Inference re Epidemiologic Parameter: Prevalence or Risk (proportion)
Theoretical: $\quad P$ or π or p
Empirical: $\quad \hat{P}$ or $\hat{\pi}$ or $\hat{p}=n_{+} / n=y / n ; \quad \hat{q}=1-\hat{p}$
Model: $\quad y \sim \operatorname{Binomial}(n, p)$
P-value: Exact

- $P\left[y \geq y_{\text {obs }} \mid p_{\text {null }}\right]$ (1-tail) or

$$
(1 / 2) P\left[y=y_{o b s}\right]+P\left[y>y_{o b s}\right] \text { ("mid-P" version) }
$$

Approx.

- Normal Approx. to distr'n of \hat{p}, or transform $t(\hat{p})$ of \hat{p}

CI:

Exact

- $p_{L}: P\left[y \geq y_{o b s} \mid p_{L}\right]=\alpha / 2 ; p_{U}: P\left[y \leq y_{o b s} \mid p_{U}\right]=\alpha / 2$ Approx.
- reverse transform of $\left\{t(\hat{p}) \pm z_{a / 2} \times S E[t(\hat{p})]\right\}$

transform	$\underline{t(\hat{p})}$	$\underline{S E[t(\hat{p})]=\operatorname{Var}^{1 / 2}}$	reverse	
identity	\hat{p}	$\{\hat{p} \hat{q} / n\}^{1 / 2}$	n/a	
\log	$\log [\hat{p}]$	$\{[\hat{q} / \hat{p}] / n\}^{1 / 2}$	$e^{\{ \}}$or $\exp \}$	$[16]$
\log it	$\log [\hat{p} / \hat{q}]$	$\{[1 / \hat{p}+1 / \hat{q}] / n\}^{1 / 2}$	$e^{\{ \}} /\left(1+e^{\{ \}}\right)$	$[17]$
\arcsin	$\arcsin [\sqrt{\hat{p}}]$	$\{0.25 / n\}^{1 / 2}$		$[18]$

Bayes: \quad Posterior distribution $f_{\text {post }}(p) \mid y / n$ and $f_{\text {prior }}(p)$.
Notes:
[1] Different concepts (prop'n in, prop'n who change state), but same statistical structure.
[2] One au. avoids π and $\hat{P} / \hat{\pi} / \hat{p}$ by using upper \& lower case for theoretical \& empirical.
[4] Assuming n independent observations.
[6] cf. jh notes, c607/ch6, or Armitage\&Berry, re 2-tailed P-value if non-symmetric distr'n. [7] cf. $j h$ notes, c607/ch6, or Armitage\&Berry, re "mid-P" P-value.
[9] Not listed here: augmenting of numerator and denominator (e.g. "Wilson").
[11] Known as Klopper-Pearson CI: see $j h$ site, c607/ch6 and ch8, and footnote to Table.
[13] Compute CI in new scale, then back-transform to original $0-1$ scale. of jh c607 ch4/8.
[14] Transform known as links in generalized linear models. cf ch8 for SAS, Stata \& R code.
[15] Untransformed: note familiar unit variance $\hat{p}(1-\hat{p})=\hat{p} \hat{q}$ in orginal 0 to $1 p$ scale.
[16] Natural $\log (\ln)$. ie $\log 1=0 ; \log 2=0.69 ; \log 3=1.10 ; \log 0.5=-0.69$, etc.
$[17] \hat{p} / \hat{q}=$ odds. So, logit $[\hat{p}]=\log$ odds. cf. c607/ch4 for prop'n, odds \& logits scales.
[18] Known as variance-stabilizing transformation, since variance is independent of p.
[19] cf Bayesian inf. for $p-\operatorname{ch} 8$. $\operatorname{Beta}(\alpha, \beta)$ prior $\rightarrow \operatorname{Beta}(\alpha+y, \beta+n-y)$ posterior.
[1] Difference in Prevalence or Risk in index (1) vs. reference (0) category
[2] Theoretical: $\quad p_{1} \& p_{0} \rightarrow p_{1}-p_{0}(R D) ; p_{1} \div p_{0}(R R) ; p_{1} / q_{1} \div q_{0} / q_{0}(O R, \psi)$

