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Inference re Epidemiologic Parameter: Prevalence or Risk (proportion) [1]

Theoretical: P or π or p [2]

Empirical: P̂ or π̂ or p̂ = n+/n = y/n; q̂ = 1− p̂ [3]

Model: y ∼ Binomial(n, p) [4]

P-value: Exact [5]

• P [ y ≥ yobs | pnull ] (1-tail) or [6]

(1/2)P [ y = yobs] + P [ y > yobs] (“mid-P” version) [7]

Approx. [8]

• Normal Approx. to distr’n of p̂, or transform t(p̂) of p̂ [9]

CI: Exact [10]

• pL : P [y ≥ yobs|pL] = α/2; pU : P [y ≤ yobs|pU ] = α/2 [11]

Approx. [12]

• reverse transform of {t(p̂)± za/2 × SE[t(p̂)]} [13]

transform t(p̂) SE[t(p̂)] = V ar1/2 reverse [14]

identity p̂ {p̂q̂/n}1/2 n/a [15]

log log[p̂] {[q̂/p̂]/n}1/2 e{} or exp{} [16]

logit log[p̂/q̂] {[1/p̂+ 1/q̂]/n}1/2 e{}/(1 + e{}) [17]

arcsin arcsin[
√
p̂] {0.25/n}1/2 [18]

Bayes: Posterior distribution fpost(p) | y/n and fprior(p). [19]

Notes:

[1] Different concepts (prop’n in, prop’n who change state), but same statistical structure.

[2] One au. avoids π and P̂ /π̂/p̂ by using upper & lower case for theoretical & empirical.

[4] Assuming n independent observations.

[6] cf. jh notes, c607/ch6, or Armitage&Berry, re 2-tailed P-value if non-symmetric distr’n.

[7] cf. jh notes, c607/ch6, or Armitage&Berry, re “mid-P” P-value.

[9] Not listed here: augmenting of numerator and denominator (e.g. “Wilson”).

[11] Known as Klopper-Pearson CI: see jh site, c607/ch6 and ch8, and footnote to Table.

[13] Compute CI in new scale, then back-transform to original 0-1 scale. cf jh c607 ch4/8.

[14] Transform known as links in generalized linear models. cf ch8 for SAS, Stata & R code.

[15] Untransformed: note familiar unit variance p̂(1− p̂) = p̂q̂ in orginal 0 to 1 p scale.

[16] Natural log (ln). ie log 1 = 0; log 2 = 0.69; log 3 = 1.10; log 0.5 = −0.69, etc.

[17] p̂/q̂ = odds. So, logit[p̂] = log odds. cf. c607/ch4 for prop’n, odds & logits scales.

[18] Known as variance-stabilizing transformation, since variance is independent of p.

[19] cf Bayesian inf. for p - ch 8. Beta(α, β) prior → Beta(α+ y, β + n− y) posterior.

Difference in Prevalence or Risk in index (1) vs. reference (0) category

Theoretical: p1&p0 → p1 − p0(RD); p1 ÷ p0(RR); p1/q1 ÷ q0/q0(OR,ψ)
Empirical: p̂1&p̂0 → p̂1 − p̂0; p̂1 ÷ p̂0; p̂1/q̂1 ÷ p̂0/q̂0 = ÔR = ψ̂
Model: yi ∼ Binomial(ni, pi), i = 0, 1; y1 independent of y0.

P-value: H0 : RD = 0; RR = 1; OR = 1; H0 doesn’t have to be 0 or 1

Exact
• Fisher’s exact test, condn’l on fixed y1 + y0

Approx. [ using the p̂i’s, or transforms, t(p̂i), of them ]
• z =

√
X2 = {t(p̂1)− t(p̂0)}/{V ar[t(p̂1)] + V ar[t(p̂0)]}1/2

CI: Exact – for OR only – conditional
• ψL : P [y1 ≥ y1obs|ψL] = α/2; ψU : P [y1 ≤ yobs|ψU ] = α/2

Approx. – all 3 measures
• ci: {t(p̂1)− t(p̂0)± za/2(V ar[t(p̂1)] + V ar[t(p̂0)])1/2} → CI

measure transform t̂(p) ci→ CI

RD Risk Diff. identity p̂ n/a
RR Risk Ratio log log[p̂] eci, i.e., exp(ci)
OR Odds Ratio logit log[p̂/q̂] eci, i.e., exp(ci)
NNT reciprocal of CI for Risk Difference

Notes:

[1] Index and reference categories of “Exposure” (Determinant)

[2] Fisher, and Breslow & Day, use Greek ψ for OR.

[4] Assuming n1 & n0 independent observations.

[7] So, all 4 marginal frequencies are fixed. Central (null) hypergeometric distr’n.

[9] Several equivalent versions of X2 for 2× 2 table .. See jh c607/ch9.

... X2 =
P
{nij − E[nij ]}2/E[yij ], i = 0, 1; j = +/− ;

P
over 4 cells.

