[1]

Inference re Epidemiologic Parameter: Prevalence or Risk (proportion)

Theoretical: $P \text{ or } \pi \text{ or } p$ Empirical: $\hat{P} \text{ or } \hat{\pi} \text{ or } \hat{p} = n_+/n = y/n; \quad \hat{q} = 1 - \hat{p}$ Model: $y \sim Binomial(n, p)$

P-value: $\frac{\text{Exact}}{\bullet P[y \ge y_{obs} \mid p_{null}] \text{ (1-tail) or}}$

$$(1/2)P[y = y_{obs}] + P[y > y_{obs}]$$
 ("mid-P" version)
Approx.

• Normal Approx. to distr'n of \hat{p} , or transform $t(\hat{p})$ of \hat{p}

- $\underbrace{\text{Exact}}{\bullet p_L} : P[y \ge y_{obs} | p_L] = \alpha/2; \ p_U : P[y \le y_{obs} | p_U] = \alpha/2$
 - <u>Approx.</u> • reverse transform of $\{t(\hat{p}) \pm z_{a/2} \times SE[t(\hat{p})]\}$

<u>transform</u>	$\underline{t(\hat{p})}$	$\underline{SE[t(\hat{p})] = Var^{1/2}}$	reverse	[14]
identity log logit arcsin	$\hat{p} \ \log[\hat{p}] \ \log[\hat{p}/\hat{q}] \ \arg[\hat{p}/\hat{q}] \ \arg[\sqrt{\hat{p}}]$	$ \begin{array}{l} \{ \hat{p} \hat{q} / n \}^{1/2} \\ \{ [\hat{q} / \hat{p}] / n \}^{1/2} \\ \{ [1/\hat{p} + 1/\hat{q}] / n \}^{1/2} \\ \{ 0.25/n \}^{1/2} \end{array} $	${n/a} e^{\{\}} ext{ or } \exp\{\} e^{\{\}}/(1+e^{\{\}})$	[15] [16] [17] [18]

Bayes: Posterior distribution $f_{post}(p) \mid y/n$ and $f_{prior}(p)$.

 $\underline{\text{Notes}}$:

CI:

[1] Different concepts (prop'n in, prop'n who change state), but same statistical structure.

[2] One au. avoids π and $\hat{P}/\hat{\pi}/\hat{p}$ by using upper & lower case for theoretical & empirical.

[4] Assuming *n* independent observations.

[6]cf. jhnotes, c
607/ch6, or Armitage&Berry, re 2-tailed P-value if non-symmetric distr'n.

[7] cf. jh notes, c607/ch6, or Armitage&Berry, re "mid-P" P-value.

[9] Not listed here: augmenting of numerator and denominator (e.g. "Wilson").

[11] Known as Klopper-Pearson CI: see jh site, c607/ch6 and ch8, and footnote to Table.

[13] Compute CI in new scale, then back-transform to original 0-1 scale. cf jh c607 ch4/8.

[14] Transform known as links in generalized linear models. cf ch8 for SAS, Stata & R code.

[15] Untransformed: note familiar unit variance $\hat{p}(1-\hat{p}) = \hat{p}\hat{q}$ in orginal 0 to 1 p scale. [16] Natural log (ln). ie log 1 = 0; log 2 = 0.69; log 3 = 1.10; log 0.5 = -0.69, etc.

 $[17] \hat{p}/\hat{q} = odds.$ So, logit $[\hat{p}] = log odds.$ cf. c607/ch4 for prop'n, odds & logits scales.

[18] Known as *variance-stabilizing* transformation, since variance is independent of p.

[19] cf Bayesian inf. for p - ch 8. $Beta(\alpha, \beta)$ prior $\rightarrow Beta(\alpha + y, \beta + n - y)$ posterior.

