greater than 100 perc?;,
which is incensistent with the view that the P-value represents 4 prolba il-
ity. An alternative definition of the P-value that overcomes this prqb em is
onie in which the probability of the observed value of the effect is parti-
tii'on'ed,' generally by.splitting it into equal parts [Lancaster, 1949; [I;agf?a%}
1961). Thus, the one-tailed P-value would correspond to the pro abl ity !
the more extreme values plus one-half the probability of the o“se'rve d
valie. This defiriition of the P-value has been referred to as the mid-P
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[Lancaster, 1961). The two-tailed P-value is generally obtained by doubling
the one-tailed P-value, however the P-value is defined.

With discrete data, the probability distributions used to calculate the P-
value can give rise to intricate calculations; P-values calculated directly in
this way are referred to as exact P-values. Usually it is simpler to use an
approximation to the discrete distribution, relying on the fact that a normal
curve will approximate the shape of the distribution reasonably well; the
larger the frequencies involved in the discrete data, the greater the num-
ber of values that can be assumed by the effect estimate and the better the
normal approximation to the discrete distribution. The advantage of using
the normal distribution is that the calculations necessary to obtain the P-
values are considerably simpler than those needed to get the exact P-value.

In an attempt to make the normal approximation better when frequen-
cies are small, Yates [1934) suggested a “correction” procedure that
amounts to shifting the observed value of the effect estimate toward the
null value by a distance that corresponds to half of the probability of the
actual data under the null hypothesis. This adjustment is intended to com-
pensate for the fact that the observed value of the effect actually represents
the central value of a range that corresponds to the region on the scale of
the effect measure representing each discrete value. Since the probability
of the entire range for the observed value is included in the definition of
the traditional P-value, the Yates “correction” usually improves the ap-
proximation to the traditionally defined exact P-value. If, however, the
mid-P definition were used, then the Yates “correction” would actually
make the approximation worse, since the observed value already repre-
sents the central value of its discrete range. In this text, the Yates “correc-
tion” is ignored.

The general form for statistical testing based on a normal distribution
around the null value is given by equation 10-1:

A —-E
X = _\/\7 [10-1]

A is the observed value of the effect estimate, E is the expected value
for A under the null hypothesis, and V is the variance of A under the null
hypothesis. Provided that under the null hypothesis A is normally distrib-
uted, then under the null hypothesis x will also be normally distributed
but with a mean of zero and a standard deviation of unity. A normally
distributed random variate with a mean of zero and a standard deviation
of unity is referred to as a standard normal deviate; synonyms are critical
ratio and Z-value. In this text, x is used as the notation in the formula to
emphasize that the square of the standard normal deviate has a chi-square
distribution with “one degree of freedom”—indeed, that is how the one
degree of freedom chi-square statistic is defined. (Chi-square with n de-
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grees of freedom is simply the sum of n independent chi-squares with one
degree of freedom.) The P-value is obtained from the x value from tables
(or ‘computational formulas) of the standard normal distribution. In €s-
sence, equation 10-1 converts 2 normally distributed statistic with a cal-
culated expectation and variance into a standard normal deviate (expec-
tation of zero and standard deviation of unity) for which detailed tables
are conveniently available to obtain P-values. It would be possible to
square the x and obtain the P-value from tables of chi-square, but since
threse usually have considerably less detail than tables of the standard nor-
mal distribution, there is no reason to do so. B

To this point this discussion has presumed that the observation of inter-
est s the estimate of effect derived from the data. Although this is generally
s0, in calculating the x it is usnally more convenient to postulate for the
tandom variable A a measure that contains all the essential statistical in-
fotnation about the effect but for which the variance is more easily and
accurately calculated. It is convenient to designate A as the number of
exposed subjects with disease in-the study; with this substitution, the ex-
pected number-for A under the null hypothesis will not be zero but must
be calculated from the data based on the relevant probability model. The
models relevant to epidemiologic studies will be described in Chapters 11
and 12. o ' '

The single best numerical estimate, of an effect from a set of data is referred
to as a point estimate. Because a point estimate is only one point on a
continuous scale with an infinite number of possible values, there is es-
sentially zero probability that it is correct, even if there is no source of
bias. Therefore, although point estirates serve as useful indicators of the
magnitude of an efféct, it is important to supplement the information that
they provide. with a measure of the random error in the data. Hypothesis
testing can accomplish this goal, but the P-value is an undesirable statistic
for evaluating random error because it provides no information about
magnitude of effect and only indirectly allows assessment of the extent of
random error in an estimate. As was emphasized in Chapter 9, the greatest
drawback of P-values is that they tend o be used for “significance” testing
as-an analytic goal, diverting the focus away from the proper goal of esti-
mation of effects."A better approach is the use of confidence intervals,
which have none of the drawbacks of P-values.”

