;PTEHR 2

actice i the best of all Getting Your Data into SAS®
instructo | |

PUBLIUS SYRUS, CIRCA 42 B.C 2.1 Methods for Getting Your Data into SAS 30
2.2 Entering Data with the Viewtable Window 32
2.3 Reading Files with the Import Wizard 34
24 Telling SAS Where to Find Your Raw Data 36
25 Reading Raw Data Separated by Spaces 38
2.6 Reading Raw Data Arranged in Columns 40

S e all learned by doing, by 2.7 Reading Raw Data Not in Standard Format 42
. . 1 - 2.8 Selected Informats 44
experimenting (and often ff1111ng), 29 Mixing Input Styles 46

and by asking question%) 210 Reading Messy Raw Data_ 49

2.11 Reading Multiple Lines of Raw Data per Observation 50
JaY JACOB WIND 2.12 Reading Multiple Observations per Line of Raw Data 52
213 Reading Part of a Raw Data File 54
2.14 Controlling Input with Options in the INFILE Statement 56
2.15 Reading Delimited Files with the DATA Step 58
2.16 Reading Delimited Files with the IMPORT Procedure 60
2.17 Reading PC Files with the IMPORT Procedure 62
218 Reading PC Files with DDE 64
2.19 Temporary versus Permanent SAS Data Sets 66
2.20 Using Permanent SAS Data Sets with LIBNAME Statements 68
) 221 Using Permanent SAS Data Sets by Direct Referencing 70
From Bartett's Eamiliar Quotations 13th edition, by John Bartlett, copyright 1955 by Little Brown & . 222 Listin g the Contents of a SAS Data Set 72

Company. Public domain. o
From the SAS L Listserv, March 15, 1994. Reprinted by permission of the author.

30 The Little SAS Book g Chapter 2: Getting Your Data into SAS 31
: : ¢ The Import Wizard, covered in section 2.3 and its cousin the IMPORT procedure,
MethOdS fOI' Gettlng YOUI' Data mnto SAS covered in section 2.16, are available for UNIX, OpenVMS, and Windows operating
- Data come in many different forms. Your data may be handwritten on a piece : environments. These are simple methods for reading particular types of raw data files
of paper, or typed into a raw data file on your computer. Perhaps your data are : including comma-separated values (CSV) files, and other delimited files.
m in a database file on your personal computer, or in a database management Converting other software’s data files into SAS data sets Each software application

system (DBMS) on the mainframe computer at your office. Wherever your data

reside, there is a way for SAS to use them. You may need to convert your data

from one form to another, or SAS may be able to use your data in their current
form. This section outlines several methods for getting your data into SAS. Most of these methods

has its own form for data files. While this is useful for software developers, it is troublesome for
software users —especially when your data are in one application, but you need to analyze them
with another. There are several options for converting data from applications into SAS

are covered in this book, but a few of the more advanced methods are merely mentioned so that data sets:
you know they exist. We do not attempt to cover all methods available for getting your data into ¢ The IMPORT procedure and the Import Wizard can be used to convert Microsoft Excel,
SAS, as new methods are continually being developed, and creative SAS users can always come up . Lotus, dBase, and Microsoft Access files into SAS data sets if you have SAS/ACCESS for
with clever methods that work for their own situations. But there should be at least one method PC File Formats software installed on your computer. This is covered in sections 2.3 and
explained in this book that will work for you. 2.17.
Methods for getting your data into SAS can be put into four general categories: ¢ If youdon't have SAS/ACCESS software, then you can always create a raw data file from
your application and read the raw data file with either the DATA step or the IMPORT
¢ entering data directly into SAS data sets procedure. Many applications can create CSV files, which are easily read using the Import

. . Wizard or IMPORTprocedure (covered in sections 2.3 and 2.16) or the DATA step
¢ creating SAS data sets from raw data files (covered in section 2.15)
¢ converting other software’s data files into SAS data sets ¢ Dynamic Data Exchange (DDE), covered in section 2.18, is available only for those

¢ reading other software’s data files directly. working in the Windows operating environment. To use DDE, you must have the other
Windows application (Microsoft Excel for example) running on your computer at the
same time as SAS. Then using DDE and the DATA step, you can convert data into SAS

Naturally, the method you choose will depend on where your data are located, and what software data sets

tools are available to you. ‘

Reading other software’s data files directly Under certain circumstances you may be
able to read data without converting to a SAS data set. This method is particularly useful when
you have many people updating data files, and you want to make sure that you are using the most

Entering data directly into SAS data sets Sometimes the best method for getting your
data into SAS is to enter the data directly into SAS data sets through your keyboard.

¢ The Viewtable window, discussed in section 2.2, is included with Base SAS software. current data.
Viewtable allows you to enter your data in a tabular format. You can define variables, ¢ The SAS/ACCESS products allow you to read data without converting your data into SAS
or columns, and give them attributes such as name, length, and type (character or : data sets. There are SAS/ACCESS products for most of the popular database management
numeric). systems including ORACLE, DB2, INGRES, and SYBASE. This method of data access is

¢ SAS Enterprise Guide software, a Windows only application, has a data entry window not covered in this book.

that is very similar to the Viewtable window. As with Viewtable, you can define .

We already mentioned using SAS/ ACCESS for PC Files Formats software to convert
variables and give them attributes.

several PC file types to SAS data sets, but you can also use the Excel and Access engines to
read these types of files directly without converting. See the SAS Help and

¢ SAS/FSP software, short for Full Screen Product, allows you to design custom data 4 ; . :
Documentation for more information on these engines.

entry screens. It also has the capability for detecting data entry errors as they happen.

The SAS/FSP product is licensed separately from Base SAS software. ¢ There are also data engines that allow you to read data directly but are part of Base SAS

software. The SPSS engine is covered in Appendix D. There are also engines for OSIRIS,
old versions of SAS data sets, and SAS data sets in transport format. ‘Check the SAS Help
and Documentation for your operating environment for a complete list of available
engines.

Creating SAS data sets from raw data files Much of this chapter is devoted to reading
raw data files (also referred to as text, ASCII, sequential, or flat files). You can always read a raw
data file since the DATA step is an integral part of Base SAS software. And, if your data are not
already in a raw data file, chances are you can convert your data into a raw data file. There are two
general methods for reading raw data files: Given all these methods for getting your data into SAS, you are sure to find at least one method

that will work for you— probably more.
¢+ The DATA step is so versatile that it can read almost any type of raw data file. This

method is covered in this chapter starting with section 2.4.

32

The Little SAS Book

Entering Data with the Viewtable Window

The Viewtable window which is part of Base SAS software' is an easy way tq create new data
sets, or browse and edit existing data sets. True to its name, the ViewFable Wmdgw displays
tables (another name for data sets) in a tabular format. To open the Viewtable window, select
Table Editor from the Tools menu. An empty Viewtable window will appear.

This table contains no data. Instead you see rows (or observations) lal?eled With numbers and
columns (or variables) labeled with letters. You can start typing data into this default t:fﬂ?le, and
SAS will automatically figure out if your columns are numeric or character. However, it’s a good
idea to tell SAS about your data so each column is set up the way you want. You do this with the

Column Attributes window.

Column Attributes window The letters at the tops of columns are default variable names.
By right-clicking on a letter, you can choose to opena Column Attributes window fo.r that column.
This window contains default values which you can replace with the values you desire. When you
are satisfied with the values, click on Apply. To switch to a new column, Cliclf on that column in
the Viewtable window. When you are finished changing column attributes click on Close.

1

' If you are using a non-graphical monitor, then SAS uses FSVIEW to display your tables, so you also need SAS/FSP software

which is licensed separately.

Chapter 2: Getting Your Data into SAS 33

Entering data Once youhave |

s

¥

defined your columns you are
ready to type in your data. To
move the cursor, click on a field,

Guatemala
or use tab and arrow keys. Here is T T amaies [
a table with column attributes | anar Ethiopia
defined and data entered. : MauUsa

:) 7 THawail USA

Saving your table Tosavea | daldlani "Molokai USA
table, select Save As.. from the chaPue YYemem
File menu. Select a library, and i Brail
then specify the member name of S Ui _ Calumbia

your table. The libraries displayed

correspond to locations (such as j -

directories) on your computer. If you want to save your table in a different location, you can add
another library by clicking on the New Library icon. Type in a name for the new library and its
path. Then click on OK. Specify the member name by typing it in the Member Name field.

Opening an existing
table To browse or editan
existing table, first select
Table Editor from the
Tools menu to open the
Viewtable window. Then
select Open from the File
menu. Click on the library
you want and then on the
table name. If the table you
want to open is not in any of
- the existing libraries, click on
the New Library icon. Type in a name for the new library and its path. Then click on 0K. To
switch from browse mode (the default) to edit mode, select Edit Mode from the Edit menu. You
can also open an existing table by navigating to it in the SAS Explorer window, and double clicking
on it.

Mylib Liby

| 2P Sashelp Library
- (2P Sasuser Library
5P work Library

Other features The Viewtable window has many other features including sorting, printing,
adding and deleting rows, and viewing multiple rows (the default, called Table View) or viewing
one row at a time (called Form View). You can control these features using either menus or icons.

Using your table in a SAS program Tables that you create in Viewtable can be used in
programs just as tables created in programs can be used in Viewtable. For example, if you saved
your table in the SASUSER library and named it COFFEE, you could print it with this program:

PROC PRINT DATA=Sasuser.coffee;
RUN;

34 The Little SAS Book : Chapter 2: Getting Your Data into SAS 35

The next screen asks you to
choose the SAS library and
member name for the SAS
data set that will be created.
If you choose the WORK
library, then the SAS data
set will be deleted when
you exit SAS. If you choose
a different library, then the
SAS data set will remain
even after you exit SAS.
There is no way to define a
library from within the
Import Wizard, so make
- sure your library is defined
before entering the Import
Wizard. You can define libraries using the New Library window discussed in section 1.11 (or
using a LIBNAME statement as discussed in section 2.20). After choosing a library, enter a member
name for the SAS data set.

Reading Files with the Import Wizard

Using the Import Wizard', you can read a variety of data file types into SAS by simply answering
a few questions. The Import Wizard will scan your file to determine variable types® and will, by
default, use the first row of data for the variable names. The Import Wizard can read all types of

. delimited files including comma-separated values (CSV) files which are a common file type for
moving data between applications. And, if you have SAS/ACCESS for PC File Formats
software, then you can also read a number of popular PC file types’.

Start the Import Wizard by
choosing Import Data... from
the File menu.

Select the type of file you are
importing by choosing from the
list of standard data sources
such as comma-separated
values (*.csv) files.

In the last window, the
Import Wizard gives you
e the option of saving the

B= Import Wizard - Select file - - R E PROC MPORT statements
used for importing the file.

Now, specify the location of
the file that you want to
import. By default, SAS uses
the first row in the file as the
variable names for the SAS
data set, and starts reading
data in the second row. The

Options.. button takes you For some types of files, the
to another screen where you Import Wizard asks
can change this default action. additional questions. For example, if you are importing Microsoft Access files, then you will be

asked for the database name and the table you want to import. You will also be given an
opportunity to enter user ID and password information if applicable.

Using imported data in a SAS program Data that you import through the Import Wizard

The Import Wizard is available in the Windows, UNIX, and OpenVMS operating environments. can be used in any SAS program. For example, if you saved your data in the WORK library and
* By default the Import Wizard will scan the first 20 rows for delimited files and the first 8 rows for Microsoft Excel files. If you named it FLOWERS, you could print it with this program:
have all missing data in these rows, then the Import Wizard (and the IMPORT procedure) may not read the file correctly. See
sections 2.16 and 2.17 for more information. PROC PRINT DATA=WORK.flowers;

. . . : . RUN;
* Under the Windows operating environment, you can read Microsoft Excel, Microsoft Access, Lotus, and dBase files (if you are !

running Microsoft Windows 64-Bit Edition, then you cannot read Microsoft Access or Microsoft Excel 97, Excel 2000, or Excel . . .
2002 files). Under the UNIX operating environment, you can read dBase files, and starting with SAS 9.1, UNIX users can also Or, since WORK is the default hbrary/ you could also use:

read Microsoft Excel and Microsoft Access files.
PROC PRINT DATA=flowers;
RUN;

36

The Little SAS Book

Telling SAS Where to Find Your Raw Data

If your data are in raw data files (also referred to as text, ASCII, sequential, or flat files), using the
DATA step to read the data gives you the most flexibility. The first step toward reading raw data
files is telling SAS where to find the raw data. Your raw data may be either internal to your SAS
program, or in a separate file. Either way, you must tell SAS where to find your data.

A raw data file can be viewed using simple text editors or system commands. For PC users,

raw data files will either have no program associated with them, or they will be associated with
simple editors like Microsoft Notepad. In some operating environments, you can use commands
to list the file, such as the cat or more commands in UNIX. Spreadsheet files are examples of
data files that are not raw data. If you try using a text editor to look at a spreadsheet file, you will
probably see lots of funny special characters you can’t find on your keyboard. It may cause your
computer to beep and chirp, making you wish you had that private office down the hall. It looks
nothing like the nice neat rows and columns you see when you use your spreadsheet software to
view the same file.

Internal raw data If you type raw data directly in your SAS program, then the data

are internal to your program. You may want to do this when you have small amounts of data, or
when you are testing a program with a small test data set. Use the DATALINES statement to
indicate internal data. The DATALINES statement must be the last statement in the DATA step.
All lines in the SAS program following the DATALINES statement are considered data until SAS
encounters a semicolon. The semicolon can be on a line by itself or at the end of a SAS statement
which follows the data lines. Any statements following the data are part of a new step. If you are
old enough to remember punching computer cards, you might like to use the CARDS statement
instead. The CARDS statement and the DATALINES statement are synonymous. The following
SAS program illustrates the use of the DATALINES statement. (The DATA statement simply
tells SAS to create a SAS data set named USPRESIDENTS, and the INPUT statement tells SAS
how to read the data. The INPUT statement is discussed in sections 2.5 through 2.15.)

* Read internal data into SAS data set uspresidents;
DATA uspresidents;

PUT President $ Party $ Number;
TALINES;

Adams 2
Lincoln R 16
Grant R 18

Kennedy D 35

RUN;

External raw data files Usually you will want to keep data in external files, separating the
data from the program. This eliminates the chance that data will accidentally be altered when
you are editing your SAS program. Use the INFILE statement to tell SAS the filename

and path, if appropriate, of the external file containing the data. The INFILE statement follows
the DATA statement and must precede the INPUT statement. After the INFILE keyword, the

h
%’i
it

PR T IS R N

Chapter 2: Getting Your Data into SAS 37

file path and name are enclosed in quotation marks. Examples from several operating
environments follow:

Windows: INFILE ‘c:\MyDir\President.dat’;

UNIX: INFILE ‘/home/mydir/president.dat’;
OpenVMS: INFILE ‘[username.mydir]president.dat’;
05/390 or z/OS: INFILE 'MYID.PRESIDEN.DAT';

Suppose the following data are in a file called President.dat in the directory MyRawData on the
C drive (Windows):

Adams P2
Lincoln R 16
Grant R 18

Kennedy D 35

The following program shows the use of the INFILE statement to read the external data file:

* Read data from extermal file into SAS data set;
DATA i

RUN;

The SAS log Whenever you read data from an external file, SAS gives some very valuable
information about the file in the SAS log. The following is an excerpt from the SAS log after
running the previous program. Always check this information after you read a file as it could
indicate problems. A simple comparison of the number of records read from the infile with the
number of observations in the SAS data set can tell you a lot about whether SAS is reading your
data correctly.

NOTE: Tbe infile ’c:\MyRawData\President.dat’ is:
File Name=c:\MyRawData\President.dat,
RECFM=V,LRECL=256
NOTE: 4 records were read from the infile ‘c¢:\MyRawData\President.dat’.
The minimum record length was 13.
The maximum record length was 13.

NOTE: The data set WORK.USPRESIDENTS has 4 observations and 3 variables.

Long records In some operating environments, SAS assumes external files have a record length
of 256 or less. (The record length is the number of characters, including spaces, in a data line.) If
your data lines are long, and it looks like SAS is not reading all your data, then use the LRECL=
option in the INFILE statement to specify a record length at least as long as the longest record in
your data file. '

INFILE 'c:\MyRawbata\President.dat’ LRECL=2000;

Check the SAS log to see that the maximum record length is as long as you think it should be.

The Little SAS Book

5- Reading Raw Data Separated by Spaces

If the values in your raw data file are all separated by at
least one space, then using list input (also called free
formatted input) to read the data may be appropriate. List
input is an easy way to read raw data into SAS, but with
ease come a few limitations. You must read all the data in a
: record—no skipping over unwanted values. Any missing
TR AN = data must be indicated with a period. Character data, if
present, must be simple: no embedded spaces, and no values greater than eight characters in
length.2 If the data file contains dates or other values which need special treatment, then list
input may not be appropriate. This may sound like a lot of restrictions, but a surprising number
of data files can be read using list input.

The INPUT statement, which is part of the DATA step, tells SAS how to read your raw data.
To write an INPUT statement using list input, simply list the variable names after the INPUT
keyword in the order they appear in the data file. Generally, variable names must be 32
characters or fewer, start with a letter or an underscore, and contain only letters, underscores,
or numerals. If the values are character (not numeric) then place a dollar sign ($) after the
variable name. Leave at least one space between names, and remember to place a semicolon at
the end of the statement. The following is an example of a simple list style INPUT statement.

INPUT Name $ Age Height;

This statement tells SAS to read three data values. The $ after Name indicates that it is a
character variable, whereas the Age and Height variables are both numeric.

Example Your hometown has been overrun with toads this year. A local resident, having
heard of frog jumping in California, had the idea of organizing a toad jump to cap off the
annual town fair. For each contestant you have the toad’s name, weight, and the jump distance
from three separate attempts. If the toad is disqualified for any jump, then a period is used to
indicate missing data. Here is what the data file ToadJump.dat looks like:

Lucky 2.3 1.9 . 3.0

Spot 4.6 2.5 3.1 .5
Tubs 7.1 . 3.8
Hop 4.5 3.2 1.9 2.6
Noisy 3.8 1.3 1.8
1.5

Winner 5.7

This data file does not look very neat, but it does meet all the requirements for list input: the
character data are eight characters or fewer and have no embedded spaces, all values are
separated by at least one space, and missirig data are indicated by a period. Notice that the data
for Noisy have spilled over to the next data line. This is no problem since, by default, SAS will
go to the next data line to read more data if there are more variables in the INPUT statement
than there are values in the data line.

'SAS can read files with other delimiters such as commas or tabs using list input. See sections 2.14 and 2.15.

2 It is possible to override this constraint using the LENGTH statement, discussed in section 10.13, which can change the length
of character varjables from the default of 8 to anything between 1 and 32,767.

Chapter 2: Getting Your Data into SAS 39

Here is the SAS program that will read the data:

* Create a SAS data set named toads;

* Read the data file ToadJump.dat using list input;
DATA toads;

INFILE ‘c:\MyRawData\ToadJump.dat’
te} ;

le was read correctly;

G HUSE L
a to make sure the fi
PROC PRINT DATA = toads;

TITLE ’'SAS Data Set Toads’;
RUN;

The variablés ToadName, Weight, Jump1, Jump2, and Jump3 are listed after the keyword INPUT
in the same order as they appear in the file. A dollar sign ($) after ToadName indicates that it is a
character variable; all the other variables are numeric. A PROC PRINT statement is used to print
the data values after reading them to make sure they are correct. The PRINT procedure, in its
simplest form, prints the values for all variables and all observations in a SAS data set. The TITLE
statement after the PROC PRINT tells SAS to put the text enclosed in quotation marks on the top of
each page of output. If you had no TITLE statement in your program, SAS would put the words
“The SAS System” at the top of each page.