Theoretical: $p_1 \& p_0 \to p_1 - p_0(RD); \ p_1 \div p_0(RR); \ p_1/q_1 \div q_0/q_0(OR, \psi)$ [2] $\hat{p}_1 \& \hat{p}_0 \to \hat{p}_1 - \hat{p}_0; \ \hat{p}_1 \div \hat{p}_0; \ \hat{p}_1 / \hat{q}_1 \div \hat{p}_0 / \hat{q}_0 = \hat{OR} = \hat{\psi}$ [3] Empirical: $y_i \sim Binomial(n_i, p_i), i = 0, 1; y_1$ independent of y_0 . [4]Model: [5]P-value: $H_0: RD = 0; RR = 1; OR = 1; H_0$ doesn't have to be 0 or 1 [6]Exact [7]• Fisher's exact test, condn'l on fixed $y_1 + y_0$ Approx. [using the \hat{p}_i 's, or transforms, $t(\hat{p}_i)$, of them] [8] [9] • $z = \sqrt{X^2} = \{t(\hat{p}_1) - t(\hat{p}_0)\} / \{Var[t(\hat{p}_1)] + Var[t(\hat{p}_0)]\}^{1/2}$ [10]CI: Exact – for OR only – conditional [11] • $\psi_L : P[y_1 \ge y_{1obs} | \psi_L] = \alpha/2; \ \psi_U : P[y_1 \le y_{obs} | \psi_U] = \alpha/2$ [12]Approx. – all 3 measures • ci: $\{t(\hat{p}_1) - t(\hat{p}_0) \pm z_a/2} (Var[t(\hat{p}_1)] + Var[t(\hat{p}_0)])^{1/2}\} \rightarrow CI$ [13][14]t(p) $\operatorname{transform}$ $ci \rightarrow CI$ measure [15]RD Risk Diff. identity \hat{p} n/a [16] e^{ci} , *i.e.*, $\exp(ci)$ $\log[\hat{p}]$ RR Risk Ratio log [17] $\log[\hat{p}/\hat{q}] = e^{ci}, i.e., \exp(ci)$ OR Odds Ratio logit

NNT reciprocal of CI for Risk Difference

[19] Notes:

[1] Index and reference categories of "Exposure" (Determinant)

[2] Fisher, and Breslow & Day, use Greek ψ for OR.

[4] Assuming $n_1 \& n_0$ independent observations.

[7] So, all 4 marginal frequencies are fixed. Central (null) hypergeometric distr'n.

[9] Several equivalent versions of X^2 for 2×2 table .. See jh c607/ch9.

... $X^2 = \sum \{n_{ij} - E[n_{ij}]\}^2 / E[y_{ij}], i = 0, 1; j = +/-; \sum \text{ over 4 cells.}$

 $\begin{array}{ll} \dots \ X^2 = n(ad-bc)^2/\{r_1r_2c_1c_0\} & r_1,r_2,c_1,c_2,n: {\rm row/col/overall \ totals} \\ \dots \ X^2 = (\hat{p_1} - \hat{p_0})^2/\{Var_{null}[\hat{p_1}] + Var_{null}[\hat{p_0}]\} & {\rm square \ of} \ z\text{-statistic} \end{array}$

 $X^{2} = (p_{1} - p_{0})^{2} / \{ Var_{null}[p_{1}] + Var_{null}[p_{0}] \}$ square of z-statistic

 $... X^2 = \{a - E_{null}[a]\}^2 / Var_{null}[a]; Var_{null}[a] = r_1 r_2 c_1 c_2 / n^3; \ n^2(n-1) \text{ in M-H version.}$ [11] 1st-principles CI, using non-central (non-null) hypergeometric distr'n. cf Fisher 1935.

- ... Can use same Excel spreadsheet (jh c
607 ch8 resources) for exact test and exact
 CI.
- [14] For more on $test\mbox{-}based$ CI's, see jh 607/ch 8.2.

[14] To fit measures using generalized linear models, cf c607, ch8.2 SAS, Stata & R code.