A confidence interval denotes a range of values surrounding the point
estifnate that amoutits to a “sampling range” for the estimate. The level of
confidence, which is arbitrarily selected by the investigator, is the frame
of reference by which the sampling range can be interpreted. Most inves-
tigators repeatedly use the same level of confidence to ease comparison;
90 and 95 percent are commonly used values.

“The connection between confidence intervals and P-values, described
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Fig. 10-3, Sampling range of the data in reference to th
lower 90 percent confidence limit. 7 e sl value and the

in Chapter 9, should be expressed in more formal terms. Like a confidence
interval, the P-value also measures a sampling range, but it specifically
measures the sampling range of the data under the null hypothesis. The
null point on the effect scale is the reference point for hypothesis testing
and the P-value is a measure of the discrepancy of the data with the ref:
erence point in probability terms. A confidence interval, in contrast, fixes
the probability o an arbitrarily chosen value, which is dependent c;n the
desired level of confidence, and varies the reference point, which be-
comes the limit to the confidence interval. Thus, in determining the lower
boundary of a 90 percent confidence interval, the reference point is ad-
justed until the upper tail area is exactly 5 percent (Fig. 10-3). For 90 per-
cent confidence limits, the direction of the adjustment of the reference
point will be from the null value toward the point estimate if the one-tail
P-value is less than 5 percent, leading to a lower confidence bound abave
the null value (for positive effects). If the one-tail P-value is greater than 5
percent, the reference point must be adjusted away from the null value in
the direction opposite the point estimate to bring the tail area down to 5
percent, resulting in a confidence interval that will bracket the null value.
If the one-tail Pvalue is exactly 5 percent, then one boundary of the 90
percent confidence interval will be equal to the null value,

The most accurate way to determine a confidence limit is to use exact
calculations analogous to the exact calculations used to calculate P-values.
The calculations for confidence limits are considerably more difficult
however, for two reasons. First, the adjustment of the reference point in)
calculating the tail area amounts to the testing of a non-null hypothesis.
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The statistical r'n'o-déls. that describe the non-null situation are highly com-

plicated iii compatison with the null-hypothesis models and demand

tiach more involved calculations. Secorid, these intricate calculations have
to be repedted in an iterative proeess for trial values of the reference point
uritil the tail area conhforms with the desired level of confidence. There-
fore, calculation of exact confidence limits is practically infeasible without
programmable electronic computing equipment.

Fortunately, many simple techniques exist, analogous with formula 10-
1, to obtain approximate confidence limits. As with hypothesis testing, the
accuracy of all the approximate techhiques depends on the number of
obsetvations because all the methods depend on the normal distribution
of effect estimates guaranteed by the central limit theorem for observa-
tions that are sufficiently numerous. .

A sifnplifying assumption that is often made is that the sampling variabil-
ity of an effect estimate is constant along its scale of measurement, that is,
the variance of the effect estimate is a constant, independent of the value
of the estimate. This assumption is not necessary for hypothesis testing,
since the P-value is calculated on the assumption that the null hypothesis
holds, and therefore the concern in-hypothesis testing is to estimate the
varfance only at the null value. With a large set of observations, the sam-
plinig range for the effect estimate is narrow enough to make this assump-
tiofn appropriate; even if the variance changes substantially along the scale
of measurement of the effect measure, in a narrow enough range it will
be niearly constant. Therefore, the simplifying assumption that the variance
is constant is asymptotically correct; that is, the assumption becomes more
appropriate as the number of observations used in the estimation process
increases. R