The output will look like this:

SAS Data Set Toads 1
Toad

Obs Name Weight Jump1 Jump2 Jump3

1 Lucky 2.3 1.9 . 3.0

2 Spot 4.6 2.5 3.1 0.5

3 Tubs 7.1 . . 3.8

4 Hop 4.5 3.2 1.9 2.6

5 Noisy 3.8 1.3 1.8 1.5

6 Winner 5.7

Because SAS had to go to a second data line to get the data for Noisy's final jump, the following
note appears in the SAS log:

NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

If you find this note in your SAS log when you didn’t expect it, then you may have a problem. If so,
look in section 10.4 which discusses this note in more detail.

40

The Little SAS Book

Some raw data files do not have spaces (or other delimiters)
between all the values or periods for missing data—so the
files can’t be read using list input. But if each of the
variable’s values is always found in the same place in the
data line, then you can use column input as long as all the
i : values are character or standard numeric. Standard numeric
N data contain only numerals, decimal points, plus and minus
signs, and E for scientific notation. Numbers with embedded commas or dates, for example, are
not standard.

Column input has the following advantages over list input:

¢ spaces are not required between values
¢ missing values can be left blank
¢ character data can have embedded spaces

¢+ you can skip unwanted variables.

Survey data are good candidates for column input. Most answers to survey questionnaires are
single digits (0 through 9). If a space is entered between each value, then the file will be twice the
size and require twice the typing of a file without spaces. Data files with street addresses, which
often have embedded blanks, are also good candidates for column input. The street Martin
Luther King Jr. Boulevard should be read as one variable not five, as it would be with list input.
Data which can be read with column input can often also be read with formatted input or a
combination of input styles (discussed in sections 2.7, 2.8, and 2.9).

With column input, the INPUT statement takes the following form: after the INPUT keyword,
list the first variable’s name. If the variable is character, leave a space; then place a $. After the §,
or variable name if it is numeric, leave a space; then list the column or range of columns for that
variable. The columns are positions of the characters or numbers in the data line and are not to
be confused with columns like those you see in a spreadsheet. Repeat this for all the variables
you want to read. The following shows a simple INPUT statement using column style:

INPUT Name $ 1-10 Age 11-13 Height 14-18;

The first variable, Name, is character and the data values are in columns 1 through 10. The Age
and Height variables are both numeric, since they are not followed by a $, and data values for
both of these variables are in the column ranges listed after their names.

Example The local minor league baseball team, the Walla Walla Sweets, is keeping records
about concession sales. A ballpark favorite are the sweet onjon rings which are sold at the
concession stands and also by vendors in the bleachers. The ballpark owners have a feeling that
in games with lots of hits and runs more onion rings are sold in the bleachers than at the
concession stands. They think they should send more vendors out into the bleachers when the
game heats up, but need more evidence to back up their feelings.

Chapter 2: Getting Your Data into SAS 41

For each home game they have the following information: name of opposing team, number of
onion ring sales at the concession stands and in the bleachers, the number of hits for each team
and the final score for each team. The following is a sample of the data file named Onions.dat. ,
For your reference, a column ruler showing the column numbers has been placed above the data:

il bt T EE P RS PP
Columbia Peaches : 35 67 1 10 2
Plains Peanuts 210 2 5 0
Gilroy Garlics 151035 12 11 7
Sacramento Tomatoes 124 85 15 4 9

o

Notice tbat the data file has the following characteristics, all making it a prime candidate for
column input. All the values line up in columns, the team names have embedded blanks, missing

values are blank, and in one case there is not a space between data values. (Those Gilroy Garlics
fans must really love onion rings.)

The following program shows how to read these data using column input:

* Create a SAS data set named sales;

* Read the data file Onions.dat using column in
. uc;
DATA sales; g pue

MyRawData\Onions.dat’

ata to make sure the file w
PROC PRINT DATA = sales;

TITLE . ' SAS Data Set Sales’;
RUN;

as read correctly

The variable VisitingTeam is character (indicated by a §) and reads the visiting team’s name in
columns 1 through 20. The variables ConcessionSales and BleacherSales read the concession and
bleacher sales in columns 21 through 24 and 25 through 28, respectively. The number of hits for the
home team, OurHits, and the visiting team, TheirHits, are read in columns 29 through 31 and 32
through 34, respectively. The number of runs for the home teamn, OurRuns, is read in columns 35
through 37, while the number of runs for the visiting team, TheirRuns, is in columns 38 throdgh 40.

The output will look like this:

SAS Data Set Sales 1

Concession Bleacher Our Their Our Their

Obs VisitingTeam Sales Sales Hits Hits Runs Runs
1 Columbia Peaches 35 67 1 10 2 1
2 Plains Peanuts 210 . 2 5 0 2
3 Gilroy Garlics 15 1035 12 11 7 6
4 Sacramento Tomatoes 124 85 15 4 9 1

42 The Little SAS Book _' Chapter 2: Getting Your Data into SAS 43
Reading Raw Data Not in Standard Format Example This example illustrates the use of informats for reading data. The following data file,
: Pumpkin.dat, represents the results from a local pumpkin-carving contest. Each line includes the

Sometimes raw data are not straightforward numeric or contestant’s name, age, type (carved or decorated), the date the pumpkin was entered, and the
01/01/60 1,002 | character. For example, we humans easily read the number scores from each of five judges.
1,000,001 as one million and one, but your trusty computer sees

01/03/60 2,012 | o . o Alicia Grossman 13 c 10-28-2003 7.8 6.5 7.2 8.0 7.9
02/01/60 4,336 | it as a character string. While the embedded commas make the Matthew Lee 9 D 10-30-2003 6.5 5.9 6.8 6.0 8.1
e) number easier for us to interpret, they make the number Elizabeth Garcia 10 C 10-29-2003 8.9 7.9 8.5 9.0 8.8
T T impossible for the computer to recognize without some Lori Newcombe 6 D 10-30-2003 6.7 5.6 4.9 5.2 6.1

i ot i tell the computer how to interpret these es of data. Jose MaJ.:t:Lnez 7 4@ 10-31-2003 8.9 9.510.0 9.7 9.0

instructions. In SAS, informats are used to te P P e Brian Williams 11 C 10-29-2003 7.8 8.4 8.5 7.9 8.0

Informats are useful anytime you have non-standard data. (Standard numeric data contain only
numerals, decimal points, minus signs, and E for scientific notation.) Numbers with embedded
commas or dollar signs are examples of non-standard data. Other examples include data in

The following program reads these data. Please note there are many ways to input these data, so if
you imagined something else, that’'s OK.

hexadecimal or packed decimal formats. SAS has informats for reading these types of data as well. . * Create a SAS data set named contest:
.) . * Read the file Pumpkin.dat using formatted input;
Dates’ are perhaps the most common non-standard data. Using date informats, SAS will convert DATA contest:

\Pumpkin.dat’

conventional forms of dates like 10-31-2003 or 310CT03 into a number, the number of days since
January 1, 1960. This number is referred to as a SAS date value. (Why January 1, 1960? Who
knows? Maybe 1960 was a good year for the SAS founders.) This turns out to be extremely useful v ata Set to make sure the file was read correctly:
when you want to do calculations with dates. For example, you can easily find the number of . PROC PRINT DATA = contest;

days between two dates by subtracting one from the other. TITLE ‘Pumpkin Carving Contest’;

RUN;
There are three general types of informats: character, numeric, and date. A table of selected SAS B The variable Name has an informat of) .))
. . . : : . : $16., meaning that it is a character variable 16 columns wide.
informats appears in section 2.8. The three ypes of informats have the following general forms: Variable Age has an informat of three, is numeric, t}g1ree columns wide, and has no decimal places.
Character Numeric Date ' The +1 skips over one column. Variable Type is character, and it is one column wide. Variable Date
$informatw. informatw.d informatw. has an informat MMDDYY10. and reads dates in the form 10-31-2003 or 10/31/2003, each 10
))) columns wide. The remaining variables, Scorel through Score5, all require the same informat, 4.1.
The § indicates character informats, INFORMAT is the name of the informat, w is the total width, ; By putting the variables and the informat in separate sets of parentheses, you only have to list the
and d is the number of decimal places (numeric informats only). The period is very important informat once, Here are the results: .
part of the informat name. Without a period, SAS may fry to interpret the informat as a variable b
name, which by default, cannot contain any special characters except the underscore. Two
informats do not have names: $w., which reads standard character data, and w.d, which reads ;
standard numeric data. : Pumpkin Carving Contest 1
Use informats by placing the informat after the variable name in the INPUT statement; this is Obs Name Age Type Date? Scorel Score2 Score3 Score4 Scores
called formatted input. The following INPUT statement is an example of formatted input: '
INPUT Name $10. Age 3. Height 5.1 BirthDate MMDDYY10.; 1 Alicia Grossman 13 ¢ 16006 7.8 6.5 7.2 8.0 7.9
2 Matthew Lee g D 16008 6.5 5.9 6.8 6.0 8.1
The columns read for each variable are determined by the starting point and the width of the : 3 Elizabeth Garcia 10 C 16007 8.9 7.9 8.5 9.0 8.8
informat. SAS always starts with the first column; so the data values for the first variable, Name, 4 Lori Newcombe 6 D 16008 6.7 5.6 4.9 5.2 6.1
which has an informat of $10., are in columns 1 through 10. Now the starting point for the 5 Jose Martinez 7 d 16009 8.9 9.5 10.0 9.7 9.0
second variable is column 11, and SAS reads values for Age in columns 11 through 13. The 6 Brian Williams 11 ¢ 16007 7.8 8.4 8.5 7.9 8.0
values for the third variable, Height, are in columns 14 through 18. The five columns include the

decimal place and the decimal point itself (150.3 for example). The values for the last variable,
BirthDate, start in column 19 and are in a date form.

? Notice that these dates are printed as the number of days since Janwary 1, 1960. Section 4.5 discusses how to format thes
values into readable dates. :

1Using dates in SAS is discussed in more detail in section 3.7.

44

The Little SAS Book

Selected Informats

Definitions of commonly used informats’ along with the width range and default width.

Reads character data—does not trim leading | 1-32,767 8 or length of
or trailing blanks variable
$HEXw Converts hexadecimal data to character data | 1-32,767 2
Sw. Reads character data—trims leading blanks 1-32,767 none

(hours:minutes:seconds—24-hour clock)

DATEw. Reads dates in form: ddmmmyy or 7-32 7
ddmmmyyyy

DATETIMEw. | Reads datetime values in the form: 13-40 18
ddmmmyy hh:mm:ss.ss

DDMMYYw. Reads dates in form: ddmmyy or 6-32 6
ddmmyyyy

JULIANw. Reads Julian dates in form: yyddd or 5-32 5
yyyyddd

MMDDYYw. Reads dates in form: mmddyy or 6-32 6
mmddyyyy

TIMEw. Reads time in form: hh:mm:ss.ss 5-32 8

COMMAw.d Removes embedded commas and $, 1-32 1
converts left parentheses to minus sign
HEXw. Converts hexadecimal to floating-point values | 1-16 8
if wis 16. Otherwise, converts to fixed-point.
IBw.d Reads integer binary data 1-8 4
PDw.d Reads packed decimal data 1-16 1
PERCENTw. Converts percentages to numbers 1-32 6
w.d Reads standard numeric data 1-32 none

' Check the SAS Help and Documentation for a complete list of informats.

? SAS date values are the number of days since January 1, 1960. Time values are the number of seconds past midnight, and
datetime values are the number of seconds past midnight January 1, 1960.

Chapter 2: Getting Your Data into SAS 45

Examples using the selected informats.

my cat INPUT Animal $CHARI1O.; my cat
my cat my cat
$HEXw. 6C6C INPUT Name $HEX4.; 11 (ASCII)or
%% (EBCDIC)’
$w. my cat INPUT Animal $10.; my cat
my cat my cat

DATEw. ljanl961 INPUT Day DATEI1O0.; 366
1 jan 61 366
DATETIMEw. 1janl960 10:30:15 INPUT Dt DATETIMELS.; 37815
13an1961,10:30:15 31660215
DDMMYYw. 01.01.61 INPUT Day DDMMYYS.; 366
, 02/01/61 367
JULIANw. 61001 INPUT Day JULIANT7.; 366
1961001 366
MMDDYYw. 01-01-61 INPUT Day MMDDYYS.; 366
01/01/61 366
TIMEw. 10:30 INPUT Time TIMES.; 37800
10:30:15 37815

COMMAw.d $1,000,001 INPUT Income COMMALQ. ; 1000001
(1,234) ~1234
HEXw. FOF3 INPUT Value HEXA4.; 61683
IBw.d INPUT Value IBA4.; 255
PDw.d s INPUT Value PDA4.; 255
PERCENTw. 5% INPUT Value PERCENTS. ; 0.05
(20%) -0.2
w.d 1234 INPUT Value 5.1; 123.4
-12.3 ~12.3

? The EBCDIC character set is used on most IBM mainframe computers, while the ASCII character set is used on most other
computers. So, depending on the computer you are using, you will get one or the other.

These values cannot be printed.

46

The Little SAS Book

Mixing Input Styles

Each of the three major input styles has its own advantages. List style is the easiest; column
style is a bit more work; and formatted style is the hardest of the three. However, column and
formatted styles do not require spaces (or other delimiters) between variables and can read
embedded blanks. Formatted style can read special data such as dates. Sometimes you use one
style, sometimes another, and sometimes the easiest way is to use a combination of styles. SAS is
so flexible that you can mix and match any of the input styles for your own convenience.

Example The following raw data contain information about U.S. national parks: name, state
(or states as the case may be), year established, and size in acres:

Yellowstone ID/MT/WY 1872 4,065,493
Everglades FL 1934 1,398,800
Yosemite CA 1864 760,917
Great Smoky Mountains NC/TN 1926 520,269

Wolf Trap Farm VA 1966 130

You could write the INPUT statement for these data in many ways—that is the point of this
section. The following program shows one way to do it:

* Create a SAS data set named nationalparks;
* Read a data file Park.dat mixing input styles;
DATA nationalparks;

i

PROC PRINT DATA nationalparks;
TITLE 'Selected National Parks’;

RUN;

Notice that the variable ParkName is read with column style input, State and Year are read with
list style input, and Acreage is read with formatted style input. The output looks like this:

Selected National Parks 1
Obs ParkName State Year Acreage
1 Yellowstone ID/MT/WY 1872 4065493
2 Everglades FL 1934 1398800
3 Yosemite CA 1864 760917
4 Great Smoky Mountains NC/TN 1926 520269
5 Wolf Trap Farm VA 1966 130

Sometimes programmers run into problems when they mix input styles. When SAS reads a line
of raw data it uses a pointer to mark its place, but each style of input uses the pointer a little
differently. With list style input, SAS automatically scans to the next non-blank field and starts
reading. With column style input, SAS starts reading in the exact column you specify. But with
formatted input, SAS just starts reading—wherever the pointer is, that is where SAS reads.
Sometimes you need to move the pointer explicitly, and you can do that by using the column
pointer, @, where n is the number of the column SAS should move to.

Chapter 2: Getting Your Datq into SAS 47

In the preceding program, the column pointer @40 tells SAS to move to column 40 before reading
the value f.or Acreage. If you removed the column pointer from the INPUT statement, as shown in
the following statement, then SAS would start reading Acreage right after Year:

INPUT ParkName $ 1-22 State $ Year Acreage COMMAQS. ;

The resulting output would look like this:

" Selected National Parks 1
Obs ParkName State Year Acreage
1 Yellowstone ID/MT /WY 1872 4085
2 Everglades FL 1934
3 Yosemite CA 1864 .
4 Great Smoky Mountains NC/TN 1926 5
5 Wolf Trap Farm VA 1966

Becau.se Acreage was .read with formatted input, SAS started reading right where the pointer was.
Here is the data file with a column ruler for counting columns at the top and asterisks marking the
place where SAS started reading the values of Acreage:

————+~———l————+————2————+————3————+————4——~~+————5
Yellowstone ID/MT/WY 1872 * 4,065,493
Everg}ades FL 1934 * 1,398,800
Yosemite CA 1864 * 760,917
Great Smoky Mountains NC/TN 1926 * 520,269
Wolf Trap Farm VA 1966 * "130

The COMMAQJ. informat told SAS to read nine columns, and SAS did that even when those
columns were completely blank. .

The column pointer, @n, has other uses too and can be used anytime you want SAS to skip
backwards or forwards within a data line. You could use it, for example, to skip over unneeded
data, or to read a variable twice using different informats.

The Little SAS Book

- Reading Messy Raw Data

Sometimes you need to read data that just don’t line up in

“V IDDS1ETX MM '. nice columns or have pre-dictable lengths. When you
ID KYM37X412 W have these types of messy files, ordinary list, column, or

formatted input simply aren’t enough. You need more
tools in your bag; tools like the @ character’ column
pointer and the colon modifier.

The @‘character’ column pointer In section 2.9 we showed you how you can use the @
column pointer to move to a particular column before reading data. However, sometimes you.
don’t know the starting column of the data, but you do know that it always comes after a particular
character or word. For these types of situations, you can use the @'character’ col_umn poglterl. For
example, suppose you have a data file that has information about dog ownership. Nothing in the
file lines up, but you know that the breed of the dog always follows the word Breed:. You could
read the dog’s breed using the following INPUT statement:

INPUT @'Breed:’ DogBreed $;

The colon modifier The above INPUT statement will work just fine as long as the dog’s breed
name is 8 characters or less (the default length for a character variable). So if the dog is a Shepherd
you're fine, but if the dog is a Rottweiler, all you will get is Rottweil. If you assign the variable an
informat in the INPUT statement such as $20. to tell SAS that the variable’s field is 20 characters,
then SAS will read for 20 columns whether or not there is a space in those columns.' So the
DogBreed variable may include unwanted characters which appear after the dog’s breed on the
data line. If you only want SAS to read until it encounters a spacez, then you can use a colon
modifier on the informat. To use a colon modifier, simply put a colon (:) before the informat (e.g.

:$20. instead of $20.).
For example, given this line of raw data,

My dog Sam Breed: Rottweiler Vet Bills: $478

the following table shows the results you would get using different INPUT statements:

Statements Value of variable DogBreed
INPUT Q@’Breed:’ DogBreed $; Rottweil

INPUT @’Breed:’ DogBreed $20.; Rottweiler Vet Bill
INPUT @’Breed:’ DogBreed :520.; Rottweiler

Chapter 2: Getting Your Data into SAS 49

Example Web logs are a good example of messy data. The following data lines are part of a web
log for a dog care business website. The data lines start with the IP address of the computer
accessing the web page followed by other information including the date the file was accessed and
the file name.

130.192.70.235 - - [08/Jun/2001:23:51:32 -0700] "GET /rover.jpg HTTP/1.1" 200 66820
128.32.236.8 - - [08/Jun/2001:23:51:40 -0700} "GET /grooming.html HTTP/1.0" 200 8471
128.32.236.8 - - [08/Jun/2001:23:51:40 ~0700) "GET /Icons/brush.gif HTTP/1.0" 200 89
128.32.236.8 - [08/Jun/2001:23:51:40 -0700]) "GET /H poodle.gif HTTP/1.0" 200 1852
118.171.121.37 - [08/Jun/2001:23:56:46 —-0700] "GET /bath.gif HTTP/1.0" 200 14079
128.123.121.37 - [09/Jun/2001:00:57:49 -0700] "GET /lobo.gif HTTP/1.0" 200 18312
128.123.121.37 - - [09/Jun/2001:00:57:49 ~0700] "GET /statemnt.htm HTTP/1.0" 200 238
128.75.226.8 - [09/Jun/2001:01:59:40 -0700] "GET /Icons/leash.gif HTTP/1.0" 200 98

I

We are interested in the date the files were accessed and the filename. You can see that because the
IP address is not always the same number of characters, the date does not line up in the same
column all the time. Also, not only does the filename not line up in columns, but the length of the
filename is highly variable. Here is a SAS program that can read this file:

DATA weblogs;
INFILE 'c:\MyWebLogs\dogweblogs.txt';
THByTE FAESIREEIPA Bio
PROC PRINT DATA = weblogs;
TITLE ‘Dog Care Web Logs’;
RUN;

This INPUT statement uses @’[to position the column pointer to read the date, then uses @ GET’
to position the column pointer to read the filename. Because the filename is more than 8
characters, but not always the same number of characters, an informat with a colon modifier :$20. is
used to read the filename.