[17] $Var[\log \hat{OR}] = 1/y_1 + 1/(n_1 - y_1) + 1/y_0 + 1/(n_0 - y_0) = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$. Woolf 1955 [15-17] Rothman2002Ch7 emphasizes ease of manual calculation over heuristics.

Difference in Prevalence or Risk in *index* $(_1)$ *vs. reference* $(_0)$ category

Inference re Epidemiologic Parameter: Rate or Incidence Density				[1]	
Theoretical: Empirical: Model:	Rate or ID or λ c cases in PT population-time units : $\widehat{ID} = \hat{\lambda} = c/PT$; $c \sim Poisson(\mu = \lambda \times PT)$				[2] [3] [4]
P-value:	$\frac{\text{Exact}}{\bullet P[c \ge c]}$ <u>Approx.</u>	$c_{obs} \mid \mu_{ns}$	$= \lambda_0; \rightarrow \mu = \lambda_0 \times P$ <i>ull</i>] (1-tail) distr'n of <i>c</i> or $\hat{\lambda}$, or the second secon		[5] [6] [7] [8] [9]
CI:	$ \begin{array}{l} \underline{\text{Exact}}\\ \bullet \ \mu_L : P[c \geq c_{obs} \mu_L] = \alpha/2; \ \mu_U : P[c \leq c_{obs} \mu_U] = \alpha/2 \\ \underline{\text{Approx.}}\\ \bullet \text{ reverse transform of } \{t(c) \pm z_{a/2} \times SE[t(c)]\}/PT \end{array} $			[10] [11] [12] [13]	
	transform	$\underline{t(c)}$	$\underline{SE[t(\hat{p})] = Var^{1/2}}$	reverse	[14]
	identity log sqrt	$\log[c]$	$\begin{array}{l} c^{1/2} \\ \{1/c\}^{1/2} \\ \{0.25\}^{1/2} = 0.5 \end{array}$	n/a $e^{\{\}$ or $\exp\{\}$ $\{\sqrt{c} \pm 0.5 z_{\alpha/2}\}^2$	[15] [16] [17]

$\underline{\text{Notes}}$:

[1] "Rate" in the incidence density sense.

- [2-4] helps to separate obs'd & exp'd numerator, μ & c, from rate $(ID, \lambda, \hat{\lambda})$. $\mu = \lambda \times PT$
- [3] We could use the usual 'y' as the numerator (i.e., the count) but 'c' is more meaningful.
- [5] Interested in λ , not μ , but it is c which has the Poisson distribution!
- [7,11] Can use tables and Excel tool in c634 Resources for Rates
- [13] Note that CI shown is of the form $\{CI \text{ for } \mu\} \div PT$.
- [15] The variance of a Poisson random variable is a function only of the mean μ .
- [17] Variance-stabilizing transformation.

Difference in ID's or Rates in *index* $(_1)$ *vs. reference* $(_0)$ category

2] 6] .]	Theoretical: Empirical: Model:	c_1/PT_1 &	$ \stackrel{\rightarrow}{\rightarrow} \lambda_1 - \lambda_0 \ (II) \\ c_0 / PT_0 \rightarrow \hat{\lambda} \\ son(\mu_i = \lambda_i) $	$\lambda_1 - \hat{\lambda}_0;$	$\hat{\lambda}_1 \div \hat{\lambda}_0$,
;] ;] ;] ;]	P-value:	$\frac{\underline{\text{Exact}}}{\bullet c_1 (c_1 - \underline{\text{Approx.}}]}$	using the $\hat{\lambda}_i$	mial("n 's, or tra	nsforms, $t(z)$	$(\pi = \mu_1 / \{\mu_1 + \mu_0\})$ $(\hat{\lambda}_i), \text{ of them }]$ $(\mu_1) = Var[t(\hat{\lambda}_0)] \}^{1/2}$
0] 1] 2] 3] 4]	CI:	Approx. –	$P[c_1 \ge c_{1obs}]$ both IDD a	nd IDR	$r[t(\hat{\lambda_1})] + V$	$R_U := similarly$ $Tar[t(\hat{\lambda_0})]^{1/2} \rightarrow CI$ test-based* CI
.5] .6] .7]		ID <u>D</u> iff.		$\hat{\lambda}$		$ \frac{\widehat{IDD} \times (1 \pm z_{\alpha/2}/X)}{\widehat{IDR}^{(1 \pm z_{\alpha/2}/X)}} $