... X2 = n(ad− bc)2/{r1r2c1c0} r1, r2, c1, c2, n : row/col/overall totals

... X2 = (p̂1 − p̂0)2/{V arnull[p̂1] + V arnull[p̂0]} square of z-statistic

... X2 = {a− Enull[a]}2/V arnull[a];V arnull[a] = r1r2c1c2/n3; n2(n− 1) in M-H version.

[11] 1st-principles CI, using non-central (non-null) hypergeometric distr’n. cf Fisher 1935.

... Can use same Excel spreadsheet (jh c607 ch 8 resources) for exact test and exact CI.

[14] For more on test-based CI’s, see jh 607/ch 8.2.

[14] To fit measures using generalized linear models, cf c607, ch8.2 SAS, Stata & R code.

[17] V ar[log ÔR] = 1/y1 + 1/(n1 − y1) + 1/y0 + 1/(n0 − y0) = 1
a

+ 1
b

+ 1
c

+ 1
d
. Woolf 1955

[15-17] Rothman2002Ch7 emphasizes ease of manual calculation over heuristics.

1



EPIB-634: Survival Analysis and Related Topics — Statistical models for inference re epidemiologic parameters – jh 2009.01.22: corrections welcomed

Inference re Epidemiologic Parameter: Rate or Incidence Density [1]

Theoretical: Rate or ID or λ [2]

Empirical: c cases in PT population-time units : ÎD = λ̂ = c/PT ; [3]

Model: c ∼ Poisson(µ = λ× PT ) [4]

P-value: H0 : ID = ID0, λ = λ0; → µ = λ0 × PT = µ0; [5]

Exact [6]

• P [ c ≥ cobs | µnull ] (1-tail) [7]

Approx. [8]

• N’l Approx. to distr’n of c or λ̂, or transform t(c) of c [9]

CI: Exact [10]

• µL : P [c ≥ cobs|µL] = α/2; µU : P [c ≤ cobs|µU ] = α/2 [11]

Approx. [12]

• reverse transform of {t(c)± za/2 × SE[t(c)]}/PT [13]

transform t(c) SE[t(p̂)] = V ar1/2 reverse [14]

identity c c1/2 n/a [15]

log log[c] {1/c}1/2 e{ } or exp{ } [16]

sqrt
√
c {0.25}1/2 = 0.5 {

√
c± 0.5zα/2}2 [17]

Notes:

[1] “Rate” in the incidence density sense.

[2-4] helps to separate obs’d & exp’d numerator, µ & c, from rate (ID, λ, λ̂). µ = λ× PT
[3] We could use the usual ‘y’ as the numerator (i.e., the count) but ‘c’ is more meaningful.

[5] Interested in λ, not µ, but it is c which has the Poisson distribution!

[7,11] Can use tables and Excel tool in c634 Resources for Rates

[13] Note that CI shown is of the form {CI for µ} ÷ PT .

[15] The variance of a Poisson random variable is a function only of the mean µ.

[17] Variance-stabilizing transformation.

Difference in ID’s or Rates in index (1) vs. reference (0) category

Theoretical: λ1 & λ0 → λ1 − λ0 (IDD); λ1 ÷ λ0 (IDR)
Empirical: c1/PT1 & c0/PT0 → λ̂1 − λ̂0; λ̂1 ÷ λ̂0

Model: ci ∼ Poisson(µi = λi × PT ), i = 0, 1; c1 indep’t of c0.

P-value: H0 : IDD = 0; IDR = 1;
Exact
• c1|(c1 + c0) ∼ Binomial(′′n′′ = c1 + c0, π = µ1/{µ1 + µ0})

Approx. [ using the λ̂i’s, or transforms, t(λ̂i), of them ]
• z =

√
X2 = {t(λ̂1)− t(λ̂0)}/{V ar[t(λ̂1)] + V ar[t(λ̂0)]}1/2

CI: Exact – IDR only
• IDRL : P [c1 ≥ c1obs|IDRL] = α/2; IDRU : − similarly

Approx. – both IDD and IDR
• ci: {t(λ̂1)− t(λ̂0)± za/2(V ar[t(λ̂1)] + V ar[t(λ̂0)])1/2} → CI

measure transform t(λ̂) ci→ CI test-based* CI

ID Diff. identity λ̂ n/a ÎDD × (1± zα/2/X)

ID Ratio log log[λ̂] eci ÎDR
(1±zα/2/X)

Notes:

[1] Index and reference categories of “Exposure” (Determinant)

[2] “RR” has many interpretations. If I use the Rate Ratio, I prefer to spell it out.

[4] Assuming independent samples.

[7] Fixing the sum c1 + c0 makes it possible to eliminate 1 nuisance parameter.

[9] Again here, several equivalent versions of X2 for 2 counts. See jh c607/ch9.

... Don’t force c1, c0, PT1, PT0 into a 2× 2 table. See depiction as a ‘2× 1’ table (jh Ch9).

[11] Use Binomial distr’n; π is determined by (function of) the IDR & ratio of the PT ’s.