Here are the results of this program:

Dog. Care Web Logs 1

Obs AccessDate® File

1 15134 /rover.ipg

2 15134 /grooming.html

3 15134 /Icons/brush.gif

4 15134 /H_poodle.gif

5 15134 /bath.gif

6 15134 /lobo.gif

7 15135 /statemnt.htm

8 15135 /Icons/leash.gif

't is also possible to define a variable’s length in a LENGTH or INFORMAT statement instead of in an INPUT statement.
When a variable’s length is defined before the INPUT statement, then SAS will read until it encounters a space or re.aches the
length of the variable—the same behavior as using the colon modifier. The INFORMAT statement is covered in section 2.21 and

the LENGTH statement is covered in section 10.13.
* A space is the default delimiter. This method works for files with other delimiters as well. See sections 2.15 and 2.16 for more
information on reading delimited data.

® Notice that these dates are printed as the number of days since January 1, 1960. Section 4.5 discusses how to format these
values into readable dates.

50 The Little SAS Book

1 Reading Multiple Lines of Raw Data per Observation

In a typical raw data file each line of data represents one
observation, but sometimes the data for each observation

are spread over more than one line. Since SAS will auto-
matically go to the next line if it runs out of data before it has
read all the variables in an INPUT statement, you could just let
SAS take care of figuring out when to go to a new line. But if
you know that your data file has multiple lines of raw data per
observation, it is better for you to explicitly tell SAS when to go
N to the next line than to make SAS figure it out. That way you
won't get that suspicious SAS-went-to-a-new-line note in your log. To tell SAS when to skip to a
new line, you simply add line pointers to your INPUT statement.

The line pointers, slash (/) and pound-n (#n), are like road signs telling SAS, “Go this way.”

To read more than one line of raw data for a single observation, you simply insert a slash into
your INPUT statement when you want to skip to the next line of raw data. The #n line pointer
performs the same action except that you specify the line number. The in #n stands for the
number of the line of raw data for that observation; so #2 means to go to the second line for that
observation, and #4 means go to the fourth line. You can even go backwards using the #n line
pointer, reading from line 4 and then from line 3, for example. The slash is simpler, but # is

more flexible.

) || -

Example A colleague is trying to plan his next summer vacation, but he wants to go
someplace where the weather is just right. He obtains data from a meteorology database.
Unfortunately, he has not quite figured out how to export from this database and makes a rather

odd file.

The file contains information about temperatures for the month of July for Alaska, Florida, and
North Carolina. (If your colleague chooses the last state, maybe he can visit SAS headquarters.)
The first line contains the city and state, the second line lists the normal high temperature and
normal low (in degrees Fahrenheit), and the third line contains the record high and low:

Nome AK

55 44

88 29
Miami FL
90 75

97 65
Raleigh NC
88 68

105 50

Chapter 2: Getting Your Data into SAS

The following program reads the weather data from a file named Temperature.dat:

: 1g{regteha SAS data set named highlow;
ead the data file using line pointers;
DATA highlow; ° i

INFILE ‘c¢:\M RawData\Temperature. dat’;

A3 Recariny
PROC PRINT highlow;
RUNTITLE 'High and Low Temperatures for July’;

The INPUT statement reads the values for City and State from the first line of data. Then the
slash tells SAS to move to column 1 of the next line of data before reading NormalHigh and
NormalLow. Likewise, the #3 tells SAS to move to column 1 of the third line of data for that

observation before reading RecordHigh and RecordLow. As usual, there is more than one way to

write this INPUT statement. You could replace the slash with #2 or replace #3 with a slash.

This note appears in the Jog:

NOTE: 9 records were read from the infile -
o2as ¢ :\MyRawData\T ’
The minimum record length was 5. Y \Temperature. dat
The maximum record length was 10.

NOTE: The data set WORK.HIGHLOW has 3 observations and 6 variables.

Notice that while nine records were read from the infile, the SAS data set contains just three

TR

data lines were read for every observation j
_ just as planned. You should al
particularly when using line pointers. F ould alweys checyour 108

51

observations. Usually this would set off alarms in your mind, but here it confirms that indeed three

The output looks like this:
High and Low Temperatures for July 1
. Normal Normal Record Record
Obs City State High Low High Low
1 Nome AK 55 44 88 29
2 Miami FL 90 75 97 65
3 Raleigh NC 88 68 105 50

52

The Little SAS Book

Reading Multiple Observations per Line of Raw Data

There ought to be a Murphy’s law of data: whatever form
data can take, it will. Normally SAS assumes that each
line of raw data represents no more than one cbservation.

" " 2 When you have multiple observations per line of raw
data, you can use double trailing at signs (@@) at the end of your INPUT statement. This line-
hold specifier is like a stop sign telling SAS, “Stop, hold that line of raw data.” SAS will hold that
line of data, continuing to read observations until it either runs out of data or reaches an INPUT
statement that does not end with a double trailing @.

Example Suppose you have a colleague who is planning a vacation and has obtained a file
containing data about rainfall (in inches) for the three cities he is considering. The file contains
the name of each city, the state, average rainfall for the month of July, and average number of
days with measurable precipitation in July. The raw data look like this:

Nome AK 2.5 15 Miami FL 6.75
18 Raleigh NC . 12

Notice that in this data file the first line stops in the middle of the second observation. The
following program reads these data from a file named Precipitation.dat and uses an @@ so SAS
does not automatically go to a new line of raw data for each observation:

* Input more than one observation from each record;
DATA rainfall;
INFILE ‘c:\MyRawData\Precipitation.dat’;

PROC PRINT DATA = rainfall
TITLE ‘Normal Total Precipitation and’;
TITLE2 ‘Mean Days with Precipitation for July’;
RUN;

Chapter 2: Getting Your Data into SAS

These notes will appear in the log:

NOTE: 2 recgr@s were read from the infile ‘c:\MyRawData\Precipitation.dat’
The minimum record length was 18.
The maximum record length was 28.

NOTE: SAS went to a new line when INPUT statement reached past the
end of a line.

NOTE: The data set WORK.RAINFALL has 3 observations and
4 variables.

While only two records were read from the raw data file, the RAINFALL data set contains
three observations. The log also includes a note saying SAS went to a new line when the INPUT
statement reached past the end of a line. This means that SAS came to the end of a line in the
middle of an observation and continued reading with the next line of raw data. Normally these
messages would indicate a problem, but in this case they are exactly what you want.

The output looks like this:

53

Normal Total Precipitation and 1
Mean Days with Precipitation for July

Normal Mean

Obs City State Rain DaysRain
1 Nome AK 2.50 15
2 Miami FL 6.75 18
3 Raleigh NC . 12

The Little SAS Book

3 Reading Part of a Raw Data File

At some time you may find that you need to read a small fraction of

the records in a large data file. For example, you might be reading

US. census data and want only female heads-of-household who have
incomes above $225,000 and live in Walla Walla, Washington. You could
read all the records in the data file and then throw out the unneeded

: ones, but that would waste time.

Luckily, you don’t have to read all the data before you tell SAS whether to keep an observation.
Instead, you can read just enough variables to decide whether to keep the current observation,
then end the INPUT statement with an at sign (@), called a trailing at. This tells SAS to hold that
line of raw data. While the trailing @ holds that line, you can test the observation with an IF
statement to see if it’s one you want to keep. If it is, then you can read data for the remaining
variables with a second INPUT statement. Without the trailing @, SAS would automatically start
reading the next line of raw data with each INPUT statement.

The trailing @ is similar to the column pointer, @, introduced in section 2.9. By specifying a
number after the @ sign, you tell SAS to move to a particular column. By using an

@ without specifying a column, it is as if you are telling SAS, “Stay tuned for more information.
Don’t touch that dial!” SAS will hold that line of data until it reaches either the end of the DATA
step, or an INPUT statement that does not end with a trailing @.

Example You want to read part of a raw data file containing local traffic data for freeways and
surface streets. The data include information about the type of street, name of street, the average
number of vehicles per hour traveling that street during the morning, and the average number of
vehicles per hour for the evening. Here are the raw data:

freeway 408 3684 3459
surface Martin Luther King Jr. Blvd. 1590 1234
surface Broadway 1259 1290
surface Rodeo Dr. 1890 2067
freeway 608 4583 3860
freeway 808 2386 2518
surface Lake Shore Dr. 1590 1234
surface Pennsylvania Ave. 1259 1290

Suppose you want to see only the freeway data at this point so you read the raw data file,
Traffic.dat, with this program:
* Uge a trailing @, then delete surface streets;

DATA freeways;
INFILE ‘c:\MyRawData\Tr

dat

PROC PRINT DATA = freeways;
TITLE 'Traffic for Freeways’;
RUN;

Chapter 2: Getting Your Data into SAS 55

Notice that there are two INPUT statements. The first reads the character variable Type and then
ends with an @. The trailing @ holds each line of data while the IF statement tests it. The second
INPUT statement reads Name (in columns 9 through 38), AMTraffic, and PMTraffic. If an
observation has a value of surface for the varjable Type, then the second INPUT statement never
executes. Instead SAS returns to the beginning of the DATA step to process the next observation

and does not add the unwanted observation to the FREEWAYS data set. (Do not pass go, do not
collect $200.)

When you run this program, the log will contain the following two notes, one saying that eight

records were read from the input file and another saying that the new data set contains only three
observations: :

NOTE: 8 recqr@s were read from the infile ’c¢:\MyRawData\Traffic.dat’.
The minimum record length was 47.
The maximum record length was 47.

NOTE: The data set WORK.FREEWAYS has 3 observations and 4 variables.

The other five observations had a value of surface for the variable Type and were deleted by the IF
statement. The output looks like this: :

Traffic for Freeways 1
Obs Type Name AMTraffic PMTraffic
1 freeway 408 3684 3459
2 freeway 608 4583 3860
3 freeway 808 2386 2518

Tr§111ng @ versus double trailing @ The double trailing @, discussed in the previous
section, is similar to the trailing @. Both are line-hold specifiers; the difference is how long they
hold a line of data for input. The trailing @ holds a line of data for subsequent INPUT statements,
but releases that line of data when SAS returns to the top of the DATA step to begin building the
next observation. The double trailing @ holds a line of data for subsequent INPUT statements even
when SAS starts building a new observation. In both cases, the line of data is released if SAS
reaches a subsequent INPUT statement that does not contain a line-hold specifier.

56

The Little SAS Book

Controlling Input with Options in the INFILE Statement

So far in this chapter, we have seen ways to use the INPUT statement to read many different
types of raw data. When reading raw data files, SAS makes certain assumptions. For example,
SAS starts reading with the first data line and, if SAS runs out of data on a line, it automatically
goes to the next line to read values for the rest of the variables. Most of the time this is OK, but
some data files can’t be read using the default assumptions. The options in the INFILE statement
change the way SAS reads raw data files. The following options are useful for reading particular
types of data files. Place these options after the filename in the INFILE statement.

FIRSTOBS= The FIRSTOBS= option tells SAS at what line to begin reading data. This
is useful if you have a data file that contains descriptive text or header information at the
beginning, and you want to skip over these lines to begin reading the data. The following
data file, for example, has a description of the data in the first two lines:

Ice-cream sales data for the summer

Flavor Location Boxes sold
Chocolate 213 123
Vanilla 213 512
Chocolate 415 242

The following program uses the FIRSTOBS= option to tell SAS to start reading data on the third
line of the file:

DATA icecream;
INFILE ‘c:\MyRawData\Sales.dat’ L
INPUT Flavor $ 1-9 Location BoxesS

RUN;

OBS= The OBS= option can be used anytime you want to read only a part of your data file.
It tells SAS to stop reading when it gets to that line in the raw data file. Note that it does not
necessarily correspond to the number of observations. If, for example, you are reading two raw
data lines for each observation, then an OBS=100 would read 100 data lines, and the resulting
SAS data set would have 50 observations. The OBS= option can be used with the FIRSTOBS=
option to read lines from the middle of the file. For example, suppose the ice-cream sales data
had a remark at the end of the file that was not part of the data.

Ice-cream sales data for the summer

Flavor Location Boxes sold
Chocolate 213 123
Vanilla 213 512
Chocolate 415 242

Data verified by Blake White

With FIRSTOBS=3 and OBS=5, SAS will start reading this file on the third data line and stop
reading after the fifth data line.

DATA icecream; s e 4 amwm g o ez n
INFILE ‘c:\MyRawData\Sales.dat’ FIRSTOBS = 3:0BS=5;
INPUT Flavor $ 1-9 Location BoxesSold;

RUN;

Chapter 2: Getting Your Data into SAS 57

MISSOVER By default, SAS will go to the next data line to read more data if SAS has reached
the end of the data line and there are still more variables in the INPUT statement that have not
been assigned values. The MISSOVER option tells SAS that if it runs out of data, don't go to the
next data line. Instead, assign missing values to any remaining variables. The following data file
illustrates where this option may be useful. This file contains test scores for a self-paced course.
Since not all students complete all the tests, some have more scores than others.

Nguyen 89 76 91 82
Ramos 67 72 80 76 86
Robbins 76 65 79

The following program reads the data for the five test scores, assigning missing values to tests not
completed: '

DATA classl102; -
INFILE ‘c:\MyRawData\Scores.dat’ I i3

INPUT Name $ Testl Test2 Test3 Test4d Tes£5;
RUN;

TRUNCOVER You need the TRUNCOVER option when you are reading data using column
or formatted input and some data lines are shorter than others. If a variable’s field extends past the
end of the data line, then, by default, SAS will go to the next line to start reading the variable’s
value. This option tells SAS to read data for the variable until it reaches the end of the data line,

or the last column specified in the format or column range, whichever comes first. The next file
contains addresses and must be read using column or formatted input because the street names
have embedded blanks. Note that the data lines are all different lengths:

John Garcia 114 Maple Ave.
Sylvia Chung 1302 wWashington Drive
Martha Newton 45 S.E. 1l4th 8t.

This program uses column input to read the address file. Because some of the addresses stop
before the end of the variable Street’s field (columns 22 through 37), you need the TRUNCOVER
option. Without the TRUNCOVER option, SAS would try to go to the next line to read the data for
Street on the first and third records.

DATA homeaddress; 3
INFILE ‘c:\MyRawData\Address.dat’ TKi
INPUT Name $ 1-15 Number 16-19 Stree

RUN;

TRUNCOVER is similar to MISSOVER. Both will assign missing values to variables if the data
line ends before the variable’s field starts. But when the data line ends in the middle of a variable
field, TRUNCOVER will take as much as is there, whereas MISSOVER will assign the variable a
missing value.

Th

The Little SAS Book

Reading Delimited Files with the DATA Step

Delimited files are raw data files that have a special
character separating data values. Many programs can save
data as delimited files, often with commas or tab characters
for delimiters. SAS gives you two options for the INFILE
statement that make it easy to read delimited data files: the
DLM-= option and the DSD option.

e
i
i
3
i
i
o H

e DLM-= option If you read your data using list input, the DATA step expects your file
to have spaces between your data values. The DELIMITER=, or DLM=, option in the INFILE
statement allows you to read data files with other delimiters. The comma and tab characters are
common delimiters found in data files, but you could read data files with any delimiter character
by just enclosing the delimiter character in quotation marks after the DLM= option (i.e.,
DLM="&).

Example The following file is comma-delimited where students’ names are followed by the
number of books they read for each week in a summer reading program:
Grace,3,1,5,2,6

Martin,1,2,4,1,3
Scott,9,10,4,8,6

This program uses list input to read the books data file specifying the comma as the delimiter:

TA reading

INPUT Name S Weekl Week2 Week3 Week4d Week5;
RUN;

If the same data had tab characters between values instead of commas, then you could use the
following program to read the file. This program uses the DLM="09"X option. In ASCII, 09 is the
hexadecimal equivalent of a tab character, and the notation '09"X means a hexadecimal 09. If
your computer uses EBCDIC (IBM mainframes) instead of ASCII, then use DLM="05"X.

By default, SAS interprets two or more delimiters in a row as a single delimiter. If your file has
missing values, and two delimiters in a row indicate a missing value, then you will also need the
DSD option in the INFILE statement.

The DSD option The DSD (Delimiter-Sensitive Data) option for the INFILE statement

does three things for you. First, it ignores delimiters in data values enclosed in quotation marks.
Second, it does not read quotation marks as part of the data value. Third, it treats two delimiters
in a row as a missing value. The DSD option assumes that the delimiter is a comma. If your
delimiter is not a comma then you can use the DLM= option with the DSD option to specify the
delimiter. For example, to read a tab-delimited ASCII file with missing values indicated by two
consecutive tab characters use

INFILE 'file-specification’ DLM='09’X DSD;

Chapter 2: Getting Your Data into SAS 59

CSV files Comma-separated values files, or CSV files, are a common type of file that can be
read with the DSD option. Many programs, such as Microsoft Excel, can save data in CSV format.
These files have commas for delimiters and consecutive commas for missing values; if there are
commas in any of the data values, then those values are enclosed in quotation marks.

Example The following example illustrates how to read a CSV file using the DSD option. Jerry’s
Coffee Shop employs local bands to attract customers. Jerry keeps records of the number of cus-
tomers for each band, for each night they play in his shop. The band’s name is followed by the
date and the number of customers present at 8 p.m., 9 p.m., 10 p.m., and 11 p.m.

Lupine Lights,12/3/2003,45,63,70,

Awesome Octaves,12/15/2003,17,28,44,12

"Stop, Drop, and Rock-N-Roll",1/5/2004,34,62,77,91
The Silveyville Jazz Quartet,1/18/2004,38,30,42,43
Catalina Converts,1/31/2004,56,,65,34

Notice that one group’s name has embedded commas, and is enclosed in quotation marks. Also, the
last group has a missing data point for the 9 p.m. hour as indicated by two consecutive commas. Use
the DSD option in the INFILE statement to read this data file. It is also prudent, when using the DSD
option, to add the MISSOVER option if there is any chance that you have missing data at the end of
your data lines (as in the first line of this data file). The MISSOVER option tells SAS that if it runs out
of data, don’t go to the next data line to continue reading. Here is the program that will read this data
file:

W — :
INPUT BandNaﬁé :$30. GigDate :MMDDYY10. EightPM NinePM TenPM ElevenPM;

PROC PRINT DATA = music; ’

TITLE ’Customers at Each Gig’;

RUN;

Notice that for BandName and GigDate we use colon modified informats. The colon modifier tells
SAS to read for the length of the informat (30 for BandName and 10 for GigDate), or until it
encounters a delimiter, whichever comes first. Because the names of the bands are longer than the
default length of 8 characters, we use the :$30. informat for BandName to read up to 30 characters.

Here are the results of the PROC PRINT:

Customers at Each Gig 1

Gig Eight Nine Ten Eleven

Obs BandName Date’ PM PM PM PM
1 Lupine Lights 16042 45 63 70 .
2 Awesome Octaves 16054 17 28 44 12
3 Stop, Drop, and Rock-N-Roll 16075 34 62 77 91
4 The Silveyville Jazz Quartet 16088 38 30 42 43
5 Catalina Converts 16101 56 . 65 34

! Notice that these dates are printed as the number of days since January 1, 1960. Section 4.5 discusses how to format these
values into readable dates.

e P N

The Little SAS Book

6 Reading Delimited Files with the IMPORT Procedure

We suspect that by now you have realized that with SAS there .

is usually more than one way to accomplish the same result.
In section 2.15 we showed you how to read delimited data
files using the DATA step; now we are going to show you
how to read delimited files a different way: using th
IMPORT procedure.’)