Notes:

- [1] Index and reference categories of "Exposure" (Determinant)
- [2] "RR" has many interpretations. If I use the Rate Ratio, I prefer to spell it out.
- [4] Assuming independent samples.
- [7] Fixing the sum $c_1 + c_0$ makes it possible to eliminate 1 nuisance parameter.
- [9] Again here, several equivalent versions of X^2 for 2 counts. See jh c607/ch9.
- ... Don't force c_1, c_0, PT_1, PT_0 into a 2 × 2 table. See depiction as a '2 × 1' table (jh Ch9).
- [11] Use Binomial distr'n; π is determined by (function of) the IDR & ratio of the PT's.
- ... Use def'n. of μ 's to show: $\mu_1/(\mu_1 + \mu_0) = IDR/(IDR + PT_0/PT_1)$
- ... Can use same Excel spreadsheet (jh c607 ch 8 resources) for exact test and exact CI.
- $\left[14\right]$ Can also use a test-based CIs for a risk difference/ratio or an odds ratio.
- \ldots Test-based CI's use the $Variance \ under \ the \ Null$

 $\left[14\right]$ To fit IDD & IDR using regression models, cf Resources for Rates.

... Think of $E[c \mid PT] = \lambda \times PT$, or $E[y \mid X] = \beta \times X$ as a regression equation!

[17] Variance[IDR] had just 2 terms, $1/c_1 + 1/c_0$, emphasizing role of the no.of cases in

the reliability of an estimated ID *Ratio*. (not same principle for ID *Difference*!)

[15-17] Rothman2002Ch7 emphasizes ease of manual calculation over heuristics.

Epidemiologic Parameter: Survival Proportion or Cumulative Incidence				
Theoretical:	$S(t)$, and its complement $1 - S(t) = R_{0-t} = CI_{0-t}$			
Empirical(1):	$\{\widehat{ID_1}, \widehat{ID_2}, \dots, \widehat{ID_K}\}$ in K sub-intervals spanning $[0, t]$.			
Model(1):	Assume $Var[\widehat{ID_k}], \ldots, Var[\widehat{ID_K}]$, are available.			
	Let w_1, \ldots, w_K be the widths of the intervals.			
Point Est.:	$\widehat{S(t)} = \exp\left\{-\sum \widehat{ID_k} \times w_k\right\} = \exp\left\{-integral\right\}; \widehat{CI_{0-t}} = 1 - \widehat{S(t)}$			
Variance	of the integral: $V = \sum Var[\widehat{ID_k}] \times w_k^2$			
CI for $S(t)$	$\exp\left\{-\left[integral \pm z_{\alpha/2} \times V^{1/2}\right]\right\}$			
Empirical(2):	J narrow death-containing intervals in $[0, t]$. n_j at risk just before the death(s) in interval j. s_j survive death-containing interval j. Remaining d_j do not.			
Model(2a):	conditional prob's: $\widehat{S_1} = \frac{s_1}{n_1}, \ \widehat{S_2} = \frac{s_2}{n_2}, \ \dots, \ \widehat{S_J} = \frac{s_J}{n_J}$			
	$\widehat{S_j} \sim Binomial(n_j, S_j)$ – only for variance calculations below			
Point Est.:	$\widehat{S_{KM}(t)} = \widehat{S_1} \times \widehat{S_2} \cdots \times \widehat{S_J}$ Kaplan-Meier Product Limit Estimator			
Variance	$\widehat{S_{KM}(t)} = \sum \log \widehat{S_k} \to Var[\log \widehat{S_{KM}(t)}] = \sum \frac{d_j}{s_j \times n_j} = V \ (say)$			
CI for $S(t)$	• $\exp\left\{\log \widehat{S_{KM}(t)}\right] \pm z_{\alpha/2} \times V^{1/2}\right\}$ [ci in $\log S$ scale \rightarrow CI in S scale] • $\widehat{S_{KM}(t)} \pm z_{\alpha/2} \times \widehat{S_{KM}(t)} \times V^{1/2}$ [Greenwood's formula] • others, based on other transformations; $t() = \text{c-log-log recommended}$			
$Model(\mathbf{2b}):$	"counting process"; $\hat{d_j} \sim Poisson()$ – only for variance calculations below			
Point Est.:	$\widehat{S_{NA}(t)} = \exp\left\{-integral\right\} = \exp\left\{-\sum \frac{d_j}{n_j}\right\}$ Nelson-Aalen Estimator			
Variance	$Var[integral] = \sum rac{d_j}{n_j^2} = V \; (say)$			
CI for $S(t)$	• exp { - [integral $\pm z_{\alpha/2} \times V^{1/2}$] } • $\widehat{S_{NA}(t)} \pm \overline{z_{\alpha/2}} \times \widehat{S_{NA}(t)} \times V^{1/2}$			