Notes:

[1] Index and reference categories of "Exposure" (Determinant)
[2] Fisher, and Breslow \& Day, use Greek ψ for OR.
[4] Assuming $n_{1} \& n_{0}$ independent observations.
[7] So, all 4 marginal frequencies are fixed. Central (null) hypergeometric distr'n.
[9] Several equivalent versions of X^{2} for 2×2 table .. See jh c607/ch9.
$\ldots X^{2}=\sum\left\{n_{i j}-E\left[n_{i j}\right]\right\}^{2} / E\left[y_{i j}\right], \quad i=0,1 ; j=+/-; \sum$ over 4 cells.
$\ldots X^{2}=n(a d-b c)^{2} /\left\{r_{1} r_{2} c_{1} c_{0}\right\} \quad r_{1}, r_{2}, c_{1}, c_{2}, n$: row/col/overall totals
$\ldots X^{2}=\left(\hat{p_{1}}-\hat{p_{0}}\right)^{2} /\left\{\operatorname{Var}_{\text {null }}\left[\hat{p_{1}}\right]+\operatorname{Var}_{\text {null }}\left[\hat{p_{0}}\right]\right\} \quad$ square of z-statistic
$\ldots X^{2}=\left\{a-E_{\text {null }}[a]\right\}^{2} / V a r_{\text {null }}[a] ; \operatorname{Var}_{\text {null }}[a]=r_{1} r_{2} c_{1} c_{2} / n^{3} ; n^{2}(n-1)$ in M-H version.
[11] 1st-principles CI, using non-central (non-null) hypergeometric distr'n. cf Fisher 1935.
... Can use same Excel spreadsheet (jh c607 ch 8 resources) for exact test and exact CI.
[14] For more on test-based CI's, see jh 607/ch 8.2.
[14] To fit measures using generalized linear models, cf c607, ch8.2 SAS, Stata \& R code.
$[17] \operatorname{Var}[\log \hat{O R}]=1 / y_{1}+1 /\left(n_{1}-y_{1}\right)+1 / y_{0}+1 /\left(n_{0}-y_{0}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}$. Woolf 1955
[15-17] Rothman2002Ch7 emphasizes ease of manual calculation over heuristics.

Inference re Epidemiologic Parameter: Rate or Incidence Density
Theoretical: Rate or $I D$ or λ
Empirical: $\quad c$ cases in $P T$ population-time units : $\widehat{I D}=\hat{\lambda}=c / P T$; \quad [3]
Model: $\quad c \sim \operatorname{Poisson}(\mu=\lambda \times P T)$
P-value: $\quad \mathrm{H}_{0}: I D=I D_{0}, \lambda=\lambda_{0} ; \rightarrow \mu=\lambda_{0} \times P T=\mu_{0} ;$

Exact

- $P\left[c \geq c_{o b s} \mid \mu_{\text {null }}\right]$ (1-tail)[6]
Approx. [8]
- N'l Approx. to distr'n of c or $\hat{\lambda}$, or transform $t(c)$ of $c \quad$ [9]

CI:
Exact

- $\mu_{L}: P\left[c \geq c_{o b s} \mid \mu_{L}\right]=\alpha / 2 ; \mu_{U}: P\left[c \leq c_{o b s} \mid \mu_{U}\right]=\alpha / 2$

Approx.

- reverse transform of $\left\{t(c) \pm z_{a / 2} \times S E[t(c)]\right\} / P T$[13]
$\underline{\text { transform }} \quad \underline{t(c)} \quad \underline{S E[t(\hat{p})]=V a r^{1 / 2} \quad \text { reverse }} \quad$ [14]

identity	c	$c^{1 / 2}$	n/a	$[15]$
\log	$\log [c]$	$\{1 / c\}^{1 / 2}$	$e^{\{ \}}$or $\exp \}$	$[16]$
sqrt	\sqrt{c}	$\{0.25\}^{1 / 2}=0.5$	$\left\{\sqrt{c} \pm 0.5 z_{\alpha / 2}\right\}^{2}$	$[17]$

Notes:

[1] "Rate" in the incidence density sense.
[2-4] helps to separate obs'd \& exp'd numerator, $\mu \& c$, from rate $(I D, \lambda, \hat{\lambda}) . \mu=\lambda \times P T$
[3] We could use the usual ' y ' as the numerator (i.e., the count) but ' c ' is more meaningful.
[5] Interested in λ, not μ, but it is c which has the Poisson distribution!
[7,11] Can use tables and Excel tool in c634 Resources for Rates
[13] Note that CI shown is of the form $\{C I$ for $\mu\} \div P T$.
[15] The variance of a Poisson random variable is a function only of the mean μ.
[17] Variance-stabilizing transformation.

Difference in ID's or Rates in index (1) vs. reference (0) category
Theoretical: $\quad \lambda_{1} \& \lambda_{0} \rightarrow \lambda_{1}-\lambda_{0}(I D D) ; \quad \lambda_{1} \div \lambda_{0}(I D R)$
Empirical: $\quad c_{1} / P T_{1} \& c_{0} / P T_{0} \rightarrow \hat{\lambda}_{1}-\hat{\lambda}_{0} ; \hat{\lambda}_{1} \div \hat{\lambda}_{0}$
Model: $\quad c_{i} \sim \operatorname{Poisson}\left(\mu_{i}=\lambda_{i} \times P T\right), i=0,1 ; c_{1}$ indep't of c_{0}.
P-value: $\quad \mathrm{H}_{0}: I D D=0 ; I D R=1$;
Exact

- $c_{1} \mid\left(c_{1}+c_{0}\right) \sim \operatorname{Binomial}\left({ }^{\prime \prime} n^{\prime \prime}=c_{1}+c_{0}, \pi=\mu_{1} /\left\{\mu_{1}+\mu_{0}\right\}\right)$

Approx. [using the $\hat{\lambda}_{i}$'s, or transforms, $t\left(\hat{\lambda}_{i}\right)$, of them]
$\bullet z=\sqrt{X^{2}}=\left\{t\left(\hat{\lambda}_{1}\right)-t\left(\hat{\lambda}_{0}\right)\right\} /\left\{\operatorname{Var}\left[t\left(\hat{\lambda}_{1}\right)\right]+\operatorname{Var}\left[t\left(\hat{\lambda}_{0}\right)\right]\right\}^{1 / 2}$
CI: \quad Exact - IDR only

$$
\bullet I D R_{L}: P\left[c_{1} \geq c_{1 o b s} \mid I D R_{L}\right]=\alpha / 2 ; I D R_{U}:- \text { similarly }
$$

Approx. - both IDD and IDR

$$
\bullet \operatorname{ci}:\left\{t\left(\hat{\lambda_{1}}\right)-t\left(\hat{\lambda_{0}}\right) \pm z_{a / 2}\left(\operatorname{Var}\left[t\left(\hat{\lambda_{1}}\right)\right]+\operatorname{Var}\left[t\left(\hat{\lambda_{0}}\right)\right]\right)^{1 / 2}\right\} \rightarrow C I
$$

measure transform $\quad \underline{t(\hat{\lambda})} \quad \underline{c i \rightarrow C I} \quad \underline{\text { test-based }}$ * CI

ID Diff.	identity	$\hat{\lambda}$	n / a	$\widehat{I D D} \times\left(1 \pm z_{\alpha / 2} / X\right)$
ID Ratio	\log	$\log [\hat{\lambda}]$	$e^{c i}$	$\widehat{I D R}\left(1 \pm z_{\alpha / 2} / X\right)$

Notes:

[1] Index and reference categories of "Exposure" (Determinant)
[2] "RR" has many interpretations. If I use the Rate Ratio, I prefer to spell it out.
[4] Assuming independent samples.
[7] Fixing the sum $c_{1}+c_{0}$ makes it possible to eliminate 1 nuisance parameter.
[9] Again here, several equivalent versions of X^{2} for 2 counts. See jh c607/ch9.
... Don't force $c_{1}, c_{0}, P T_{1}, P T_{0}$ into a 2×2 table. See depiction as a ' 2×1 ' table (jh Ch 9).
[11] Use Binomial distr'n; π is determined by (function of) the IDR \& ratio of the $P T^{\prime}$'s.
... Use def'n. of μ 's to show: $\mu_{1} /\left(\mu_{1}+\mu_{0}\right)=I D R /\left(I D R+P T_{0} / P T_{1}\right)$
... Can use same Excel spreadsheet (jh c607 ch 8 resources) for exact test and exact CI.
[14] Can also use a test-based CIs for a risk difference/ratio or an odds ratio.
... Test-based CI's use the Variance under the Null
[14] To fit IDD \& IDR using regression models, cf Resources for Rates.
... Think of $E[c \mid P T]=\lambda \times P T$, or $E[y \mid X]=\beta \times X$ as a regression equation!
[17] Variance $[I \hat{D} R]$ had just 2 terms, $1 / c_{1}+1 / c_{0}$, emphasizing role of the no.of cases in the reliability of an estimated ID Ratio. (not same principle for ID Difference!)
[15-17] Rothman 2002 Ch 7 emphasizes ease of manual calculation over heuristics.

Epidemiologic Parameter: Survival Proportion or Cumulative Incidence

Theoretical: $\quad S(t)$, and its complement $1-S(t)=R_{0-t}=C I_{0-t}$
$\operatorname{Empirical}(\mathbf{1}): \quad\left\{\widehat{I D_{1}}, \widehat{I D_{2}}, \ldots, \widehat{I D_{K}}\right\}$ in K sub-intervals spanning $[0, t]$.
$\operatorname{Model}(\mathbf{1}): \quad$ Assume $\operatorname{Var}\left[\widehat{I D_{k}}\right], \ldots, \operatorname{Var}\left[\widehat{I D_{K}}\right]$, are available.
Let w_{1}, \ldots, w_{K} be the widths of the intervals.
Point Est.: $\quad \widehat{S(t)}=\exp \left\{-\sum \widehat{I D_{k}} \times w_{k}\right\}=\exp \{-$ integral $\} ; \quad \widehat{C I_{0-t}}=1-\widehat{S(t)}$
Variance \quad of the integral: $V=\sum \operatorname{Var}\left[\widehat{I D_{k}}\right] \times w_{k}^{2}$
CI for $S(t) \quad \exp \left\{-\left[\right.\right.$ integral $\left.\left.\pm z_{\alpha / 2} \times V^{1 / 2}\right]\right\}$
$==============================$
n_{j} at risk just before the death(s) in interval j.
s_{j} survive death-containing interval j. Remaining d_{j} do not.
$\operatorname{Model}(\mathbf{2 a}): \quad$ conditional prob's: $\widehat{S_{1}}=\frac{s_{1}}{n_{1}}, \widehat{S_{2}}=\frac{s_{2}}{n_{2}}, \ldots, \widehat{S_{J}}=\frac{s_{J}}{n_{J}}$
$\widehat{S_{j}} \sim \operatorname{Binomial}\left(n_{j}, S_{j}\right)$ - only for variance calculations below
Point Est.: $\quad \widehat{S_{K M}(t)}=\widehat{S_{1}} \times \widehat{S_{2}} \cdots \times \widehat{S_{J}} \quad \ldots$ Kaplan-Meier Product Limit Estimator
Variance
$\log \widehat{S_{K M}(t)}=\sum \log \widehat{S_{k}} \rightarrow \operatorname{Var}\left[\log \widehat{S_{K M}(t)}\right]=\sum \frac{d_{j}}{s_{j} \times n_{j}}=V($ say $)$
CI for $\left.S(t) \quad \bullet \exp \left\{\log \widehat{S_{K M}(t)}\right] \pm z_{\alpha / 2} \times V^{1 / 2}\right\} \quad[\mathrm{ci}$ in $\log S$ scale \rightarrow CI in S scale]