There are a few things that PROC IMPORT does for you that make it easy to read certain types

of data files. PROC IMPORT will scan your data file and automatically determine the variable
types (character or numeric), will assign proper lengths to the character variables, and can
recognize some date formats.” PROC IMPORT will treat two consecutive delimiters in your data
file as a missing value, will read values enclosed by quotation marks, and assign missing values to
variables when it runs out of data on a line. Also, if you want, you can use the first line in your data
file for the variable names. The IMPORT procedure actually writes a DATA step for you, and after
you submit your program, you can look in the Log window to see the DATA step it produced.

The simplest form of the IMPORT procedure is
PROC IMPORT DATAFILE = ’'filename’ OUT = data-set;

where the file you want to read follows the DATAFILE= option, and the name of the SAS data set
you want to create follows the OUT= option. SAS will determine the file type by the extension of
the file as shown in the following table.

Type of File Extension " DBMS Identifier
Comma-delimited .csv Ccsv
Tab-delimited Axt TAB

Delimiters other than commas or tabs DLM

If your file does not have the proper extension, or your file is of type DLM, then you must use

the DBMS= option in the PROC IMPORT statement. Use the REPLACE option if you already have
a SAS data set with the name you specified in the OUT= option, and you want to overwrite it. Here
is the general form of PROC IMPORT with both the REPLACE and the DBMS options:

PROC IMPORT DATAFILE = ‘filename’ OUT = data-set
DBMS = identifier REPLACE;

The IMPORT procedure will, by default, get variable names from the first line in your data file. If
you do not want this, then add the GETNAMES=NO statement after the PROC IMPORT state-
ment. PROC IMPORT will assign the variables the names VAR1, VAR2, VAR3, and so on. Also if
your data file is type DLM, PROC IMPORT assumes that the delimiter is a space. If you have a

! The IMPORT procedure is available on UNIX, OpenVMS, and Windows only.

: By default the IMPORT procedure will scan the first 20 rows of delimited files. If you have all missing data in these rows,
then the Import Wizard may not read the file correctly. To change the number of rows, enter the REGEDIT command on the
SAS command line, then select Pind from the Edit menu and search for “GuessingRows” (make sure Value Names is
checked). Then double click on “GuessingRows” to change the value.

Chapter 2: Getting Your Data into SAS 61

different delimiter, then specify it in the DELIMITER= statement. The following shows both these
statements:

PROC IMPORT DATAFILE = 'filename’ OUT = data-set
DBMS = DLM REPLACE;
GETNAMES = NO;
DELIMITER = ‘delimiter-character’;
RUN;

Example The following example uses data about Jerry’s Coffee Shop where Jerry employs local
bands to attract customers. Jerry keeps records of the number of customers present throughout the
evening for each band. The data are the band name, followed by the gig date, and the number of
customers present at 8 p.m., 9 p.m,, 10 p.m., and 11 p.m. Notice that one of the bands, “Stop, Drop,
and Rock-N-Roll,” has commas in the name of the band. When a data value contains the delimiter,
then the value must be enclosed in quotation marks.

Band Name,Gig Date,Eight PM,Nine PM,Ten PM,Eleven PM

Lupine Lights,12/3/2003,45,63,70,

Awesome Octaves,12/15/2003,17,28,44,12

“Stop, Drop, and Rock-N-Roll”,1/5/2004,34,62,77,91

The Silveyville Jazz Quartet,1/18/2004,38,30,42,43
Catalina Converts,1/31/2004,56,,65,34

Here is the program that will read this data file and print out the SAS data set after importing:

TITLE 'Customers at Each Gig';
RUN;

Here are the results of the PROC PRINT. Notice that GigDate is a readable date. This is because
IMPORT automatically assigns informats and formats to some forms of dates. (See section 4.5 for a
discussion of formats.)

Customers at Each Gig 1

Obs Band_Name Gig_Date Eight_PM
1 Lupine Lights 12/03/2003 45
2 Awesome Octaves 12/15/2003 17
3 Stop, Drop, and Rock-N-Roll 01/05/2004 34
4 The Silveyville Jazz Quartet 01/18/2004 38
5 Catalina Converts 01/31/2004 56
Obs Nine PM . Ten_PM Eleven_PM

1 63 70 .

2 28 44 12

3 62 77 91

4 30 42 43

5 65 34

62

The Little SAS Book

Reading PC Files with the IMPORT Procedure

If you have SAS/ACCESS for PC File Formats software, then you can use the IMPORT
procedure to import several types of PC files. The IMPORT procedure will scan your file to
determine variable 1.'ypes1 and will, by default, use the first row of data for the variable names.
In the Windows operating environment, you can import Microsoft Excel, Lotus, dBase, and
Microsoft Access files’. On UNIX systems you can import dBase files, and starting with SAS 9.1,
UNIX users can also read Microsoft Excel and Microsoft Access files. An alternative method of
reading PC files in the Windows operating environment which does not require SAS/ACCESS is
Dynamic Data Exchange (DDE) which is covered in section 2.18.

Microsoft Excel, Lotus, and dBase files Here is the general form of the IMPORT
procedure for reading PC files:

PROC IMPORT DATAFILE = ‘filename’ OUT = data-set
DBMS = identifier REPLACE;

where filename is the file you want to read and data-set is the name of the SAS data set you want to
create. The REPLACE option tells SAS to replace the SAS data set named in the OUT= option if it
already exists. If your data file has the proper extension, as shown in the following table, then you
may not need the DBMS= option. Of course, it never hurts to specify the DBMS.

Type of File Extension DBMS Identifier
Microsoft Excel Xls EXCEL?
EXCEL5
EXCEL4
Lotus wk4 WK4
.wk3 WK3
.wkl WK1
dBase .dbf DBF

If you are reading a Microsoft Excel file, and you have more than one sheet in your file, then you
can specify which sheet to read using the following statement:

SHEET=name-of-sheet;

By default, the IMPORT procedure will take the variable names from the first row of the
spreadsheet (Microsoft Excel and Lotus only). If you do not want this, then you can add the
following statement to the procedure and SAS will name the variables F1, F2, and so on.

GETNAMES=NO;

! By default the IMPORT procedure will scan the first 8 rows for Microsoft Excel files. lf you have all missing data in these
rows, then the IMPORT procedure may not read the file correctly. To change the number of rows, submit the REGEDIT
command from the Windows command line (from the Start menu, select Run). Select Find from the Edit menu, and search
for “TypeGuessRows”. Double-click on TypeGuessRows to change the value.

i you are running Microsoft Windows 64-Bit Edition, then you cannot read Microsoft Access or Microsoft Excel 97,
Excel 2000, or Excel 2002 files.

* The DBMS identifiers, EXCEL, EXCEL2002, EXCEL2000, and EXCEL97, are interchangeable since all these types of Microsoft
Excel files have the same format. If you want to read a Microsoft Excel4 or Microsoft Excel5 file, then you must specify the
DBMS identifier.

isf
|
L

e e

Chapter 2: Getting Your Data into SAS 63

Microsoft Access Files If you want to read Microsoft Access files, then instead of using the
DATAFILE= option, you need a DATABASE= and a DATATABLE=option as follows":

PROC IMPORT DATABASE = ‘database-path’ DATATABLE = 'table-name’
OUT = data-set DBMS = identifier REPLACE;

The following are the DBMS identifiers for Microsoft Access:

Type of File Extension DBMS Identifier
Microsoft Access .mdb ACCESS’
ACCESS97

Example Suppose you have the following Microsoft Excel spreadsheet which contains data
about onion ring sales for the local minor league baseball team games. The visiting team name is
followed by the sales in the concession stands and in the bleachers, then the number of hits and
runs for each team.

Visiting Team C Sales Our Hits|Their Hits|Our Runs | Their Runs]|
Columbia Peaches 35 67 1 10 2 1l
Plains Peanuts 210 2 5 0 2]
Gilroy Gatlics 15) 1035 12 1 7 6!
Sacramento Tomatoes 124 8a 151 4 g 1)

The following program reads the Microsoft Excel file using the IMPORT procedure. Microsoft
Excel does not need to be running to use the IMPORT procedure.

* Read an Excel
‘PROC IMPORT -
PROC PRINT DATA sales;

TITLE 'SAS Data Set Read From Excel File';
RUN;

Here are the results:

SAS Data Set Read From Excel File 1
Their_ Their_

Obs Visiting Team G_Sales B_Sales Our_Hits Hits Our_Runs Runs
1 Columbia Peaches 35 67 1 10 2 1
2 Plains Peanuts 210 . 2 5 0 2
3 Gilroy Garlics 15 1035 12 11 7 6
4 Sacramento Tomatoes 124 85 15 4 9 1

* Additional options may be needed if your Microsoft Access database is password protected. See the SAS Help and
Documentation for more information.

* The DBMS identifiers ACCESS, ACCESS2000, and ACCESS2002 are interchangeable since all these types of Microsoft Access
files have the same format. If you want to read a Microsoft Access 97 file, then you must specify the DBMS identifier.

64

The Little SAS Book

Reading PC Files with DDE

One method for reading PC files is Dynamic Data Exchange (DDE). DDE has some advantages
and disadvantages when compared to other methods of reading PC files. DDE can only be used in
the Windows operating environment, and the application (such as Microsoft Excel) must be
running on the computer while SAS is accessing the file. But DDE does allow you to directly
access data stored in PC files and it does not require any additional SAS products to be licensed.
There are several ways to access data through DDE. We will present three methods:

¢ copying data to the clipboard
¢ specifying the DDE triplet
+ starting the PC application from SAS, then reading the data.

Copying data to the clipboard If you don't want to be bothered with determining the DDE
triplet, then you can just copy the rows and columns that you want to read into SAS onto the
clipboard. Then you use the CLIPBOARD keyword in the DDE FILENAME statement. For
example, suppose you have the following spreadsheet open in Microsoft Excel.

TE

Visiting Team C Sales |B Sales

Our Hits | Their Hits {Qur Runs i Their Runs

Columbia Peaches 35 514 10 10

Plains Peanuts 210 2]

Gilroy Garlics 15 1035 12 11

OI~Ok)

Sacramento Tomatoes 124 85 15 4

Copy the rows and columns you want to read into SAS (A2 to G5) onto the clipboard, then,
without closing Microsoft Excel, submit the following SAS program:

* Read an Excel spreadsheet using DDE;
. AT

INPUT VisitingTeam CSales BSales OurHits TheirHits OurRuns TheirRuns;
RUN;

The FILENAME statement defines a fileref (BASEBALL) as type DDE and specifies that you want
to read the contents of the clipboard. By default, DDE assumes there are spaces between your data
values. So, if you have embedded spaces in your data, then you will need the NOTAB and the
DLM="09"x options in the INFILE statement. These two options tell SAS to put a tab character
(NOTAB) between values and define the tab character as the delimiter (DL.M="09"x). In addition, if
you have missing values in your data, you will want to add the DSD and MISSOVER options to the
INFILE statement. The DSD option treats two delimiters in a row as missing data and the
MISSOVER options tells SAS not to go to the next data line to continue reading data if it runs out of
data on the current line.

Specifying the DDE triplet The clipboard method is easy, but it requires you to take the

extra step of copying the data to the clipboard before you run the SAS program. If you know the
DDE triplet for the data you want to read, then you can just specify the triplet in the FILENAME
statement. However figuring out what the DDE triplet is, can be a little tricky. Each application

=N~

Chapter 2: Getting Your Data into SAS 65

has its own way of specifying a DDE triplet. In general, the DDE triplet takes on the following
form:

application | topic ! item

Specific information about DDE triplets can be found in the documentation for the PC application.
However, there is a way to find out the DDE triplet for your data from within SAS. First, copy the
data you want onto the clipboard, then toggle to your SAS session. From the Solutions menu, select
Accessories. Then select DDE Triplet. A window will appear that will give the DDE triplet for
the data that you copied to the clipboard. For example, the DDE triplet for the spreadsheet shown is

.Excel|C:\MyFiles\ [BaseBall.xls]sheetl!{R2C1:R5C7

So, to read the same data by specifying the DDE triplet, you would use the following FILENAME
statement and the rest of the program is the same:

FILENAME baseball DDE 'Excel|C:\MyFiles\[BaseBall.xls]sheetl!R2C1:R5C7';

Starting the application from SAS With both the previous examples, the PC application
must first be running before you can run the SAS program. Since this is sometimes inconvenient,
you may want to start the application from within SAS, then read the data using DDE. You need to
add two things to your SAS program to do this. First, you need the NOXWAIT and NOXSYNC
systems options, then you need to use the X statement. Here is an example program:

* Read an Excel spreadsheet using DDE;

R

FILENAME baseball DDE 'Excel|C:\MyFiles\[BaseBall.xls]sheetl!R2C1:R5C7';
DATA sales;

INFILE baseball NOTAB DLM='09'x DSD MISSOVER;

LENGTH VisitingTeam $ 20; -

INPUT VisitingTeam CSales BSales OurHits TheirHits OurRuns TheirRuns;
RUN;

The NOXWAIT and the NOXSYNC options tell SAS not to wait for input from the user, and to
return control back to SAS after executing the command. The X statement simply tells Windows to
execute the program or open the file that follows in quotation marks. Notice that there are two sets
of quotation marks around the filename. If you have embedded spaces in the path for your
filename, then you need to enclose the filename in two sets of quotation marks. Note that using
this method, you must specify the DDE triplet in the FILENAME statement.

66

The Little SAS. Book

Temporary versus Permanent SAS Data Sets

SAS data sets are available in two varieties: temporary and permanent. A temporary SAS data set
is one that exists only during the current job or session and is automatically erased by SAS when
you finish. If a SAS data set is permanent, that doesn’t mean that it lasts for eternity, just that it
remains when the job or session is finished.

Each type of data set has its own advantages. Sometimes you want to keep a data set for later
use, and sometimes you don’t. In this book, most of our examples use temporary data sets
because we don’t want to clutter up your disks. But, in general, if you use a data set more than
once, it is more efficient to save it as a permanent SAS data set than to create a new temporary
SAS data set every time you want to use the data.

SAS data set names All SAS data sets have a two-level name such as WORK.BIKESALES,
with the two levels separated by a period. The first level of a SAS data set name, WORK in this
case, is called its libref (short for SAS data library reference). A libref is like an arrow pointing to a
particular location. Sometimes a libref refers to a physical location, such as a floppy disk or CD,
while other times it refers to a logical location such as a directory or folder. The second level,
BIKESALES, is the member name that uniquely identifies the data set within the library.

Both the libref and member name follow the standard rules for valid SAS names. They must start
with a letter or underscore and contain only letters, numerals, or underscores. However, librefs
cannot be longer than 8 characters while member names can be up to 32 characters long.

You never explicitly tell SAS to make a data set temporary or permanent, it is just implied by the
name you give the data set when you create it. Most data sets are created in DATA steps, but
PROC steps can also create data sets. If you specify a two-level name (and the libref is something
other than WORK) then your data set will be permanent. If you specify just one level of the data
set name (as we have in most of the examples in this book), then your data set will be temporary.
SAS will use your one-level name as the member name and automatically append the libref
WORK. By definition, any SAS data set with a libref of WORK is a temporary data set and will be
erased by SAS at the end of your job or session. Here are some sample DATA statements and the
characteristics of the data sets they create:

DATA statement Libref Member name Type

DATA ironman; WORK ironman temporary
DATA WORK .tourdefrance; . WORK tourdefrance temporary
DATA Mylib.doublecentury; Mylib doublecentury permanent

Temporary SAS data sets The following program creates and then prints a temporary
SAS data set named DISTANCE:

DATA dis
Miles

26.22;
Kilometers = 1.61 * Miles;
PROC PRINT DATA = distance;
RUN;

Chapter 2: Getting Your Data into SAS 67

Notice that the libref WORK does not appear in the DATA statement. Because the data set has
just a one-level name, SAS assigns the default library, WORK, and uses DISTANCE as the
member name within that library. The log contains this note with the complete, two-level name:

NOTE: The data set WORK.DISTANCE has 1 observations and 2 variables.

Permanent SAS data sets Before you can use a libref, you need to define it. You can define
libraries using the New Library window in SAS Explorer (covered in section 1.11). You can also
use the LIBNAME statement (covered in section 2.20) or you can let SAS define the libref for you
using direct referencing (covered in section 2.21)".

The Mylib library, defined in Frjomramm
the New Library window
shown in the figure, points to
the ‘Ruiz Racing Bicycles’
folder under the ‘Documents
and Settings’ folder, on the C
drive (Windows).

Ruiz Racing Bicyéles

The following program is the same as the preceding one except that it creates a permanent SAS
data set. Notice that a two-level name appears in the DATA statement.

e

Miles = 26.22;
Kilometers = 1.61 * Miles;
PROC PRINT DATA Mylib.distance;
RUN;

It =

This time the log contains this note:

NOTE: The data set MYLIB.DISTANCE has 1 observations and 2 variables.

This is a permanent SAS data set because the libref is not WORK.

! With batch processing under O5/390 or z/OS, you may also use Job Control Language (JCL). The DDname is your libref,

The Little SAS Book

Using Pérmanent SAS Data Sets with LIBNAME Statements

A libref is a nickname that corresponds to the location of a SAS data
library. When you use a libref as the first level in the name of a SAS
data set, SAS knows to look for that data set in that location. This
section shows you how to define a libref using the LIBNAME
statement which is the most universal (and therefore most portable)
method of creating a libref. You can also define a libref using the
New Library window (covered in section 1.11) or for

some computers, operating environment control language.’ The
basic form of the LIBNAME statement is

LIBNAME libref ’your-SAS-data-library’;

After the keyword LIBNAME, you specify the libref and then the location of your permanent
SAS data set in quotation marks. Librefs must be eight characters or shorter; start with a letter or
underscore; and contain only letters, numerals, or underscores. Here is the general form of
LIBNAME statements for individual operating environments:

Windows: LIBNAME libref ‘drive:\directory’;
UNIX: LIBNAME libref ’/home/path’;
OpenVMS: LIBNAME libref ’[userid.directoryl]’:

0S/390 or z/OS: LIBNAME libref ‘data-set-name’;

Creating a permanent SAS data set The following example creates a permanent SAS
data set containing information about magnolia trees. For each type of tree the raw data file
includes the scientific name, common name, maximum height, age at first blooming when
planted from seed, whether evergreen or deciduous, and color of flowers.

M. grandiflora Southern Magnolia 80 15 E white
M. campbellii 80 20 D rose
M. liliiflora ©Lily Magnolia 12 4 D purple
M. soulangiana Saucer Magnolia 25 3 D pink
M. stellata Star Magnolia 10 3 D white

This program sets up a libref named PLANTS pointing to the MySASLib directory on the C drive
(Windows). Then it reads the raw data from a file called Mag.dat, creating a permanent SAS data
set named MAGNOLIA which is stored in the PLANTS library.

ek iMy at’;
INPUT ScientificName $ 1-14 CommonName $ 16-32 MaximumHeight
AgeBloom Type $ Color §;

RUN;

! With batch processing under 0$/390 or z/OS, you may use Job Control Language (JCL). The DDname is your libref.

Chapter 2: Getting Your Data into SAS 69

The log contains this note showing the two-level data set name:

NOTE: The data set PLANTS.MAGNOLIA has 5 observations and 6 variables.

If you print a directory of files on your computer, you will not see a file named
PLANTS.MAGNOLIJA. That is because operating environments have their own systems for
naming files. When run under Windows, UNIX, or OpenVMS, this data set will be called
magnolia.sas7bdat. Under O5/390 or z/0OS, the filename would be the data-set-name
specified in the LIBNAME statement.

Reading a permanent SAS data set To use a permanent SAS data set, you can include a
LIBNAME statement in your program and refer to the data set by its two-level name. For instance,
if you wanted to go back later and print the permanent data set created in the last example, you
could use the following statements:

TITLE 'Magnolias’;
RUN;

This time the libref in the LIBNAME statement is EXAMPLE instead of PLANTS, but it points to
the same location as before, the MySASLib directory on the C drive. The libref can change, but the
member name, MAGNOLIA, stays the same.