The usual and simplest approach to calculating approximate confidence
limnits-is to éstimate the standard deviation of the normal curve that rep-
resents the approximate sampling distribution of the effect estimate. The
area under a symmetric segment of a_ normal curve is a specific function
of thee standard deviation; in fact, this relation provides the only interpret-
abitity for the standard deviation as a measure of variability: If the distri-
bution is fiot normal, there is no meaningful interpretation of standard
deviation, though confidence intervats might nevertheless be obtained by
exact calcolation. Forany normal curve, 68 percent of the area under the
curve lies in the region within one sté_md‘a'rd deviation (SD) of the central
point. Thus, measurement values reported with + SD as a measure of
variability amount to.a point estimate with an accompanying 68 percent
confidence ifiterval, provided that the sampling distribution is indeed nor-
iidl - When a lével of confidence is chosen, usually the value is not 68
percent but commonly 80, 90, or 95 percent. These levels of confidence
correspond to regions that are bounded by points 1.282, 1.645, and 1.960
stanidard deviation.uhits, respectively, from the central value in either di-
rection (Fig. 10-4), - B
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Fig. 10-4. Area under a normal curve.

To obtain a confidence interval based on the assumption of a normal
sampling distribution it is necessary to estimate both the expected (mean)
value of the effect and the standard deviation. The expected value is esti-
mated by thé point estimate, and the standard deviation is usually also
estimated simply from the observed data. To construct confidence inter-
vals, with rate difference as the effect measure, the resulting formula

_would be

KD = z-SD(ED) [10-2]

in which KD indicates the point estimate of rate difference (the caret sig-
nifies an estimate), Z is the multiplier for the standard deviation corre-
sponding to the desired level of confidence, and SD(RD) indicates the
estimated standard deviation of the point estimate; the minus sign gives
the lower limit for the interval, and the plus sign gives the upper limit.
The point estimate and the standard deviation are derived from the data,
and a value for Z is arbitrarily selected to give the desired confidence level,
for example, 1.645 for 90 percent confidence, and so on. Frequently, in a
formulation such as that given in equation 10-2, the standard deviation is
referred to as the standard error (abbreviated SE). In some circumstances
there is an important distinction to be made between standard deviation
and standard error: The standard error is the standard deviation of the
sampling distribution of mean values; if the original observations come
from a normal distribution, it is important to distinguish the standard de-
viation of the latter from the standard deviation of mean values, thus giving
rise to the need for a separate term, standard error. In the context of this
book, however, we shall generally be interested in the sampling distribu-
tion of point estimates, which corresponds to the standard error, although
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it is also petfectly acceptable to use the term standard deviation, since a
standard error is a specific type of standard deviation.

If the effect measure of interest were rate ratio rather than rate differ-
ence, it-might be reasonable to use formula 10-2 and simply substitute
KR for KD. It is preferable, however, to use a different equation because
the sampling distribution for KR is asymmetric, and consequently the sam-
pling distribution of rate ratio estimates is not normally distributed unless
a relatively large number of observations is available. Why is the sampling
distribution for KR asymmetric? The minimum value for RR is zero,
whereas the maximum value is infiiity. Random errors can lead to larger
discrepancies on the. high side of the mean than corresponding discrep-
anciés on the low side of the mean. Notice that for KD the sampling dis-
tribution is symmetric. Although the sampling- distribution for KR ap-
proaches a normal curve for a sufficiently large number of observations,
it i customary to use a scale transformation to introduce symmetry and to
set confidence limits on a scalé of measurement that gives a better ap-

progimation to the normal distribution when the observations are rela-

tively sparse. This is conveni‘en_ily' accomplished by using a logarithmic
transformiation. For setting confidence limits after logarithmic transfor-
mition of rate ratio, the formula is *

1n(RR) * Z-$D(1n(RR)) [10-3]

This is analogous to formula 10-2, differing only in that 1n(KR) has been
substituted for. R'b Having set confidence limits on the logarithmically
wransformed scale, it is mecessary.to reverse the transformation so that the
limits can be interpreted on the original scale. To do so requires taking
the antilogatithm of -the limits resulting from formula 10-3. The whole
process can be summarized by the formula

expl1n(RR) = Z-$D(1n(RR))] {10-4]

