Epidemiology Models

- i. General: $E[\#events] = Rate \times PT$
- ii. Specific way that rates are interrelated (form of 'rate model')
 - (a) (Additive, Rate Difference): $Rate = Rate_0 + \beta_1 X_1 + \beta_2 X_2 \dots$
 - (b) (Multiplicative, Rate Ratio): $Rate = Rate_0 \times \exp\{\beta_1 X_1 + \beta_2 X_2 \dots\}$
 - (or, equivalently,): $\log(Rate) = \log(Rate_0) + \beta_1 X_1 + \beta_2 X_2 \dots$

Statistical Fitting of these Models

- i. General: $E[\#events] = Rate \times PT$
- ii. Specifically, how model is implemented in statistical packages: In both instances, expand the $Rate \times PT$ product
 - (a) (Add.): $E[\#events] = \{Rate_0 + \beta_1 X_1 + \beta_2 X_2 \dots\} \times PT$

 $E[\#events] = Rate_0 \times \underline{PT} + \beta_1 \times X_1 \times PT + \beta_2 \times X_2 \times PT \dots$

(specify 'no-intercept'; in \mathbb{R} , $\#events \sim -1 + ...,$)

(b) (Mult): $E[\#events] = Rate_0 \times \exp\{\beta_1 X_1 + \beta_2 X_2 \dots\} \times PT$

 $\log\{E[\#events]\} = \log(Rate_0) + \beta_1 \times X_1 + \beta_2 \times X_2 \dots + \log(PT)$

(use log(PT) as 'offset'; cf worked e.g.'s for R / SAS code)