The output looks like this:
Magnolias 1
Maximum Age
Obs ScientificName CommonName Height Bloom Type Color
1 M. grandiflora Southern Magnolia 80 15 E white
2 M. campbellii 80 20 D rose
3 M. liliiflora Lily Magnolia 12 4 D purple
4 M. soulangiana Saucer Magnolia 25 3 D pink
5 M. stellata Star Magnolia 10 3 D white

70

The Little SAS Book

Using Permanent SAS Data Sets by Direct Referencing

If you don’t want to be bothered with setting up librefs and defining SAS libraries, but you still
want to use permanent SAS data sets, then you can use direct referencing. Direct referencing still
uses SAS libraries, but instead of defining the library yourself, you let SAS do it for you.

Using direct referencing is easy, just take your operating environment’s name for a file, enclose it in
quotation marks, and put it in your program. The quotation marks tell SAS that this is a permanent
SAS data set. Here is the general form of the DATA statement for creating permanent SAS data sets

under different operating environments: .
Windows: DATA ‘drive:\directory\filename';
UNIX: DATA ' /home/path/filename’;
OpenVMS: DATA ' [userid.directory]filename’;

0S5/390 or z/OS: DATA ‘data-set-name’;

For directory-based operating environments, if you leave out the directory or path, then SAS uses
the current working directory. For example, this statement would create a permanent SAS data set
named TREES in your current working directory.

DATA 'trees’;

For UNIX and OpenVMS operating environments, by default, your current directory is the
directory where you started SAS. You can change the current directory for the SAS session by
choosing Change Directory from the Options menu of the Tools pull-down menu. Under
Windows the name of the current working directory is displayed at the bottom of the SAS window.
You can change the directory for the current SAS session by double-clicking on the directory name
which will open the Change Folder window.

Example The following example creates a permanent SAS data set containing information
about magnolia trees. For each type of tree the raw data file includes the scientific name,
common name, maximum height, age at first blooming when planted from seed, whether
evergreen or deciduous, and color of flowers.

grandiflora‘Southern Magnolia 80 15

M. E white
M. campbellii 80 20 D rose
M. liliiflora Lily Magnolia 12 4 D purple
M. soulangiana Saucer Magnolia 25 3 D pink
M. stellata Star Magnolia 10 3 D white

This program reads the raw data from a file called Mag.dat, creating a permanent SAS data set
named MAGNOLIA. The MAGNOLIA data set is stored in the MySASLib directory on the C
drive (Windows).

port

a
INFILE ‘c:\MyRawData\Mag.dat':
INPUT ScientificName $ 1-14 CommonName $ 16-32 MaximumHeight
AgeBloom Type $ Color $;
RUN;

If you look in your SAS log you will see this note:

NOTE: The data set c:\MySASLib\magnolia has 5 observations and 6 variables.

Chapter 2: Getting Your Data into SAS 71

This is a permanent SAS data set, so SAS will not erase it. If you list the files in the MySASLib
directory, you will see a file named magnolia.sas7bdat. Notice that SAS automatically appended a
file extension, even though no extension appeared in the SAS program.

When you put quotation marks around your data set name, you
are using direct referencing, and SAS creates a permanent SAS
data set. Since you haven't specified a libref, SAS makes up a
libref for you. You don’t need to know the name of the libref
that SAS makes up, but it is there and, you can see it in the il We0o0ot Sashelp
Active Libraries window. This is what the Active Libraries]
window looks like after running the previous program. SAS
has created a library named Wc000001 which contains the
MAGNOLIA data set.

Reading SAS data sets using direct referencing To
read a permanent SAS data set using direct referencing, simply enclose the path and name for the
data set in quotation marks wherever you would use a SAS data set name. For example, to print
the MAGNOLIA data set, you could use the following statements:

The output looks like this:

Magnolias 1

Maximum Age

Obs ScientificName CommonName Height Bloom Type Color
1 M. grandiflora Southern Magnolia 80 15 E white
2 M. campbellii 80 20 D rose
3 M. 1liliiflora Lily Magnolia 12 4 D purple
4 M. soulangiana Saucer Magnolia 25 3 D pink
5 M. stellata Star Magnolia 10 3 D white

72

The Little SAS Book

2 Listing the Contents of a SAS Data Set

To use a SAS data set, all you need to do is tell SAS the name and location of the data set

you want, and SAS will figure out what is in it. SAS can do this because SAS data sets are self-
documenting, which is another way of saying that SAS automatically stores information about
the data set (also called the descriptor portion) along with the data. You can’t display a SAS data
set on your computer screen using a word processor. However, there is an easy way to geta
description of a SAS data set; you simply run the CONTENTS procedure.

PROC CONTENTS is a simple procedure. In most cases you just type the keywords PROC
CONTENTS and specify the data set you want with the DATA= option:

PROC CONTENTS DATA = data-set;
If you omit the DATA= option, then by default SAS will use the most recently created data set.
Example The following DATA step creates a data set so we can run PROC CONTENTS:

DATA funnies;
INPUT Id Name $ Height Weight DoB;

LABEL Id = ’‘Identification no.’
Height = ‘Height in inches’
Weight = ‘Weight in pounds’
DoB = 'Date of birth’;

INFORMAT DoB MMDDYYS8.;
FORMAT DoB WORDDATELS. ;
DATALINES;
53 Susie 42 41 07-11-81
54 Charlie 46 55 10-26-54
55 Calvin 40 35 01-l0-81
56 Lucy 46 52 01-13-55

ibe data set funnies;

Note that the DATA step above includes a LABEL statement. For each variable, you can specify a
label up to 256 characters long. These optional labels allow you to document your variables in
more detail than is possible with just variable names. If you specify a LABEL statement in a
DATA step, then the descriptions will be stored in the data set and will be printed by PROC
CONTENTS. You can also use LABEL statements in PROC steps to customize your reports, but
then the labels apply only for the duration of the PROC step and are not stored in the data set.

INFORMAT and FORMAT statements also appear in this program. You can use these optional
statements to associate informats or formats with variables. Just as informats give SAS special
instructions for reading a variable, formats give SAS special instructions for writing a variable.
If you specify an INFORMAT or FORMAT statement in a DATA step, then the name of that
informat or format will be saved in the data set and printed by PROC CONTENTS. FORMAT
statements, like LABEL statements, can be used in PROC steps to customize your reports, but
then the name of the format is not stored in the data set.’

Chapter 2: Getting Your Data into SAS

The output from PROC CONTENTS is like a table of contents for your data set:

73

Data Set Page Size
First Data Page
Max Obs per Page

. Obs in First Data Page

File Name

Release Created
Host Created

5 DoB Num
3 Height Num
1 Id Num
2 Name Char
4 Weight Num

8
8
8
8
8

The CONTENTS Procedure

- © Data Set Name WORK. FUNNIES ® Observations
Member Type DATA ©® Variables
Engine Vo Indexes

O Created 13:36 Monday, May 12, 2003 Observation Length

Last Modified 13:36 Monday, May 12, 2003 Deleted Observations
Protection compressed
Data Set Type Sorted
Label

Data Representation WINDOWS
Encoding wlatini wlatin1 Western (Windows)

----- Engine/Host Dependent Information-----

4096

Number of Data Set Pages 1

Number of Data Set Repairs O

C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\8AS
Temporary Files_TD832\funnies.sas7bdat
9.0000MO

XP_HOME

----- Alphabetic List of variables and Attributes-----
Variable ©OType ®Len ©Format OInformat ©Label

WORDDATE18. MMDDYY8. Date of birth
Height in inches
Identification no.

Weight in pounds

o o b

NO
NO

The output starts with information about your data set and then describes each variable.

For the data set

© Data set name

® Number of observations
©® Number of variables

O Date created

For each variable

© Type (numeric or character)
8 Length (storage size in bytes)
© Format for printing (if any)
© Informat for input (if any)

© Label (if any)

PTER 3

L] . ,’ . : \ .
Pontrariwise,” continued Working with Your Data
Tweedledee,” if it was so, it
mlght be; and lf 11.: Were S.O, 1.t p 3.1 Creating and Redefining Variables 76
would be; but as it isn’t, it ain’t. 32 Using SAS Functions 78

3.3 Selected SAS Functions 80
34 Using IF-THEN Statements 82

3.5 Grouping Observations with IF-THEN/ELSE Statements 84

LEwIs CARROLL 3.6 Subsetting Your Data 86

3.7 Working with SAS Dates 88

3.8 Selected Date Informats, Functions, and Formats 90
3.9 Using the RETAIN and Sum Statements 92

3.10 Simplifying Programs with Arrays 94

3.11 Using Shortcuts for Lists of Variable Names 96

From Alice Through the Looking Glass by Lewis Carroll. Public domain.

The Little SAS Book

Creating and Redefining Variables

If someone were to compile a list of the most popular things to do with SAS software, creating
and redefining variables would surely be on it. Fortunately, SAS is flexible and uses a common
sense approach to these tasks. You create and redefine variables with assignment statements
using this basic form:

variable = expression;

On the left side of the equal sign is a variable name, either new or old. On the right side of the
equal sign may appear a constant, another variable, or a mathematical expression. Here are
examples of these basic types of assignment statements:

Assignment statement
Qwerty = 10;

Type of expression
numeric constant

character constant Qwerty = 'ten’;
a variable Oowerty = OldVar;
addition Qwerty = Oldvar + 10;
subtraction Qwerty = 0Oldvar - 10;

multiplication Qwerty = OldVar * 10;
division Qwerty = Oldvar / 10;
exponentiation Qwerty = Oldvar ** 10;

Whether the variable Qwerty is numeric or character depends on the expression that defines it.
When the expression is numeric, Qwerty will be numeric; when it is character, Qwerty will be
character.

When deciding how to interpret your expression, SAS follows the standard mathematical rules
of precedence: SAS performs exponentiation first, then multiplication and division, followed by
addition and subtraction. You can use parentheses to override that order. Here are two similar
SAS statements showing that a couple of parentheses can make a big difference:

Assignment statement Result
x = 10 * 4 + 3 ** 2; x = 49
x = 10 * (4 + 3 ** 2); x = 130

While SAS can read expressions with or without parentheses, people often can’t. If you use
parentheses, your programs will be a lot easier to read.

Example The following raw data are from a survey of home gardeners. Gardeners were asked
to estimate the number of pounds they harvested for four crops: tomatoes, zucchini, peas, and
grapes.

Gregor 10 2 40 0
Molly 15 5 10 1000
Luther 50 10 15 50
Susan 20 O . 20

Chapter 3: Working with Your Data

This program reads the data from a file called Garden.dat and then modifies the data:

* Modify homegarden data set with assignment statements;
DATA homegarden;
INFILE 'c:\MyRawData\Garden.dat';
INPUT Name $ 1-7 Tomato Zucchini Peas Grapes;
p.

TITLE 'Home Gardening Survey';
RUN;

77

This program contains five assignment statements. The first creates a new variable, Zone, equal to a

numeric constant, 14. The variable Type is set equal to a character constant, home. The variable

Zucchini is multiplied by 10 because that just seems natural for zucchini. Total is the sum for all the
types of plants. PerTom is not a genetically engineered tomato but the percentage of harvest which

were tomatoes. The report from PROC PRINT contains all the varjables, old and new:

Home Gardening Survey 1

Obs Name Tomato Zucchini Peas Grapes Zone Type Total PerTom

1 Gregor 10 20 40 0 14 home 70 14.2857
2 Molly - 15 50 10 1000 14 home 1075 1.3953
3 Luther 50 100 15 50 14 home 215 23.2558
4 Susan. 20 0 . 20 14 home

Notice that the variable Zucchini appears only once because the new value replaced the old value.

The other four assignment statements each created a new variable. When a variable is new, SAS
adds it to the data set you are creating. When a variable already exists, SAS replaces the original
value with the new one. Using an existing name has the advantage of not cluttering your data set
with a lot of similar variables. However, you don’t want to overwrite a variable unless you are
really sure you won't need the original value later.)

The variable Peas had a missing value for the last observation. Because of this, the variables Total
and PerTom, which are calculated from Peas, were also set to missing and this message appeared
in the log:

NOTE: Missing values were generated as a result of performing an operation on
missing values. ’

This message is a flag that often indicates an error. However, in this case it is not an error but
simply the result of incomplete data collection.’ ‘

B you want to add only non-missing values, you can use the SUM function discussed in section 10.7.

The Little SAS Book

Using SAS Functions

Sometimes a simple expression, using only arithmetic operators, does not give you the new
value you are looking for. This is where functions are handy, simplifying your task because SAS
has already done the programming for you. All you need to do is plug the right values into the
function and out comes the result—like putting a dollar in a change machine and getting back
four quarters.

FUNCTION

SAS has over 400 functions in the following general
areas:

: C H AN G E Character Probability
- Date and Time Random Number
R Financial Sample Statistics
Macro State and ZIP Code
Mathematical

ARGUMENT
s Section 3.3 gives a sample of the most common SAS
functions.

RESULT

Functions perform a calculation on, or a fransformation
of, the arguments given in parentheses following the
function name. SAS functions have the following general
form:

function-name (argument, argument, ...)

All functions must have parentheses even if they don’t

require any arguments. Arguments are separated by

commas and can be variable names, constant values such

as numbers or characters enclosed in quotation marks, or
expressions. The following statement computes Birthday as a SAS date value using the function
MDY and the variables MonthBorn, DayBorn, and YearBorn. The MDY function takes three
arguments, one each for the month, day, and year:

Birthday = MDY (MonthBorn, DayBorn, YearBorn);

Functions can be nested, where one function is the argument of another function. For example,
the following statement calculates NewValue using two nested functions, INT and LOG:

NewValue = INT(LOG(10)};

The result for this example is 2, the integer portion of the natural log of the numeric constant 10
(2.3026). Just be careful when nesting functions that each parenthesis has a mate.

Example Data from a pumpkin carving contest illustrate the use of several functions. The
contestants’ names are followed by their age, type of pumpkin (carved or decorated), date of
entry, and the scores from five judges:

Chapter 3: Working with Your Data 79

Alicia Grossman 13 ¢ 10-28-2003 7.8 6.5 7.2 8.0 7.9
Matthew Lee 9 D 10-30-2003 6.5 5.9 6.8 6.0 8.1
Elizabeth Garcia 10 C 10-29-2003 8.9 7.9 8.5 9.0 8.8
Lori Newcombe 6 D 10-30-2003 6.7 5.6 4.9 5.2 6.1
Jose Martinez 7 4 10-31-2003 8.9 9.510.0 9.7 9.0
Brian Williams 11 ¢ 10-29-2003 7.8 8.4 8.5 7.9 8.0

The following program reads the data, creates two new variables (AvgScore and DayEntered)
and transforms another (Type):

DATA contest;
INFILE 'c:\MyRawData\Pumpkin.dat'; :
INPUT Name $16. Age 3. +1 Type $1. +1 Date MMDDYY10.
(Scrl Scr2 Scr3 Scrd Scr5) (4.1);
YRR T o o

s

PROC PA N "BATXN ﬂéontest;
TITLE 'Pumpkin Carving Contest';
RUN;

The variable AvgScore is created using the MEAN function, which returns the mean of the non-
missing arguments. This differs from simply adding the arguments together and dividing by
their number, which would return a missing value if any of the arguments were missing.

The variable DayEntered is created using the DAY function, which returns the day of the month.
SAS has all sorts of functions for manipulating dates, and what’s great about them is that you
don’t have to worry about things like leap year—SAS takes care of that for you.

The variable Type is transformed using the UPCASE function. SAS is case sensitive when it
comes to variable values; a 'd’ is not the same as 'D'. The data file has both lowercase and
uppercase letters for the variable Type, so the function UPCASE is used to make all the values
uppercase.

Here are the results:

Pumpkin Carving Contest 1
Avg Day

Obs Name Age Type Date' Scri1 Scr2 Scr3 Scrd4 Scr5 Score Entered
1 Alicia Grossman 13 € 16006 7.8 6.5 7.2 8,0 7.9 7.48 28
2 Matthew Lee 9 D 16008 6.5 5.9 6.8 6.0 8.1 6.66 30
3 Elizabeth Garcia 10 C 16007 8.9 7.9 8.5 9.0 8.8 8.62 29
4 Lori Newcombe 6 D 16008 6.7 5.6 4.9 5.2 6.1 5.70 30
5 Jose Martinez 7 D 16009 8.9 9.5 10.0 9.7 9.0 9.42 31
6 Brian Williams 11 ¢ 16007 7.8 8.4 8.5 7.9 8.0 8.12 29

* Notice that these dates are printed as the number of days since January 1, 1960. Section 4.5 discusses how to format these
values into readable dates.

80 The Little SAS Book Chapter 3: Working with Your Data 81

Selected SAS Functions

The following table lists definitions and syntax of commonly used functions.'

Here are examples using the selected functions.

‘ J_liesult

Definition

SR ke M

x=INT(4.32); y=INT

INT INT(arg) Returns the integer portion of argument (5.789) ; y=5

LOG LOG(arg) Natural Jogarithm LOG x=LOG(1) ; x=0.0 v=LOG(10) ; ¥=2.30259
LOGI10 LOG10(arg) Logarithm to the base 10 LOGI0 x=LOG10 (1) ; x=0.0 v=LOG10 (10) ; v=1.0
MAX MAX(arg,arg,...) Largest non-missing value MAX x=MAX(9.3,8,7.5); =9 .3 y=MAX(-3,.,5); y=5
MEAN MEAN(arg,arg,...) Arithmetic mean of non-missing values MEAN *x=MEAN(1,4,7,2) ; x=3.5 y=MEAN (2, .,3) : =2.5
MIN MIiN(arg,arg,...) Smallest non-missing value MIN x=MIN(9.3,8,7.5); x=7.5 y=MIN(-3,.,5); =-3
ROUND ROUND(arg, round-off-unit) Rounds to nearest round-off unit ' ROUND x=ROUND (12.65) ; x=13 y=ROUND (12.65, .1); |y=12.7

SUM(arg,arg,...) Sum of non-missing values

x=SUM(3,5,1);

cat'; x='cat ' a=' my cat'; Ty="my cat

y=SUM(4,7,.); y=11

LEFT LEFT(arg) Left aligns a SAS character expression 2 LEFT a=
. 1 x=LEFT (a)} ; y=LEFT (a) ;

LENGTH LENGTH(arg) Refgms the lengt}.l of an argument not counting : LENGTH a='my cat’; <=6 a=' my cat '; y=7

trailing blanks (missing values have a length of 1) 2 x=LENGTH (a) ; y=LENGTH (a) ;
SUBSTR SUBSTR(arg,position,n) Extracts a substring from an argument starting 3 SUBSTR a='(916)734-6281"'; |x="916" y=SUBSTR{'lcat',2); {y='cat'

at ‘position’ for 'n’ characters or until end if no 'n” : x=8UBSTR(a, 2,3) ;
TRANSLATE | TRANSLATE(source,to-1, Replaces 'from' characters in 'source' with 'to' TRANSLATE i:ngiIgéi%E' x='6-16-953" ;:TI].:XNZEE; T%an . y='my rat ran'

from-1,...to-n from-n) characters (one to one replacement only—you can't 5 ' (a,'=',"/"); (a, 'r','c');

replace one character with two, for example) TRIM a='my '; b='cat'; |x='mycat ' |a='my cat '; b='s': |y='my cats '
TRIM TRIM(arg) Removes trailing blanks from character expression ‘ x=TRIM(a) | |b;’ y=TRIM(a) | |b;
UPCASE UPCASE(arg) Converts all letters in argument to uppercase g UPCASE izuggggg (‘_;) ; x='MYCAT! y=UPCASE('Tiger'); |y='TIGER'

DATEJUL DATEJUL(julian-date) Converts a Julian date to a SAS date value® a=60001; x=0 a=60365; y=364
2 x=DATEJUL(a) ; . y=DATEJUL(a}) ;
DAY DAY/(date) Returns the day of the month from a SAS date value ; DAY a=MDY (4,18,1999); |x=18 a=MDY (9,3, 60) ; v=3
MDY MDY (month,day,year) Returns a SAS date value from month, day, and year * x=DRY (a) ; y=DAY (a) ;
values : MDY x=MDY(1,1,1960) ; x=0 m=2; d=1; y=60; Date=31
) Date=MDY (m, d,vy) ;
MONTH MONTH(date) Returns the month (1-12) from a SAS date value MONTH a=MDY(4,18,1999); |[x=4 a=MDY (9,3,60) ; y=9
3 x=MONTH (a) ; v=MONTH (a}) ;
QTR QTR(date) Returns the yearly quarter (1-4) from a SAS date QTR a=MDY (4,18,1999);: |[x=2 a=MDY (9,3,60) ; y=3
value - x=QTR(a) ; y=QTR(a} ;
TODAY TODAY() Returns the current date as a SAS date value 8 TobAY KETODRY L) EZEZdﬁY 8 HETODRY () = X=yesterday’s
date

! Check the SAS Help and Documentation for a complete list of functions.
: arg is short for argument, which means a literal value, variable name, or expression.
® SUBSTR has a different function when on the left side of an equal sign.