Whigreas formula 10-2 gives confidence limits that are equidistant from
thie point estimate, formula 10-4, because of the scale transformation, gives
contfidence limits that are asymmetric about the point estimate. The limits
are symimeetric on the logarithimic scale, but on the original scale the point
estimate is the geometric mean between the lower and upper limits; that
is, the ratio of the. upper bound to the point estimate equals the ratio of
the point estifnate to the lower bound. :

~Formulas 10-2 and 10-4 are the simplest general formulas for deriving
appr‘oxfiimt'e,cbhﬁd’enc‘e litnits for-the rate difference and rate ratio mea-
sure of effect, respectively. Many specific techniques have been proposed,
eéch striking a different balance between computational ease and accuracy.
Some formulas discard the assumption that the standard deviation is uni-
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form along its scale of measurement and use iterative techniques to esti-
mate the value of the standard deviation at the boundary of the interval;
the metl']oq of Cornfield [1956] for calculating confidence limits for th'é
odds ratio is an example of this approach; Miettinen and Nurminen [1985]
have extended Cornfield’s approach to the risk ratio and risk difference
measures. Iterative calculations usually require programmed computing
iz;scriz;lggte; gs((e)s'that the theoretical advantages are accompanied by practical
) The simp}est specific technique for performing interval estimation is the
test-based” method [Miettinen, 1976a], which assumes that the estimate
of th.e standard deviation of the sampling distribution of the effect estimate
obtained at the null value is a reasonable estimate of the standard deviation
of ‘the distribution elsewhere along the scale. This assumption differs
slightly from the usual assumption that the estimated value of the standard
Fieviation at the point estimate will be appropriate at the bounds of the
mt‘e.rval-, although both approaches assume that the value of the standard
deviation estimated at one point along the scale will apply for both lower
and upper bounds, the value estimated at the point estimate is more or
less centrally placed between the limits of the interval, whereas the null
v.alu_e is not and might even be outside the interval. If the standard devia—
tion ch_anges along the effect-measure scale, the degree of error in the
approximate limits is probably less severe if the standard deviation is es-
tm?ated at a point central to the confidence interval rather than at the null
point, which has no connection‘to the location of the limits. On the othér
I?and., by choosing the null point as the point at which the standard devia-
tion is estimated, the resulting confidence limits will tend to be more ac-
curaFe when they fall in the vicinity of the null point, and it may be argued
that it fis‘ worth obtaining greater accuracy in the vicinity of the null va.lue
Ev:; ;h : ;:zﬁa‘rz]gfl 5;cr1ﬁcmg some accuracy for limits calculated to be far
{&pplying the assumption of test-based limits leads to a concise formu-
lation for obtaining confidence limits, based on the test statistics from

equation 10-1. Consider the reformulation of equation 10-1 for rate differ-
ence:

(=D -E
SD(RD)

“ggf};% ;3, theleXf)ectation of RD under the null hypothesis, is zero, and
is calculated on the assumption that th is is
Tho ges p at the null hypothesis is true.

KD

X = BED) [10-5]



where SD(KD) indicates that the SD is estimated at the null value. Equa-
tion 10-5 can be rewritten as

o n. D
SDO(RD).=—

>

and éubsti‘tut-ed' into formula 10-2, giving, for the lower and upper limits

RD + Z

'>< |@>

or .
k”b(l _;é Zx) [10-6)

Th"é,.x in for‘mul-a _10-6 was assumed to be a test statistic evaluating RD per
se. Miettinien recommended inserting into formula 10-6 any x statistic that
r’eﬁreSem's an equally efficient test of the null hypotpes1§ based on the
same dara. For example, the usual x based on the distribution of the num-
ber of exposed cases could be substituted (see Chap. 11 for the specific
ap%i‘ga:gl?rierbaﬁ of equation 10-5 using the rate ratio measure of effect,
after logarithmic transformation, is

_ @) 107
X = yn@)

which can be réwritten as

o In(RR)
$D((RR) = = = .
and substituted intd formula 10-4 to give

- N HRR
“exp [ln(RR) *Z ll(i—)]

| ﬁR‘l;”X) ' (10-8]
As v?ith formula 10-6, the attraction of formula 10-8 rests with the substi-

tation for the x statistic based on KR an alternative and more conveniept
X te'ét’iri'g the null hypothesis. Indeed, the same x statistic can be used in
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formulas 10-6 and 10-8 to generate confidence limits for rate difference
and rate ratio. Note that when the x value equals the Z multiplier, the
lower bound should and does correspond exactly to the null value, which
is zero for rate difference and unity for rate ratio.