- $\widehat{S_{K M}(t)} \pm z_{\alpha / 2} \times \widehat{S_{K M}(t)} \times V^{1 / 2}$
[Greenwood's formula]
- others, based on other transformations; $t()=$ c-log-log recommended
$\operatorname{Model}(\mathbf{2 b}): \quad$ "counting process"; $\widehat{d_{j}} \sim \operatorname{Poisson}()$ - only for variance calculations below
Point Est.: $\quad \widehat{S_{N A}(t)}=\exp \{-$ integral $\}=\exp \left\{-\sum \frac{d_{j}}{n_{j}}\right\} \quad \ldots$ Nelson-Aalen Estimator
Variance $\quad \operatorname{Var}[$ integral $]=\sum \frac{d_{j}}{n_{j}^{2}}=V($ say $)$
CI for $S(t)$
$\bullet \exp \left\{-\left[\right.\right.$ integral $\left.\left.\pm z_{\alpha / 2} \times V^{1 / 2}\right]\right\} \bullet \widehat{S_{N A}(t)} \pm z_{\alpha / 2} \times \widehat{S_{N A}(t)} \times V^{1 / 2}$

Object: Comparison of 2 Survival or Cumulative Incidence curves
(1)

Theoretical:

Test Statistic:
Conf. Int:
$======$
$S_{1}(t)-S_{2}(t) ;$ or $C I(t)_{1}-C I(t)_{2} ;$ or Risk $_{1[0 \rightarrow t]}-\operatorname{Risk}_{2[0 \rightarrow t]}$
Empirical: $\quad \widehat{S_{1}(t)}-\widehat{S_{2}(t)}$, along with $S E_{1}$ and $S E_{2}$ (Greenwood $S E$'s)
ratio $=\left\{\widehat{S_{1}(t)}-\widehat{S_{2}(t)}\right\} /\left\{S E_{1}^{2}+S E_{2}^{2}\right\}^{1 / 2} \sim N(0,1)$ under H_{0}
$\widehat{S_{1}(t)}-\widehat{S_{2}(t)} \mp z_{\alpha} \times\left\{S E_{1}^{2}+S E_{2}^{2}\right\}^{1 / 2}$
Survival or Risk (i.e., Cum. Inc., CI) Difference at a specific timepoint t

$$
S_{1}(t)-S_{2}(t) \mp z_{\alpha} \times\left\{S E_{1}^{2}+S E_{2}^{2}\right\}^{1 / 2}
$$

Object: Test of equality $\left(H_{0}\right)$ of 2 entire Survival or Cumulative Incidence curves
Empirical: $\quad J$ narrow death-containing intervals in $\left[0, t_{\max }\right]$.
n_{j} at risk just before the death(s) in interval j (the n_{j} persons make up 'riskset' j)
s_{j} survive death-containing interval j. Remaining d_{j} do not.
2×2 table for $j^{\text {th }}$ riskset, along with $E\left[d_{1 j} \mid H_{0}\right]$ and $\operatorname{Var}\left[d_{1 j} \mid H_{0}\right]$
$d_{1 j} s_{1 j} \left\lvert\, \begin{array}{ll}n_{1 j} & E\left[d_{1 j} \mid H_{0}\right]=\left(n_{1 j} / n_{j}\right) \times d_{j} ; \quad \operatorname{Var}\left[d_{1 j} \mid H_{0}\right]=n_{1 j} n_{2 j} d_{j} s_{j} /\left\{n_{j}^{2}\left(n_{j}-1\right)\right\}\end{array}\right.$
$d_{2 j} \quad s_{2 j} \mid n_{2 j}$
$\begin{array}{ccc}----- \\ d_{j} & s_{j} & \mid n_{j}\end{array}$
Test Statistic: $\quad X^{2}=\frac{\left\{\sum_{j} d_{1 j}-\sum_{j} E\left[d_{1 j} \mid H_{0}\right]\right\}^{2}}{\sum_{j} \operatorname{Var}\left[d_{1 j} \mid H_{0}\right]} \sim \chi_{1}^{2}$
Terminology: This is called the "Log-rank" test
It has the same structure as Mantel \& Haenszel's test of $H_{0}: O R_{1}=O R_{2}=\cdots=O R_{J}=1$.
In their application, the 2×2 tables were for different strata.
Here, they are for the different 'risksets', which happen to be nested one inside the one before.
Example: Armitage chapter; or p4. of JH Notes: Survival Analysis / Follow-up Studies .. Resources for survival analysis.