Object: Comparison of 2 Survival or Cumulative Incidence curves

(1)	Survival or Risk (i.e., Cum. Inc., CI) Difference at a specific timepoint t
Theoretical:	$S_1(t) - S_2(t)$; or $CI(t)_1 - CI(t)_2$; or $Risk_{1[0 \to t]} - Risk_{2[0 \to t]}$
Empirical:	$\widehat{S_1(t)} - \widehat{S_2(t)}$, along with SE_1 and SE_2 (Greenwood SE 's)
Test Statistic:	$ratio = \{\widehat{S_1(t)} - \widehat{S_2(t)}\} / \{SE_1^2 + SE_2^2\}^{1/2} \sim N(0, 1) \ under \ H_0$
Conf. Int:	$\widehat{S_1(t)} - \widehat{S_2(t)} \ \mp \ z_{\alpha} \times \{SE_1^2 + SE_2^2\}^{1/2}$
Object: Test of	equality (H_0) of 2 entire Survival or Cumulative Incidence curves
Empirical:	J narrow death-containing intervals in $[0, t_{max}]$.
	n_j at risk just before the death(s) in interval j (the n_j persons make up ' riskset ' j) s_j survive death-containing interval j . Remaining d_j do not.
	2×2 table for j^{th} riskset, along with $E[d_{1j} H_0]$ and $Var[d_{1j} H_0]$
	$ \begin{array}{ll} d_{1j} & s_{1j} & \mid n_{1j} & E[d_{1j} H_0] = (n_{1j}/n_j) \times d_j; & Var[d_{1j} H_0] = n_{1j}n_{2j}d_js_j / \{n_j^2(n_j - 1)\} \\ d_{2j} & s_{2j} & \mid n_{2j} \end{array} $
	$d_j s_j \mid n_j$
Test Statistic:	$X^{2} = \frac{\{\sum_{j} d_{1j} - \sum_{j} E[d_{1j} H_{0}]\}^{2}}{\sum_{j} Var[d_{1j} H_{0}]} \sim \chi_{1}^{2}$
Terminology:	This is called the "Log-rank" test
	It has the same structure as Mantel & Haenszel's test of $H_0: OR_1 = OR_2 = \cdots = OR_J = 1$.
	In their application, the 2×2 tables were for different strata.
	Here, they are for the different 'risksets', which happen to be nested one inside the one before.
Example:	Armitage chapter; or p4. of JH Notes: Survival Analysis / Follow-up Studies Resources for survival analysis.