The test-based formulas for approximate confidence limits given in for-
mulas 10-6 and 10-8 are exceedingly easy to apply and produce usable
confidence intervals in a wide variety of situations. The only numbers re-
quired fromthe data are an appropriate point estimate of the effect esti-
mate and the x statistic from hypothesis testing. Indeed, the use of the x
statistic in these test-based formulas is the main justification for any de-
tailed discussion of statistical hypothesis testing in modern epidemiology,
since the estimation of a confidence interval is preferable to the use of P-
values to evaluate random error, and the P-value adds very little informa-
tion if a confidence interval is given.

Unfortunately, the principle of test-based limits is invalid as a general
method of interval estimation [Halperin, 1977; Gart, 1979]. Simulations
have borne out the predictably poor performance of the method for large
departures of the odds ratio from the null value [Brown, 1981; Gart, 1982),
and Greenland [1984] has provided a counterexample with the SMR that
refutes the general validity of the approach. Greenland [1984] states

[T]he problem with test-based limits is not (as has been suggested) lack of variance
stabilization in specific applications, but rather that the principle requires us to
equate two different large-sample test statistics. Since these statistics are equivalent
only in the neighborhood of the null hypothesis, the principle itself is fallacious.
... Unfortunately, the size of the neighborhood for which the principle holds will
vary from parameter to parameter.

Despite the theoretical drawbacks, test-based limits can be useful as a
“quick-and-dirty” method of interval estimation. The method is known to
perform well for odds ratio limits when the odds ratio is between 0.2 and
5.0, and it can also be an acceptable tool in other situations. A comparison
of the various methods of confidence interval estimation is illustrated for
some simple data in the next chapter.

Adjustment for Multiple Comparisons

Many statisticians have voiced concern about the interpretation of P-values
or “significance” tests when multiple comparisons are made. The basis for
concern rests on the following argument: Suppose a complex set of com-
pletely random numbers were evaluated for 1,000 associations. The prem-
ise is that there are no real associations in the data but that 1,000 different
measures of association are examined. If “significance” testing is per-
formed, at the 5 percent level of “significance” there would be about 50
“significant” associations in the data, all representing type I or alpha-er-
rors, that is, “statistically significant” associations that occur only by chance.
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The poiit is that chance guarantees a certain proportion of such associa-
tionis, and when many associations are studied, many false positive asso-
cigtiotis are possible. o

The traditional statistical approach to this “problem” has been to make

the “significance” test'more stringent, either by changing the criterion to
a more stringent value, such as 1 percent instead of 5 percent, or by ac-
wally inflating the calculated P-values by some factor that depends on the
number of comparisons made. Since epidemiologists, in their usually
thorough evaluation of expensively obtained data, typically make multiple
comparisons, they have frequently been admonished to be wary of the
problem. :

It is not clear, however, that thé recommended solution is an improve-

ment. In the fifst. place, the above argument, like all hypothesis testing,
starts from the premise that the éxplanation for all the so-called “signifi-
cant” results is chance, a sort of grand null hypothesis. But why should we
assurne that chance is a likely explanation for the associations that are
obsetved? Inideed, one might argue that it seldom is (some would say
never is) the explanation for findings. If chance is not the explanation for
a “significantly” positive association; then the finding does not represent a
type I or al:ph'a-'erroi'.,By making the screening criterion for statistical “sig-
nificance” more stringent, a penalty is paid: Real non-null associations may
go undetected (a type 1I error) because they fail to meet the more strin-
genit criterion. An elementary consideration of screening principles, which
apply here, mdkes it clear that from a single criterion (the “significance”
levet) the number of false positives can be reduced only at the expense of
an increased frequency of false negatives. Is it worthwhile to reduce false
positives at the expense of false- negatives? The question cannot be an-
swered generally; it requites a deepet understanding of the consequences
of false positive and false negative results in the context of the research
setting. One thing, however, is extremely clear: Whatever the arguments
might be for reducing the chance of a false positive in favor of a false
niegative, they have nothing to do with multiple comparisons; they would
apply equally well to a single comparison.