5
* A $AS date value is the number of days since January 1, 1960. The concatenation operator | | concatenates character strings.

82

The Little SAS Book

Using IF-THEN Statements

Frequently, you want an assignment statement to apply to some observations but not all—under
some conditions, but not others. This is called conditional logic, and you do it with IE-THEN

statements:
IF condition THEN action;

The condition is an expression comparing one thing to another, and the action is what SAS should
do when the expression is true, often an assignment statement. For example

IF Model = 'Mustang' THEN Make = 'Ford';

This statement tells SAS to set the variable Make equal to Ford whenever the variable Model
equals Mustang. The terms on either side of the comparison may be constants, variables, or
expressions. Those terms are separated by a comparison operator, which may be either symbolic
or mnemonic. The decision of whether to use symbolic or mnemonic operators depends on your
personal preference and the symbols available on your keyboard. Here are the basic comparison
operators:

Symbolic Mnemonic Meaning

= EQ equals
—=N=0r~= NE not equal

> GT greater than

< LT less than

>= GE greater than or equal
<= LE less than or equal

The IN operator also makes comparisons, but it works a bit differently. IN compares the value of
a variable to a list of values. Here is an example:

IF Model IN ('Corvette', ‘Camaro') THEN Make = 'Chevrolet';

This statement tells SAS to set the variable Make equal to Chevrolet whenever the value of
Model is Corvette or Camaro.

A single IF-THEN statement can only have one action. If you add the keywords DO and END,
then you can execute more than one action. For example

IF condition THEN DO; IF Model = 'Mustang' THEN DO;
action; Make = 'Ford';
action; Size = ‘'compact';

END; END;

The DO statement causes all SAS statements coming after it to be treated as a unit until a
matching END statement appears. Together, the DO statement, the END statement, and all the
statements in between are called a DO group.

You can also specify multiple conditions with the keywords AND and OR:

IF condition AND condition THEN action;

Chapter 3: Working with Your Data 83

For example
IF Model = 'Mustang' AND Year < 1975 THEN Status = 'classic';
Like the comparison operators, AND and OR may be symbolic or mnemonic:

Symbolic Mnemonic Meaning

& AND all comparisons must be true
|,!,or! OR only one comparison must be true

Be careful with long strings of comparisons; they can be a logical maze.

Example The following data about used cars contain values for model, year, make, number of
seats, and color:

Corvette 1955 . 2 black
XJ6 1995 Jaguar 2 teal
Mustang 1966 Ford 4 red
Miata 2002 . . silver
CRX 2001 Honda 2 black
Camaro 2000 . 4 red

TMS program reads the data from a file called Cars.dat, uses a series of IF-THEN statements to fill
in missing data, and creates a new variable, Status:

DATA sportscars;
INFILE 'c:\MyRawData\Cars.dat';
INPUT Model $ Year Mak

PROC PRINT DATA sportscars;
RUNTITLE “Eddy’'s Excellent Emporium of Used Sports Cars”;

This program contains three IE-THEN statements. The first is a simple IE-THEN that creates the
new variable Status based on the value of Year. That is followed by a compound IF-THEN using an
OR. The last [F-THEN uses DO and END. The output looks like this:

Eddy’s Excellent Emporium of Used Sports Cars 1

Obs Model Year Make Seats Color Status

1 Corvette 1955 Chevy 2 black classic
2 XJ6 1995 Jaguar 2 teal

3 Mustang 1966 Ford 4 red classic

4 Miata 2002 Mazda 2 silver

5 CRX 2001 Honda 2 black

6 Camaro 2000 Chevy 4 red

84

The Little SAS Book

Grouping Observations with IF-THEN/ELSE Statements

One of the most common uses of IF-THEN statements is

:)erjnge m for grouping observations. Perhaps a variable has too
yellow i many different values and you want to print a more
p— Compalct report, or perhaps you are going to run an
e i analysis based on specific groups of interest. There are

many possible reasons for grouping data, so sooner or
purple ¥ later you'll probably need to do it.

The simplest and most common way to create a grouping variable is with a series of IF-THEN
statements.' By adding the keyword ELSE to your IF statements, you can tell SAS that these
statements are related.

IF-THEN/ELSE logic takes this basic form:

IF condition THEN action;
ELSE IF condition THEN action;
ELSE IF condition THEN action;

Notice that the ELSE statement is simply an IF-THEN statement with an ELSE tacked onto the
front. You can have any number of these statements.

IF-THEN /ELSE logic has two advantages when compared to a simple series of IF-THEN
statements without any ELSE statements. First, it is more efficient, using less computer time;
once an observation satisfies a condition, SAS skips the rest of the series. Second, ELSE logic
ensures that your groups are mutually exclusive so you don’t accidentally have an observation
fitting into more than one group.

Sometimes the last ELSE statement in a series is a little different, containing just an action, with
no IF or THEN. Note the final ELSE statement in this series:

(9

IF condition THEN action;
ELSE IF condition THEN action;
ELSE action;

An ELSE of this kind becomes a default which is automatically executed for all observations
failing to satisfy any of the previous IF statements. You can only have one of these statements,
and it must be the last in the IF-THEN/ELSE series.

Example Here are data from a survey of home improvements. Each record contains three data

values: owner’s name, description of the work done, and cost of the improvements in dollars:

Bob kitchen cabinet face-1lift 1253.00
Shirley bathroom addition 11350.70
Silvia paint exterior .

Al backyard gazebo 3098.63
Norm paint interior 647 .77
Kathy second floor addition 75362.93

! Other ways to create grouping variables include using a SELECT statement, or using a PUT function with a user-defined
format from PROC FORMAT.

Chapter 3: Working with Your Data

85

This program reads the raw data from a file called Home.dat and then assigns a grouping variable

called CostGroup. This variable has a value of high, medium, low, or missing, depending on the
value of Cost:

* Group observations by cost;

DATA homeimprovements;

INFILE 'c:\MyRawData\Home.dat';
INPUT Owner $ 1 De i i

[A R R S PR e

Sl ;
melmprov

TITLE 'Home Improvement Cost Groups';
RUN;

Notice that there are four statements in this IF-THEN/ELSE series, one for each possible value of

the variable CostGroup. The first statement deals with observations that have missing data for the

variable Cost. Without this first statement, observations with a missing value for Cost would be
incorrectly assigned a CostGroup of low. SAS considers missing values to be smaller than non-
missing values, smaller than any printable character for character variables, and smaller than
negative numbers for numeric variables. Unless you are sure that your data contain no missing
values, you should allow for missing values when you write IF-THEN/ELSE statements.

The results look like this:
Home Improvement Cost Groups 1
. Cost
Obs Owner Description Cost Group
1 Bab kitchen cabinet face-lift 1253.00 low
2 Shirley bathroom addition 11350.70 high
3 Silvia paint exterior . missing
4 Al backyard gazebo 3098.63 medium
5 Norm paint interior 647.77 low
6 Kathy second floor addition 75362.93 high

86 The Little SAS Book Chapter 3: Working with Your Data 87

This program reads the data from a raw data file called Shakespeare.dat and then uses a subsetting

Subsetting Your Data
A VL Often programmers find that they want to use some of the obser-
A W W vations in a data set and exclude the rest. The most common way to
B Wb it do this is with a subsetting IF statement in a DATA step.' The basic
A W W form of a subsetting IF is
B w IF expression;

Consider this example:

IF Sex = 'f';

At first subsetting IF statements may seem odd. People naturally ask, “IF Sex = ‘f’, then what?”
The subsetting IF looks incomplete, as if a careless typist pressed the delete key too long. But

it is really a special case of the standard IF-THEN statement. In this case the action is merely
implied. If the expression is true, then SAS continues with the DATA step. If the expression is
false, then no further statements are processed for that observation; that observation is not added
to the data set being created; and SAS moves on to the next observation. You can think of the
subsetting IF as a kind of on-off switch. If the condition is true, then the switch is on and the
observation is processed. If the condition is false, then that observation is turned off.

If you don't like subsetting IFs, there is another alternative, the DELETE statement. DELETE
statements do the opposite of subsetting IFs. While the subsetting IF statement tells SAS which
observations to include, the DELETE statement tells SAS which observations to exclude:

IF expression THEN DELETE;

The following two statements are equivalent (assuming there are only two values for the variable
Sex, and no missing data):

IF Sex = 'f'; IF Sex = 'm' THEN DELETE;
Example The members of a local amateur playhouse want to choose a Shakespearean comedy

for this spring’s play. You volunteer to compile a list of titles using an online encyclopedia. For
each play your data file contains title, approximate year of first performance, and type of play:

A Midsummer Night’s Dream 1595 comedy

Comedy of Errors 1590 comedy

Hamlet 1600 tragedy
Macbeth 1606 tragedy
Richard III 1594 history
Romeo and Juliet 1596 tragedy
Taming of the Shrew 1593 comedy
Tempest 1611 romance

! Other ways to subset data include using fnulﬁple INPUT statements (discussed in section 2.13), and the WHERE statement
(discussed in section 4.2 and appendix F).

IF statement to select only comedies:

* Choose only comedies;
DATA comedy;
INFILE 'c:\MyRawData\Shakespeare.dat';

INPUT Titl ;
e e G
PROC PRINT DATA = comedy:
TITLE 'Shakespearean Comedies';
RUN;
The output looks like this:
Shakespearean Comedies 1
Obs Title Year Type
1 A Midsummer Night’s Dream 1595 comedy
2 Comedy of Errors 1590 comedy
3 Taming of the Shrew 1593 comedy

These notes appear in the log stating that although eight records were read from the input file, the
data set WORK.COMEDY contains only three observations:

NOTE: 8 records were read from the infile 'c:\MyRawData\Shakespeare.dat '
NOTE: The data set WORK.COMEDY has 3 observations and 3 variables.

It is always a good idea to check the SAS log when you subset observations to make sure that you
ended up with what you expected.

In the program above, you could substitute the statement
IF Type = 'tragedy' OR Type = 'romance' OR Type = ‘'history’ THEN DELETE;
for the statement

IF Type = 'comedy';

But you would have to do a lot more typing. Generally, you use the subsetting IF when it is easier
to specify a condition for including observations, and use the DELETE statement when is easier to
specify a condition for excluding observations.

88

The Little SAS Book

Working with SAS Dates

Dates can be tricky to work with. Some months have 30 days, some 31, some 28, and don't forget
leap year. SAS dates simplify all this. A SAS date is a numeric value equal to the number of days
since January 1, 1960.' The table below lists four dates and their values as SAS dates:

Date SAS date value
January 1, 1959 -365
January 1, 1960 0
January 1, 1961 366
January 1, 2003 15706

SAS has special tools for working with dates: informats for reading dates, functions for manip-
ulating dates, and formats for printing dates.” A table of selected date informats, formats, and
functions appears in section 3.8.

Informats To read variables that are dates, you use formatted style input. The INPUT
statement below tells SAS to read a variable named BirthDate using the MMDDYY10. informat:

INPUT BirthDate MMDDYY1O0.;

SAS has a variety of date informats for reading dates in many different forms. All of these
informats convert your data to a number equal to the number of days since January 1, 1960.

Setting the default century When SAS sees a date with a two-digit year like 07/04/76,
SAS has to decide in which century the year belongs. Is the year 1976, 2076, or perhaps 1776? The
system option YEARCUTOFF= specifies the first year of a hundred-year span for SAS to use. The
default value for this option is 1920, but you can change this value with the OPTIONS statement.
To avoid problems, you may want to specify the YEARCUTOFF= option whenever you have
data containing two-digit years. This statement tells SAS to interpret two-digit dates as occurring
between 1950 and 2049:

OPTIONS YEARCUTOFF = 1950;

Dates in SAS expressions Once a variable has been read with a SAS date informat, it can be
used in arithmetic expressions like other numeric variables. For example, if a library book is due in
three weeks, you could find the due date by adding 21 days to the date it was checked out:

DateDue = DateCheck + 21;

You can use a date as a constant in a SAS expression by adding quotation marks and a letter D.
The assignment statement below creates a variable named EarthDay05, which is equal to the SAS
date value for April 22, 2005:

EarthDay05 = '22APR2005'D;

! We don't know why this date was chosen, but since SAS dates are relative, January 1, 1960, is as good as any other date.

? SAS also has informats, functions, and formats for working with time values (the number of seconds since midnight), and
datetime values (the number of seconds since midnight, you guessed it, January 1, 1960).

For more information about informats, see section 2.7; for functions, see section 3.2; and for formats, see section 4.5.

EZatiocatlnranc:

Chapter 3: Working with Your Data

Functions SAS date functions perform a number of handy operations. For example, the
TODAY function returns a SAS date value equal to today’s date. This statement

DaysOverDue = TODAY() - DateDue;

subtracts the date a book was due from today’s date to compute the number of days a book is
overdue.

Formats If you print a SAS date value, SAS will by default print the actual value—the number
of days since January 1, 1960. Since this is not very meaningful to most people, SAS has a variety
of formats for printing dates in different forms. The FORMAT statement below tells SAS to print
the variable BirthDate using the WEEKDATE17. format:

FORMAT BirthDate WEEKDATEL7.;

Example A local library has a data file containing details about library cards. Each record
contains three data values—the card holder’s name, birthdate, and the date that card was issued.:

Jones 1jan60 9-15-03

Rincon 050CT1949 02-29-2000
Grandage 18marl1988 10-10-2002
Kaminaka 29may2001 01-24-2003

FoE

The program below reads the raw data, and then computes the variable ExpireDate (for expiration
date) by adding three years to the variable IssueDate. The variable ExpireQuarter (the quarter the
card expires) is computed using the QTR function and the variable ExpireDate. Then an IF
statement uses a date constant to identify cards issued after January 1, 2003:

DATA librarycards;
INFILE 'c:\MyRawData\Dates.dat' TRUNCOVER;

"PRINT DATA

RUN;

Here is the output from PROC PRINT. Notice that the variable BirthDate is printed without a
date format, while IssueDate and ExpireDate use formats:

89

SAS Dates without and with Formats 1
Birth Issue Expire New
Obs _Name Date Date ExpireDate Quarter Card
1 A. Jones 0 09/15/03 Thu, Sep 14, 2006 3 yes
2 M. Rincon -3740 02/29/00 Fri, Feb 28, 2003 1
3 Z. Grandage 10304 10/10/02 Sun, Oct 9, 2005 4
4 K. Kaminaka 15124 01/24/03 Mon, Jan 23, 2006 1 yes

90 The Little SAS Book Chapter 3: Working with Your Data 91

Selected Date Informats, Functions, and Formats

Here are examples using the selected date informats, functions, and formats.

Here are definitions for some of the most commonly used date informats, functions, and formats.’

LI - SRt e " = 1jan1961 INPUT Day DATELO.;
DATEw. Reads dates in form: ddmmmyy or ddmmmyyyy 7-32 7
DDMMYYw. 01.01.61 INPUT Day DDMMYYS.; 366
DDMMYYw. | Reads dates in form: ddmmyy or ddmmyyyy 6-32 6 _ 02/01/61 367
' LIANw. 61001 INPUT Day JULIAN7.; 366
JULIANw. Reads Julian dates in form: yyddd or yyyyddd 5-32 5 Ju &
. MMDDY Yw. 01-01~61 INPUT Day MMDDYYS.; 366
MMDDYYw. | Reads dates in form: mmddyy or mmddyyyy 6-32 6
- - 5 DATEJUL a=60001; x=0 a=60365; y=364
DATEJUL DATEJUL(julian-date) Converts a Julian date to a SAS date value x=DATEJUL (a) ; y=DATEJUL (&) ;
DAY DAY (date) Returns the day of the month from a SAS date value DAY a=MDY(4,18,99); |x=18 a=MDY (3, 3,60} ; y=3
1 x=DAY (a) ; y=DAY (a) ;
MDY MDY (month,day,year) Returns a SAS date value from month, day, and : MDY x=MDY(1,1,60); x=0 m=2; d=1; y=60; |Date=31
year values ' Date=MDY (m,d,y) ;
1 MONTH a=MDY(4,18,1999) |x=4 a=MDY (9,3,60) ; y=9
MONTH MONTH(date) Returns the month (1-12) from a SAS date value : x=MONTH (a) ; y=MONTH (a) ;
] =MDY (4,18, H = = Iy i =
QTR QTR(date) Returns the yearly quarter (1-4) from a SAS date : QIR i:gTR ((a); R ;=g”?§5 e91) 3 °o v=
value . TODAY x=TODAY () ; x=today’s date |x=TODAY()-1; x=yesterday’s
TODAY TODAY() Returns the current date as a SAS date value date
S DATEw. 8966 PUT Birth DATE7.; 19JUL84
DATEw. Writes SAS date values in form: ddmmmyy 59 7 PUT Birth DATES.; 19JUL1984
)) 66 i .
DAYuw. Wirites the day of the month from a SAS date value 232 2 1 DAYw 89 ig@ gi i}éﬁ gi& - }g
. ; . . : EURDFDDw. 8966 PUT Birth EURDFDDS. 19.07.84
EURDFDDrw. Writes SAS date values in form: dd.mm.yy 2-10 8 ; PUT Birth BURDFDDLO.; 1o 07 1984
JULIANw. Writes a Julian date from a SAS date value 57 5 JULIANw. 8966 PUT Birth JULIANS.; 84201
] PUT Birth JULIANT7.; 1984201
MMDDY Yw. Writes SAS date values in form: mmddyy or munddyyyy 2-10 8 MMDDYYw. 8966 PUT Birth MMDDYYS.; 07/19/84
]) . : PUT Birth MMDDYY6.; 071984
WEEKDATEw. | Writes SAS date values in form: 337 2 WEEKDATEw. |8966 PUT Birth WEEKDATELS.; Thu, Jul 19, 84
day-of-week, month-name dd, yy or yyyy _ PUT Birth WEEKDATE29.; Thursday, July 19, 1984
. . . : WORDDATEw. | 8966 PUT Birth WORDDATEL2.; Jul 19, 1984
WORDDATEw. | Writes SAS date values in form: month-name dd, yyyy 332 18 . PUT Birth WORDDATELS .. July 19, 1984

'For a complete list see the SAS Help and Documentation.

2 . .
A SAS date value s the number of days since January 1, 1960. 3 s Formats can be used in PUT statements and PUT functions in DATA steps, and in FORMAT statements in either DATA or
) PROC steps.