... Use def’n. of µ’s to show: µ1/(µ1 + µ0) = IDR/(IDR+ PT0/PT1)

... Can use same Excel spreadsheet (jh c607 ch 8 resources) for exact test and exact CI.

[14] Can also use a test-based CIs for a risk difference/ratio or an odds ratio.

... Test-based CI’s use the V ariance under the Null

[14] To fit IDD & IDR using regression models, cf Resources for Rates.

... Think of E[ c | PT ] = λ× PT , or E[ y | X] = β ×X as a regression equation!

[17] V ariance[ ˆIDR] had just 2 terms, 1/c1 + 1/c0, emphasizing role of the no.of cases in

the reliability of an estimated ID Ratio. (not same principle for ID Difference!)

[15-17] Rothman2002Ch7 emphasizes ease of manual calculation over heuristics.
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Epidemiologic Parameter: Survival Proportion or Cumulative Incidence

Theoretical: S(t), and its complement 1− S(t) = R0−t = CI0−t

Empirical(1): {ÎD1, ÎD2, . . . , ÎDK} in K sub-intervals spanning [0, t].

Model(1): Assume V ar[ÎDk], . . . , V ar[ÎDK ], are available.

Let w1, . . . , wK be the widths of the intervals.

Point Est.: Ŝ(t) = exp
{
−
∑
ÎDk × wk

}
= exp

{
− integral

}
; ĈI0−t = 1− Ŝ(t)

Variance of the integral : V =
∑
V ar[ÎDk]× w2

k

CI for S(t) exp
{
− [integral ± zα/2 × V 1/2]

}
======= ===========================================
Empirical(2): J narrow death-containing intervals in [0, t].

nj at risk just before the death(s) in interval j.
sj survive death-containing interval j. Remaining dj do not.

Model(2a): conditional prob’s: Ŝ1 = s1
n1
, Ŝ2 = s2

n2
, . . . , ŜJ = sJ

nJ

Ŝj ∼ Binomial(nj , Sj) – only for variance calculations below

Point Est.: ŜKM (t) = Ŝ1 × Ŝ2 · · · × ŜJ ... Kaplan-Meier Product Limit Estimator

Variance log ŜKM (t) =
∑

log Ŝk → V ar[log ŜKM (t)] =
∑ dj

sj×nj = V (say)

CI for S(t) • exp
{

log ŜKM (t)]± zα/2 × V 1/2
}

[ci in logS scale → CI in S scale]

•ŜKM (t)± zα/2 × ŜKM (t)× V 1/2 [Greenwood’s formula]

• others, based on other transformations; t() = c-log-log recommended

Model(2b): “counting process”; d̂j ∼ Poisson() – only for variance calculations below

Point Est.: ŜNA(t) = exp
{
− integral

}
= exp

{
−
∑ dj

nj

}
... Nelson-Aalen Estimator

Variance V ar[integral] =
∑ dj

n2
j

= V (say)

CI for S(t) • exp
{
− [integral ± zα/2 × V 1/2]

}
• ŜNA(t)± zα/2 × ŜNA(t)× V 1/2

.
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Object: Comparison of 2 Survival or Cumulative Incidence curves

======= =============================================================

(1) Survival or Risk (i.e., Cum. Inc., CI) Difference at a specific timepoint t

Theoretical: S1(t)− S2(t); or CI(t)1 − CI(t)2; or Risk1[0→t] −Risk2[0→t]

Empirical: Ŝ1(t)− Ŝ2(t), along with SE1 and SE2 (Greenwood SE’s)

Test Statistic: ratio = {Ŝ1(t)− Ŝ2(t)}/{SE2
1 + SE2

2}1/2 ∼ N(0, 1) under H0

Conf. Int: Ŝ1(t)− Ŝ2(t) ∓ zα × {SE2
1 + SE2

2}1/2

======= =============================================================

Object: Test of equality (H0) of 2 entire Survival or Cumulative Incidence curves

Empirical: J narrow death-containing intervals in [0, tmax].

nj at risk just before the death(s) in interval j (the nj persons make up ‘riskset’ j)
sj survive death-containing interval j. Remaining dj do not.

2× 2 table for jth riskset, along with E[d1j |H0] and V ar[d1j |H0]

d1j s1j | n1j E[d1j |H0] = (n1j/nj)× dj ; V ar[d1j |H0] = n1jn2jdjsj/{n2
j (nj − 1)}

d2j s2j | n2j

−−−−−−
dj sj | nj

Test Statistic: X2 =
{

P
j d1j−

P
j E[d1j |H0] }2P

j V ar[d1j |H0]
∼ χ2

1

Terminology: This is called the “Log-rank” test

It has the same structure as Mantel & Haenszel’s test of H0 : OR1 = OR2 = · · · = ORJ = 1.

In their application, the 2× 2 tables were for different strata.

Here, they are for the different ‘risksets’, which happen to be nested one inside the one before.

Example: Armitage chapter; or p4. of JH Notes: Survival Analysis / Follow-up Studies .. Resources for survival analysis.
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