. The crux of the multiple comparison problem seems to be that in per-
forming many comparisons and reporting only those that are “statistically
significant,” it is. difficult to impute.the intended interpretation to the /-
value, in the null hypothesis, a well-defined proportion of tests would be
“significant,”. but if the denominator, the number of comparisons, is large
and unknown,.a reasonable interpretation of the P-values reported is hin-
dered. ; E :

If many comparisons were made and each one were reported individ-
ually, let us say in ‘a separate publication, it would be absurd to make
adjistments to the reported P-values in each report based on the total
number of such reports. If such-adjustments were indicated, it would also

follow that an investigator should keep a cumulative total of comparisons
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made during a career, and adjust all “significance” tests according to the
current total of comparisons made to date. The more senior the investi-
gator, the more the P-value would have to be inflated. For that matter.
wouldn't such adjustments have to take into account the anticipated numj
ber of future comparisons as well as those already made? It should be
obvious that these concerns are irrelevant to the research problem; they
- convert the P-value from a statistic conveying information about a sp7ecific
association in the data to one that depends on.the unrelated experiences
or.psychologic state of the investigator. No one has yet suggested making
adjustments for multiple comparisons if the results are reported individ-
ually in separate publications. But is it not inconsistent then to consider
making such adjustments if the same results are aggregated into one or
several publications? Would a review paper of individually reported asso-
ciations have to adjust the P-values? If no adjustments should be made to
P-values when they are reported individually in separate publications, it
follows that the process of lumping the results together in one plz;ce
shOulq not affect the results themselves, regardless of when and how the
lumping is done. Therefore, no adjustments for multiple comparisons
should be made even if a large number of comparisons are reported at
one time, provided that it is clear how many comparisons have been made
and that all “negative” (that is, “nonsignificant”) results have been re-
ported along with the “positive” or “significant” results.

A problem does exist when the negative results are not reported; it is
Fhen more difficult to interpret properly the P-values for the positive ’find—
ings that are reported. It is still a mistake, however, 1o believe that inter-
gretation can be improved by adjusting the P-value or changing the crite-
rion for “significance.” The adjusted values are also impossible to
interpret, since they divulge even less about the actual association; chang-
ing the criterion for “significance” does not actually solve the problem; as
discussed earlier, it merely produces a smaller type I error at the exper’lse
of a greater type Il error.

As usual, some clarity is gained by considering the use of confidence
intervals rather than “significance” tests. The equivalent of multiplying the
P-value by some adjustment factor to compensate for multiple compari-
sons would be broadening the confidence interval. But the broader inter-
val has no relation to the amount of information in the data about the effect
?n question; it depends instead on the number of comparisons that the
investigator might have made. The problem with this approach is that it
seems 1o defy the logical presumption that the reported results about an
effect should reflect the amount of information about the effect in the data
nothing more and nothing less. If broader confidence intervals were re:
ported to compensate for multiple comparisons, a reader with an interest
focused solely on the one item would pay an unnecessary penalty in terms
of the information imparted by the reported findings simply because the
original investigator did not also focus solely on that problem.
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Since no problem calling for any adjustments seems to exist unless the
positive results from a large number .of comparisons are reported without
any-information ‘about the total nymbér of comparisons, and since even
thien it appears that adjustments in the results only make them more dif-

- ficult to interpre, the best course for-the epidemiologist to take when

tmaking multiple comparisons- is. to ignore advice to make such adjust-
mients in reported résults. Each finding should be reported as if it alone
were the sole focus of a study. If a large number of comparisons makes it
infeasible to report all findings, it is important to make it clear how many
associations were. evaluated. If it cannot be determined how many com-
parisons were made, then associations not previously reported should be
considered merely suggestive. It is worth emphasizing, however, that any
new findings should always be considered only suggestive, even if only
onie comparison is made. Findings that address a previously reported as-
sociation or lack of association should. not become a weaker confirmation
or refutation simply because they are accompanied by many other unre-
lated comparisons, since the previously reported findings on the question
amount to a prior hypothesis.
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