92

The Little SAS Book

Using the RETAIN and Sum Statements

When reading raw data, SAS sets the values of all variables equal to missing at the start of each
iteration of the DATA step. These values may be changed by INPUT or assignment statements, but
they are set back to missing again when SAS returns to the top of the DATA step to process the next
observation. RETAIN and sum statements change this. If a variable appears in a RETAIN statement,
then its value will be retained from one iteration of the DATA step to the next. A sum statement also
retains values from the previous iteration of the DATA step, but then adds to it the value of an
expression. :

RETAIN statement Use the RETAIN statement when you want SAS to preserve a variable’s
value from the previous iteration of the DATA step. The RETAIN statement can appear anywhere
in the DATA step and has the following form, where all variables to be retained are listed after
the RETAIN keyword:

RETAIN variable-list;

You can also specify an initial value, instead of missing, for the variables. All variables listed
before an initial value will start the first iteration of the DATA step with that value:

RETAIN variable-list initial-value;

Sum statement A sum statement also retains values from the previous iteration of the DATA
step, but you use it for the special cases where you simply want to cumulatively add the value of
an expression to a variable. A sum statement, like an assignment statement, contains no
keywords. It has the following form: :

variable + expression;

No, there is no typo here and no equal sign either. This statement adds the value of the
expression to the variable while retaining the variable’s value from one iteration of the DATA
step to the next. The variable must be numeric and has the initial value of zero. This statement
can be re-written using the RETAIN statement and SUM function as follows:

RETAIN variable 0Q;
variable = SUM(variable, expression);

As you can see, a sum statement is really a special case of using RETAIN.

Example This example illustrates the use of both the RETAIN and sum statements. The minor
league baseball team, the Walla Walla Sweets, has the following data about their games. The date the
game was played and the team played are followed by the number of hits and runs for the game:

6-19 Columbia Peaches 8 3
6-20 Columbia Peaches 10 5
6-23 Plains Peanuts 3 4
6-24 Plains Peanuts 7 2
6-25 Plains Peanuts 12 8
6-30 Gilroy Garlics 4 4
7-1 Gilroy Garlics 9 4
7-4 Sacramento Tomatoes 15 9
7-4 Sacramento Tomatoes 10 10
7~5 Sacramento Tomatoes 2 3

Chapter 3: Working with Your Data 93

The team wants two additional variables in their data set. One shows the cumulative number of
runs for the season, and the other shows the maximum number of runs in a game to date. The
following program uses a sum statement to compute the cumulative number of runs, and the
RETAIN statement and MAX function to determine the maximum number of runs in a game to
date:

* Using RETAIN and sum statements to find most runs and total runs;
DATA gamestats;

INFILE 'c:\MyRawData\Games.dat';

INPUTwéﬁgth 1 Day 3-4 Team $ 6-25 Hits 27-28 Runs 30-31;

afoaf

BUnsToDg
PROC PRINT DATA gamestats;

TITLE "Season's Record to Date";
RUN;

The variable MaxRuns is set equal to the maximum of its value from the previous iteration of the
DATA step (since it appears in the RETAIN statement) or the value of the variable Runs. The
variable RunsToDate adds the number of runs per game, Runs, to itself while retaining its value
from one iteration of the DATA step to the next. This produces a cumulative record of the number
of runs.

Here are the results:

* Season's Record to Date 1
Max Runs

Obs Month Day Team Hits Runs Runs ToDate
1 6 19 Columbia Peaches 8 3 3 3
2 6 20 Columbia Peaches 10 5 5 8
3 6 23 Plains Peanuts 3 4 5 12
4 6 24 Plains Peanuts 7 2 5 14
5 [§) 25 Plains Peanuts 12 8 8 22
6 8 30 Gilroy Garlics 4 4 8 26
7 7 1 Gilroy Garlics 9 4 8 30
8 7 4 Sacramento Tomatoes 15 9 9 39
9 7 4 Sacramento Tomatoes 10 10 10 49
10 7 5 Sacramento Tomatoes 2 3 10 52

94

The Little SAS Book

Simplifying Programs with Arrays

Sometimes you want to do the same thing to many variables. You may want to take the log of
every numeric variable or change every occurrence of zero to a missing value. You could write a
series of assignment statements or IF statements, but if you have a lot of variables to transform,
using arrays will simplify and shorten your program.

An array is an ordered group of similar items. You might think your local mall has a nice array
of stores to choose from. In SAS, an array is a group of variables, You can define an array to be
any group of variables you like, as long as they are either all numeric or all character. The
variables can be ones that already exist in your data set, or they can be new variables that you
want to create.

Arrays are defined using the ARRAY statement in the DATA step. The ARRAY statement has
the following general form:

ARRAY name (n) $ variable-list;

In this statement, name is a name you give to the array, and # is the number.of variables in the
array. Following the (1) is a list of variable names. The number of variables in the list must equal
the number given in parentheses. (You may use (} or [] instead of parentheses if you like.) This is
called an explicit array, where you explicitly state the number of variables in the array. The $ is
needed if the variables are character and is only necessary if the variables have not previously
been defined.

The array itself is not stored with the data set; it is defined only for the duration of the DATA
step. You can give the array any name, as long as it does not match any of the variable names
in your data set or any SAS keywords. The rules for naming arrays are the same as those for
naming variables (must be 32 characters or fewer and start with a letter or underscore followed
by letters, numerals, or underscores).

To reference a variable using the array name, give the array name and the subscript for that
variable. The first variable in the variable list has subscript 1, the second has subscript 2, and
so forth. So if you have an array defined as

ARRAY store (4) Macys Penneys Sears Target;

STORE(1) is the variable Macys, STORE(2) is the variable Penneys, STORE(3) is the variable
Sears, and STORE(4) is the variable Target. This is all just fine, but simply defining an array
doesn’t do anything for you. You want to be able to use the array to make things easier for you.

Example The radio station WBRK is conducting a survey asking people to rate ten different
songs. Songs are rated on a scale of 1 to 5, where 1 = change the station when it comes on, and
5 = turn up the volume when it comes on. If listeners had not heard the song or didn’t care to
comment on it, a 9 was entered for that song. The following are the data collected:

Albany 54 4 3599214429
Richmond 3335243929333
Oakland 27 1 329993423
Richmond 41 4 3 5552 9 455
Berkeley 18 3491493932

Chapter 3: Working with Your Data 95

The listener’s city of residence, age, and their responses to all ten songs are listed. The following
program changes all the 9s to missing values. (The variables are named using the first letters of the
words in the song’s title.)

* Change all 9s to missing values;
DATA songs;
INFILE 'c:\MyRawData\WBRK.dat';
domk wj i i i ttr;
B S o :

AT

TITLE 'WBRK Song Survey';
RUN;

An array, SONG, is defined as having ten variables, the same ten variables that appear in the
INPUT statement representing the ten songs. Next comes an iterative DO statement. All statements
between the DO statement and the END statement are executed, in this case, ten times, once for
each variable in the array.

The variable I is used as an index variable and is incremented by 1 each time through the DO loop.
The first time through the DO loop, the variable I has a value of 1 and the IF statement would read

IF song(1)=9 THEN song(1l)=.;,whichisthe same as IF domk=9 THEN domk=.:.The
second time through, I has a value of 2 and the IF statement would read IF song(2)=9 THEN
song (2) =.;, which is the same as IF wj=9 THEN wij=. . This continues through all 10

variables in the array.

Here are the results:

WBRK Song Survey 1

Obs City . Age domk wj hwow simbh kt aomm libm tr filp ttr i

1 Albany 54 4 3 5 2 1 4 4 .M
2 Richmond 33 5 2 4 3 2 3 3 3 11
3 Oakland 27 1 3 2 . 3 4 2 3 11
4 Richmond 41 4 3 5 5 5 2 4 5 &5 11
5 Berkeley 18 3 4 1 4 3 3 2 M

Notice that the array members SONG(1) to SONG(10) did not become part of the data set, but the
variable I did. You could have written ten IF statements instead of using arrays and accomplished
the same result. In this program it would not have made a big difference, but if you had 100 songs
in your survey instead of ten, then using arrays would clearly be a better solution.

96

The Little SAS Book

Using Shortcuts for Lists of Variable Names

As the title states, this section is about shortcuts, shorthand ways of writing lists of variable names.
While writing SAS programs, you will often need to write a list of variable names. When defining
ARRAYS, using functions like MEAN or SUM, or using SAS procedures, you must specify which
variables to use. Now, if you only have a handful of variables, you might not feel a need for a
shortcut. But if, for example, you need to define an array with 100 elements, you might be a little
grumpy after typing in the 49th variable name knowing you still have 51 more to go. You might
even think, “There must be an easier way.” Well, there is.

You can use an abbreviated list of variable names anywhere you can use a regular variable list. In
functions, abbreviated lists must be preceded by the keyword OF (for example, SUM(OF Cat8 -
Cat12)). Otherwise, you simply replace the regular list of variables with the abbreviated one.

Numbered range lists Variables which start with the same characters and end with
consecutive numbers can be part of a numbered range list. The numbers can start and end
anywhere as long as the number sequence between is complete. For example, the following INPUT
statement shows a variable list and its abbreviated form:

Variable list Abbreviated list

INPUT Cat8 Cat9 Catl0 Catll Catl2; INPUT Cat8 - Catl2;

Name range lists Name range lists depend on the internal order, or position, of the variables
in the SAS data set. This is determined by the order of appearance of the variables in the DATA
step. For example, if you had the following DATA step, then the internal variable order would be
YACHRB:
DATA example;
INPUT v a ¢ h r;
b =c¢c + r;
RUN;

To specify a name range list, put the first variable, then two hyphens, then the last variable. The
following PUT statements show the variable list and its abbreviated form using a named range:

Variable list Abbreviated list
PUT vy a ¢ h r b; PUT y -- b;

If you are not sure of the internal order, you can find out using PROC CONTENTS with the
POSITION option. The following program will list the variables in the permanent SAS data set
DISTANCE sorted by position:

LIBNAME mydir 'c:\MySASLib‘;
PROC CONTENTS DATA = mydir.distance POSITION;
RUN;

Use caution when including name range lists in your programs. Although they can save on typing,
they may also make your programs more difficult to understand and debug,.

Special SAS name lists The special name lists, _ALL_, CHARACTER_, and _"NUMERIC_
can also be used any place you want either all the variables, all the character variables, or all the

Chapter 3: Working with Your Data 97

numeric variables in a SAS data set. These name lists are useful when you want to do something
like compute the mean of all the numeric variables for an observation (MEAN(OF _NUMERIC_)),
or list the values of all variables in an observation (PUT _ALL_)).

Example The radio station WBRK wants to modify the program from the previous section,
which changes all 9s to missing values. Now, instead of changing the original variables, they use
the following program to create new variables (Song1 through Song10) which will have the new
missing values. This program also computes the average score using the MEAN function.

DATA songs;
INFILE 'c:\MyRawData\WBRK.dat';
INPUT City $ 1-15 Age domk wj hwow simbh kt aomm libm tr filp ttr;

IF o0ld(i) = 9 THEN new(i) = .;
ELSE new(i) = old(i):
END;

PROC PRINT DATA = songs;
TITLE 'WBRK Song Survey';
RUN;

Note that both ARRAY statements use abbreviated variable lists; array NEW uses a numbered
range list and array OLD uses a name range list. Inside the iterative DO loop, the Song variables
(array NEW) are set equal to missing if the original variable (array OLD) had a value of 9. Other-
wise, they are set equal to the original values. After the DO loop, a new variable, AvgScore, is
created using an abbreviated variable list in the function MEAN. The output includes variables
from both the OLD array (domk, wj, ... ttr) and NEW array (Song] - Songl0):

WBRK Song Survey 1

A

v

S g

s $§$88S8888SSo S

C d h i al f 000000000O0N c

0 i o] w m o i itnnnnnnnnng o]

b T gmwobkmbtltggggggggagt r

y ekjwhtmmrpri1234567890 i e
1 Albany 54 4359921449435 . 2144 . 11 3.28571
2 Richmond 33 52439293335243.2.333113.12500
30akland 27 1329993423132 ...83423112.57143
4 Richmond 41 4 355529455435552 , 455 11 4,22222
5 Berkeley 18 349149393234 14.3.3211 2.85714

- once in a while the simple Sorting, Printing, and Summarizing
things work right offy © | Your Data

PHIL GALLAGHER

41 Using SAS Procedures 100

42 Subsetting in Procedures with the WHERE Statement 102

43 Sorting Your Data with PROC SORT 104

44 Printing Your Data with PROC PRINT 106

45 Changing the Appearance of Printed Values with Formats 108
46 Selected Standard Formats 110

47 Creating Your Own Formats Using PROC FORMAT 112

4.8 Writing Simple Custom Reports 114

49 Summarizing Your Data Using PROC MEANS 116

410 Writing Summary Statistics to a SAS Data Set 118

411 Counting Your Data with PROC FREQ 120

412 Producing Tabular Reports with PROC TABULATE 122

413 Adding Statistics to PROC TABULATE Output 124

: 414 Enhancing the Appearance of PROC TABULATE Qutput 126
415 Changing Headers in PROC TABULATE Output 128

416 Specifying Multiple Formats for Data Cells in PROC TABULATE Output 130
4.17 Producing Simple Output with PROC REPORT 132

418 Using DEFINE Statements in PROC REPORT 134

419 Creating Summary Reports with PROC REPORT 136

420 Adding Summary Breaks to PROC REPORT Output 138

From the SAS L Listserve, 1994. Reprinted by permission of the author. .
421 Adding Statistics to PROC REPORT Output 140

100

The Little SAS Book

Using SAS Procedures

Using a procedure, or PROC, is like filling out a form. Someone else designed the form, and all
you have to do is fill in the blanks and choose from a list of options. Each PROC has its own
unique form with its own list of options. But while each procedure

PROC whatever

DATA=
BY

TITLE

is unique, there are similarities too. This section discusses some of
those similarities.

All procedures have required statements, and most have optional

FOOTNOTE . statements. PROC PRINT, for example, requires only two words:

PROC PRINT;

However, by adding optional statements you could make this
procedure a dozen lines or even longer.

PROC statement All procedures start with the keyword PROC followed by the name of the
procedure, such as PRINT or CONTENTS. Options, if there are any, follow the procedure name.
The DATA= option tells SAS which data set to use as input for that procedure. In this case, SAS
will use a temporary SAS data set named BANANA:

PROC CONTENTS DATA = banana;

The DATA= option is, of course, optional. If you skip it, then SAS will use the most recently
created data set, which is not necessarily the same as the most recently used. Sometimes it is
easier to specify the data set you want than to figure out which data set SAS will use by default.
To use a permanent SAS data set, issue a LIBNAME statement to set up a libref pointing to the
location of your data set, and put the data set’s two-level name in the DATA= option, as
discussed in section 2.20,

LIBNAME tropical 'c:\MySASLib';
PROC CONTENTS DATA = tropical.banana;

or refer to it directly by placing your operating environment’s name for the permanent SAS data
set between quotation marks, as discussed in section 2.21.

PROC CONTENTS DATA = 'c:\MySASLib\banana';

BY statement The BY statement is required for only one procedure, PROC SORT. In PROC
SORT the BY statement tells SAS how to arrange the observations. In all other procedures, the BY
statement is optional, and tells SAS to perform a separate analysis for each combination of values
of the BY variables rather than treating all observations as one group. For example, this statement
tells SAS to run a separate analysis for each state:

BY State;

All procedures, except PROC SORT, assume that your data are already sorted by the variables in

your BY statement. If your observations are not already sorted, then use PROC SORT to do the job.

TITLE and FOOTNOTE statements You have seen TITLE statements many times in
this book. FOOTNOTE works the same way, but prints at the bottom of the page. These global
statements are not technically part of any step. You can put them anywhere in your program, but
since they apply to the procedure output it generally makes sense to put them with the procedure.

Chapter 4: Sorting, Printing, and Summarizing Your Data 101

The most basic TITLE statement consists of the keyword TITLE followed by your title enclosed in
quotation marks. SAS doesn’t care if the two quotation marks are single or double as long as they
are the same:

TITLE 'This is a title';

If you find that your title contains an apostrophe, use double quotation marks around the title, or
replace the single apostrophe with two:

TITLE “Here'’'s another title”;
TITLE ‘Here’’s another title’;

You can specify up to ten titles or footnotes by adding numbers to the keywords TITLE and
FOOTNOTE:

FOOTNOTE3 ‘This is the third footnote’;

Titles and footnotes stay in effect until you replace them with new ones or cancel them with a null
statement. The following null statement would cancel all current titles:

TITLE;

When you specify a new title or footnote, it replaces the old title or footnote with the same number
and cancels those with a higher number. For example, a new TITLE2 cancels an existing TITLE3, if
there is one.

LABEL statement By default, SAS uses variable names to label your output, but with the
LABEL statement you can create more descriptive labels, up to 256 characters long, for each
variable. This statement creates labels for the variables ReceiveDate and ShipDate:

LABEL ReceiveDate = ’'Date order was received’
ShipDate = ’'Date merchandise was shipped’;

When a LABEL statement is used in a DATA step, the labels become part of the data set; but when
used in a PROC, the labels stay in effect only for the duration of that step.

Customizing output You have a lot of control over the output produced by procedures.
Using system options, you can set many features such as centering, dates, line size, and page size
(section 1.13). With the Output Delivery System, you can you can also change the overall style of
your output, produce output in different formats (such as HTML or RTF), or change almost any
detail of your output (section 1.10 and chapter 5).

Output data sets Most procedures produce some kind of report, but sometimes you would
like the results of the procedure saved as a SAS data set so you can perform further analysis. You
can create SAS data sets from any procedure output using the ODS OUTPUT statement (section
5.3). Some procedures can also write a SAS data set using an OUTPUT statement or OUT= option.

102 The Little SAS Book

Subsetting in Procedures with the WHERE Statement
One optional statement for any PROC that reads a SAS

i data set is the WHERE statement. The WHERE statement tells

W a procedure to use a subset of the data. There are other ways to

wh subset data, as you probably remember, S0 you could get by
without ever using the WHERE statement.' However, the

i WHERE statement is a shortcut. While the other methods of

Wi subsetting work only in DATA steps, the WHERE statement

works in PROC steps too.

Unlike subsetting in a DATA step, using a WHERE statement in a procedure does not create a
new data set. That is one of the reasons why WHERE statements are sometimes more efficient

than other ways of subsetting.
The basic form of a WHERE statement is
WHERE condition;

Only observations satisfying the condition will be used by the PROC. This may look familiar
since it is similar to a subsetting IF. The left side of that condition is a variable name, and the
right side is a variable name, a constant, or a mathematical expression. Mathematical expressions
can contain the standard arithmetic symbols for addition (+), subtraction (-), multiplication (*),
division (/), and exponentiation (**). Between the two sides of the expression, you can use
comparison and logical operators; those operators may be symbolic or mnemonic. Here are the
most frequently used operators:

Symbolic Mnemonic Example
= EQ " WHERE Region = 'Spain’;
—-=, ~=, A= NE WHERE Region ~= 'Spain’;
> GT WHERE Rainfall > 20;
< LT WHERE Rainfall < AvgRain;
>= GE WHERE Rainfall >= AvgRain + 5;
<= LE WHERE Rainfall <= AvgRain / 1.25;
& AND WHERE Rainfall > 20 AND Temp < 90;
IR OR WHERE Rainfall > 20 OR Temp < 90;
IS NOT MISSING WHERE Region IS NOT MISSING;
BETWEEN AND WHERE Region BETWEEN 'Plain' AND 'Spain';
CONTAINS WHERE Region CONTAINS 'ain';
IN (list) WHERE Region IN ('Rain', 'Spain', 'Plain');

ISubsetting while reading a raw data file is discussed in section 2.13, and the subsetting IF statement is discussed in section 3.6.

Chapter 4: Sorting, Printing, and Summarizing Your Data 103

Example You have a database containing information about well-known painters. A subset of
the data appears below. For each artist, the data include the painter’s name, primary style, and
nation of origin:

Mary Cassatt Impressionism U
Paul Cezanne Post-impressionism F
Edgar Degas Impressionism F
Paul Gauguin Post-impressionism F
Claude Monet Impressionism F
Pierre Auguste Renoir Impressionism F
Vincent van Gogh Post-impressionism N

To make this example more realistic, it has two steps: one to create a permanent SAS data set,

the other to subset the data. The first DATA step reads the data from a file named Artists.dat, and
uses direct referencing (you could use a LIBNAME statement instead) to create a permanent SAS
data set named STYLE in a directory named MySASLib (Windows).

DATA 'c:\MySASLib\style';

INFILE 'c:\MyRawData\Artists.dat';

INPUT Name $ 1-21 Genre $ 23-40 Origin $ 42;
RUN;

Suppose a day later you wanted to print a list of just the impressionist painters. The quick-and-easy
way to do this is with a WHERE statement and PROC PRINT. The quotation marks around the
data set name tell SAS that this is a permanent SAS data set.

FOOTNOTE 'F - Us';
RUN;
The output looks like this:

Major Impressionist Painters -1
Obs Name Genre Origin

1 Mary Cassatt Impressionism u

3 Edgar Degas Impressionism F

5 Claude Monet Impressionism F

6 Pierre Auguste Renoir Impressionism F

F = France N = Netherlands U = US

104

The Little SAS Book

Sorting Your Data with PROC SORT

There are many reasons for sorting your data: to organize data

wh
wn | PROC for a report, before combining data sets, or before using a BY
——) statement in another PROC or DATA step. Fortunately, PROC
wi SORT SORT is quite simple. The basic form of this procedure is
wh
PROC SORT;
Wi BY variable-1 ... variable-n;

The variables named in the BY statement are called BY variables. You can specify as many BY
variables as you wish. With one BY variable, SAS sorts the data based on the values of that
variable. With more than one variable, SAS sorts observations by the first variable, then by the
second variable within categories of the first, and so on. A BY group is all the observations that
have the same values of BY variables. If, for example, your BY variable is State then all the
observations for North Dakota form one BY group.

The DATA= and OUT= options specify the input and output data sets, If you don’t specify the
DATA= option, then SAS will use the most recently created data set. If you don’t specify the
OUT= option, then SAS will replace the original data set with the newly sorted version. This
sample statement tells SAS to sort the data set named MESSY, and then put the sorted data into a
data set named NEAT:

PROC SORT DATA = messy OUT = neat;

The NODUPKEY option tells SAS to eliminate any duplicate observations that have the same
values for the BY variables. To use this option, just add NODUPKEY fo the PROC SORT
statement: ’

PROC SORT DATA = messy OUT = neat NODUPKEY;

By default SAS sorts data in ascending order, from lowest to highest or from A to Z. To have
your data sorted from highest to lowest, add the keyword DESCENDING to the BY statement
before each variable that should be sorted from highest to lowest. This statement tells SAS to sort
tirst by State (from A to Z) and then by City (from Z to A) within State:

BY State DESCENDING City;

Example The following data show the average length in feet of selected whales and sharks:

beluga whale 15
whale shark 40
basking shark 30

gray whale 50
mako shark 12
sperm whale 60

dwarf shark .5
whale shark 40
humpback . 50
blue whale 100
killer whale 30

Chapter 4: Sorting, Printing, and Summarizing Your Data 105

This program reads and sorts the data:

DATA marine;

INFILE 'c:\MyRawData\Sealife.dat';

INPUT Name $ Family $ Length;
a

) El) I UORgE]
PROC PRINT DATA = seasort;

TITLE 'Whales and Sharks';
RUN;

The DATA step reads the raw data from a file called Sealife.dat and creates a SAS data set named
MARINE. Then PROC SORT rearranges the observations by family in ascending order, and by
length in descending order. The NODUPKEY option of PROC SORT eliminates any duplicates,
while the OUT= option writes the sorted data into a new data set named SEASORT. The output
from PROC PRINT looks like this:

Whales and Sharks 1
Obs Name Family Length
1 humpback 50.0
2 whale - shark 40.0
3 basking shark 30.0
4 mako shark 12.0
5 dwarf shark 0.5
6 blue whale 100.0
7 sperm whale 60.0
8 gray whale 50.0
9 killer whale 30.0
10 beluga whale 15.0

Notice that the humpback with a missing value for Family became observation one. That is because
missing values are always low for both numeric and character variables. Also, the NODUPKEY
option eliminated a duplicate observation for the whale shark. The log contains these notes
showing that the sorted data set has one fewer observation than the original data set.

NOTE: The data set WORK.MARINE has 11 observations and 3 variables.

NOTE: 1 observations with duplicate key values were deleted.
NOTE: The data set WORK.SEASORT has 10 observations and 3 variables.

106

The Little SAS Book

Printing Your Data with PROC PRINT

The PRINT procedure is perhaps the most widely used SAS procedure. You have seen this
procedure used many times in this book to print the contents of a SAS data set. In its simplest
form, PROC PRINT prints all variables for all observations in the SAS data set. SAS decides the
best way to format the output, so you don’t have to worry about things like how many variables
will fit on a page. But there are a few more features of PROC PRINT that you might want to use.

The PRINT procedure réquires just one statement:

PROC PRINT;

By default, SAS uses the SAS data set created most recently. If you do not want to print the most
recent data set, then use the DATA= option to specify the data set. We recommend always using
the DATA= option for clarity in your programs as it is not always easy to quickly determine
which data set was created last.

PROC PRINT DATA = data-set;

Also, SAS prints the observation numbers along with the variables’ values. If you don’t want
observation numbers, use the NOOBS option in the PROC PRINT statement. If you define
variable labels with a LABEL statement, and you want to print the labels instead of the variable
names, then add the LABEL option as well. The following statement shows all of these options
together:

PROC PRINT DATA = data-set NOOBS LABEL;

The following are optional statements that sometimes come in handy:

BY variable-list; The BY statement starts a new section in the output for each
new value of the BY variables and prints the values of the BY
variables at the top of each section. The data must be presorted
by the BY variables.

ID variable-list; When you use the ID statement, the observation numbers are not
printed. Instead, the variables in the ID variable list appear on
the left-hand side of the page.

SUM variable-list; The SUM statement prints sums for the variables in the list.

VAR variable-list; The VAR statement specifies which variables to print and the
order. Without a VAR statement, all variables in the SAS data set
are printed in the order that they occur in the data set.

Example Students from two fourth-grade classes are selling candy to earn money for a special
field trip. The class earning more money gets a free box of candy. The following are the data for
the results of the candy sale. The students’ names are followed by their classroom number, the
date they turned in their money, the type of candy: mint patties or chocolate dinosaurs, and the
number of boxes sold:

Chapter 4: Sorting, Printing, and Summarizing Your Data 107

Adriana 21 3/21/2000 Mp 7

Nathan 14 3/21/2000 CD 19
Matthew 14 3/21/2000 CD 14
Claire 14 3/22/2000 CD 11
Caitlin 21 3/24/2000 CD 9
Ian 21 3/24/2000 MP 18
Chris 14 3/25/2000 CD 6

Anthony 21 3/25/2000 Mp 13
Stephen 14 3/25/2000 CD 10
Erika 21 3/25/2000 MP 17

The class earns $1.25 for each box of candy sold. The teachers want a report giving the money
earned for each classroom, the money earned by each student, the type of candy sold, and the date
the students returned their money. The following program reads the data, computes money earned
(Profit), and sorts the data by classroom using PROC SORT. Then, the PROC PRINT step uses a BY
statement to print the data by Class and a SUM statement to give the totals for Profit. The VAR
statement lists the variables to be printed:

"DATA sales;
INFILE 'c:\MyRawData\Candy.dat';
INPUT Name $ 1-11 Class @15 DateReturned MMDDYY10. CandyType $
Quantity;
Profit = Quantity * 1.25;
PROC SORT DATA = sales;
BY Class;

TITLE 'Candy Sales for Field Trip by Class';
RUN;

Here are the resuits. Notice that the values for the variable DateReturned are printed as their SAS
date values. You can use formats, covered in section 4.5, to print dates in readable forms.

Candy Sales for Field Trip by Class 1
-------------------------------- $lass=14 ---=---c-mmcmmmmm e e
Date Candy .

Obs Name Returned Type Profit

1 Nathan 14690 cD 23.75

2 Matthew 14690 cD 17.50

3 Claire 14691 cD 13.75

4 Chris 14694 GD 7.50

5 Stephen 14694 CD 12.50

éiéss 75.00
-------------------------------- 0lass=21 ------vmmmmmm e

Date Candy .

Obs Name Returned Type Profit

6 Adriana 14690 MP 8.75

7 Caitlin 14693 cD 11.25

8 Ian 14693 MP 22.50

9 Anthony 14694 MP 16.25

10 Erika 14694 MP 21.25

Class £80.00

155.00

108 The Little SAS Book Chapter 4: Sorting, Printing, and Summarizing Your Data 109

Changing the Appearance of Printed Values with Formats were numbers like 14690 and 14694. Using the FORMAT statement in the PRINT procedure, we
: can print the dates in a readable form. At the same time, we can print the variable Profit using the
When SAS prints your data, it decides which format is DOLLAR6.2 format so dollar signs appear before the numbers.
0 1002 Obs Date Sales {| best—how many decimal places to print, how much space , . '
2 2012 | wem| 1 01/01/60 1,002 ‘ to allow for each value, and so on. This is very convenient Here are the data, where the students names are followed by theLF classroom, the date they turned
2 1 0 2101 2 i and makes your job much easier, but SAS doesn’t always in their money, the type of candy sold: mint patties or chocolate dinosaurs, and the number of
31 4336 3 82 ; gi’; 20 4/336 ; do what you want. Fortunately you're not stuck with the boxes sold:
I s j form.atSASthinksis.best. You can change the appearance Adriana 21 3/21/2000 MP 7
of printed values using SAS formats. Nathan 14 3/21/2000 CD 19
Matthew 14 3/21/2000 CD 14
SAS has many formats for character, numeric, and date values. For example, you can use the Claire 14 3/22/2000 CD 11
COMMAw.d format to print numbers with embedded commas, the $w. format to control the (Ifal tlin %i g ; gj ; g 888 ﬁg 12
number of characters printed, and the MMDDYYw. format to print SAS date values (the number Ci? is 14 3/25/2000 CD 6
of days since January 1, 1960) in a readable form like 12/03/2003. You can even print your data Anthony 21 3/25/2000 MP 13
in more obscure formats like hexadecimal, zoned decimal, and packed decimal, if you like.' Stephen 14 3/25/2000 CD 10
Erika 21 3/25/2000 MP 17

The general forms of a SAS format are i)
The following program reads the raw data and computes Profit. The FORMAT statement in

Character Numeric Date the PRINT procedure associates the DATES. format with the variable DateReturned and the
$formatw. formatw.d formatw. DOLLARS6.2 format with the variable Profit:
where the $ indicates character formats, format is the name of the format, w is the total width DAT‘;'[\N; iigs ¢ \MyRawData\Candy.dat ' ; _
including any decimal poin.t, §nd d is the number of decimal places. The period in the format is INPUT Name & 1-11 Class @15 DateReturned MMDDYY10. CandyType $
very important because it distinguishes a format from a variable name, which cannot, by default, Quantity;
contain any special characters except the underscore. Profit = Quantity * 1.25;

PROC PRINT DATA = sales;
VAR Name DateRe

FORMAT statement You can associate formats with variables in a FORMAT statement.
The FORMAT statement starts with the keyword FORMAT, followed by the variable name (or
names if more than one variable is to be associated with the same format), followed by the
format. For example, the following FORMAT statement associates the DOLLARS.2 format with

the variables Profit and Loss and associates the MMDDYYS8. format with the variable SaleDate: Here are the results:
FORMAT Profit Loss DOLLARS.2 SaleDate MMDDYYS.; Candy Sale Data Using Formats }
FORMAT statements can go in either DATA steps or PROC steps. If the FORMAT statement is in Date cand
a DATA step, then the format association is permanent and is stored with the SAS data set. If the R d T ey Profit
FORMAT statement is in a PROC step, then it is temporary—affecting only the results from that Obs Name eturne yp
procedure.
3 1 Adriana 21MAR2000 MP $8.75
PUT statement You can also use formats in PUT statements when writing raw data files or 2 Nathan 21MAR2000 cD $23.75
reports. Place a format after each variable name, as in the following example: 3 Matthew 21MAR2000 cD $17.50
4 Claire 22MAR2000 CD $13.75
PUT Profit DOLLARS8.2 Loss DOLLARS.2 SaleDate MMDDYYS.; 5 Caitlin 24MAR2000 CD $11.25
] 6 Ian 24MAR2000 MP $22.50
Example In section 4.4, results from the fourth—graclie candy sale were printed using the 7 Chris 25MAR2000 cD $7.50
PRINT procedure. The names of the students were printed along with the date they turned in 3 8 Anthony 25MAR2000 MP $16.25
their money, the type of candy sold, and the profit. You may have noticed that the dates printed g Stephen 25MAR2000 cD $12.50
10 Erika 25MAR2000 MP $21.25

1 .
You can also create your own formats using the FORMAT procedure covered in section 4.7.

110 The Little SAS Book

Selected Standard Formats

Here are definitions of commonly used formats’ along with the width range and default width.

$HEXw.

$w.

DATEw.
DATETIMEw.d

DAYw.
EURDFDDw.
JULIANw.

MMDDYYw.

TIMEw.d
WEEKDATEw.

WORDDATEw.

Definition

Converts charactér data to hexidecimal (spécify
w twice the length of the variable)

Writes standard character data—does not trim
leading blanks (same as $CHARw.)

ddmmmyyyy

Writes SAS datetime values in form
ddmmmyy:hh:mm:ss.ss

Writes day of month from a SAS date value
Writes a SAS date value in form: dd.mm.yy

Writes a Julian date from a SAS date value in
form yyddd or yyyyddd

Writes SAS date values in form mmddyy or
mmddyyyy
Writes SAS time values in form hh:mm:ss.ss

Writes SAS date values in form
day-of-week, month-name dd, yy or yyyy
Writes SAS date values in form
month-name dd, yyyy

Width rang

1-32767

7-40

2-32
2-10

2-10

2-20
3-37

3-32

Default width

Length of
variable or 1

29

18

BESTw.

COMMAw.d

DOLLARw.d

Ew.
PDw.d

w.d

SAS chooses best format—this is the default
format for writing numeric data

Writes numbers with commas separating every
three digits

Writes numbers with a leading $ and commas
separating every three digits

Writes numbers in scientific notation

Writes numbers in packed decimal—w
specifies the number of bytes

Writes standard numeric data

1-32

2-32

2-32

7-32
1-16

1-32

12

12

none

"Check your SAS Help and Documentation for a complete list of formats.

?SAS date values are the number of days since January 1, 1960. SAS time values are the number of seconds past midnight, and

datetime values are the number of seconds since midnight January 1, 1960.

Chapter 4: Sorting, Printing, and Summarizing Your Data

Here are examples using the selected formats.

111

Input data

PUT statement

Results

“$w.

l DATEw
DATETIMEw.
DAYw.

EURDFDDw.
JULTANw.

MMDDYYw.
TIMEw.d

WEEKDATEw.

WORDDATEw.

my cat
my snake

8966

12182

8966

8966
8966

8966

12182

8966

8966

PUT Name S$HEX4.;

PUT Animal $8. '*';

C1C2 (EBCDIC)®

4142 (ASCII)

my cat *
my snak*

PUT Birth DATE7.;
PUT Birth DATES.;

PUT Start DATETIME13.;
PUT Start DATETIME18.1;

PUT Birth DAY2.;
PUT Birth DAY7.;

PUT Birth EURDFDDS. ;

PUT Birth JULIANS.;
PUT Birth JULIANT7.;

PUT Birth MMDDYYS.;
PUT Birth MMDDYY6. ;

PUT Start TIMES.;
PUT Start TIME1l.2;

PUT Birth WEEKDATELS.;
PUT Birth WEEKDATE29.;

PUT Birth WORDDATE12.;
PUT Birth WORDDATE1S.;

19JUL84
19JUL1984

01JAN60:03:23
01JAN60:03:23:02.0

19
19

19.07.84

84201
1984201

7/19/84
071984
3:23:02
3:23:02.00

Thu, Jul 19, 84
Thursday, July 19,

Jul 19, 1984
1984

1984

BESTw.

COMMAw.d

DOLLARw.d

Ew.
PDw.d
w.d

1200001

1200001

1200001

1200001
128
23.635

PUT Value BESTS6.;
PUT Value BESTS.;

PUT Value COMMAY.;
PUT Value COMMAl2.2;

PUT Value DOLLARI1OQ.;
PUT Value DOLLAR13.2;

PUT Value E7.;
PUT Value PD4.;

PUT Value 6.3;
PUT Value 5.2;

1.20E6
1200001

1,200,001
1,200,001.00

$1,200,001
$1,200,001.00

1.2E+06

23.635
23.64

* The EBCDIC character set is used on most IBM mainframe computers while the ASCII character set is used on most other

computers. So, depending on the computer you are using, you will get one or the other.

4 .
These values cannot be printed.

112

The Little SAS Book

Creating Your Own Formats Using PROC FORMAT

2 .8
W =N

At some time you will probably want to create your own
custom formats—especially if you use a lot of coded data.
Imagine that you have just completed a survey for your
company and to save disk space and time, all the responses
to the survey questions are coded. For example, the age
categories teen, adult, and senior are coded as numbers 1,
2, and 3. This is convenient for data entry and analysis but
bothersome when it comes time to interpret the results. You could present your results along
with a code book, and your company directors could look up the codes as they read the results.
But this will probably not get you that promotion you've been looking for. A better solution is to
create user-defined formats using PROC FORMAT and print the formatted values instead of the
coded values.

Obs Sex AgeGroup
Male Adult
Female Teen

R Ry e Ly

W N =

Male Senior

The FORMAT procedure creates formats that will later be associated with variables in a
FORMAT statement. The procedure starts with the statement PROC FORMAT and continues
with one or more VALUE statements (other optional statements are available):

PROC FORMAT;
VALUE name range-1
range-2

'formatted-text-1'
'formatted-text-2"'

range-n = 'formatted-text-n';

The name in the VALUE statement is the narne of the format you are creating. If the format is for
character data, the name must start with a $. The name can’t be longer than 32 characters
(including the $ for character data), it must not start or end with a number, and cannot contain
any special characters except the underscore. In addition, the name can’t be the name of an
existing format. Each range is the value of a variable that is assigned to the text given in quotation
marks on the right side of the equal sign. The text can be up to 32,767 characters long, but some
procedures print only the first 8 or 16 characters. The following are examples of valid range
specifications:

'A' = 'Asia’
1, 3,5, 7, 9 = odd’
500000 - HIGH = 'Not Affordable'
13 -< 20 = 'Teenager'
0 <- HIGH = 'Positive Non Zero'
OTHER = 'Bad Data'

Character values must be enclosed in quotation marks ('A’ for example). If there is more than one
value in the range, then separate the values with a comma or use the hyphen (-) for a continuous
range. The keywords LOW and HIGH can be used in ranges to indicate the lowest and the
highest non-missing value for the variable. You can also use the less than symbol (<) in ranges to
exclude either end point of the range. The OTHER keyword can be used to assign a format to any
values not listed in the VALUE statement.

Chapter 4: Sorting, Printing, and Summarizing Your Data 113

Example Universe Cars is surveying its customers as to their preferences for car colors. They
have information about the customer’s age, sex (coded as 1 for male and 2 for female), annual
income, and preferred car color (yellow, gray, blue, or white). Here are the data:

19 1 14000 Y
45 1 65000 G
72 2 35000 B
31 1 44000 Y
58 2 83000 W

The following program reads the data; creates formats for age, sex, and car color using the
FORMAT procedure; then prints the data using the new formats: :

DATA carsurvey;
INFILE 'c:\MyRawData\Cars.dat';

* Print data using user-defined and standard (DOLLAR8.) formats;
PROC‘PRINT DAT.

nted with User-Defined Formats';

This program creates two numeric formats: GENDER for the variable Sex and AGEGROUP for the
variable Age. The program creates a character format, $COL, for the variable Color. Notice that the
format names do not end with periods in the VALUE statement, but they do in the FORMAT

statement.

Here is the output:

Survey Results Printed with User-Defined Formats 1
Obs Age Sex Income Color
1 Teen Male $14,000 Sunburst Yellow
2 Adult Male $65,000 Rain Cloud Gray
3 Senior Female $35,000 Sky Blue
4 Adult Male $44,000 Sunburst Yellow
5 Adult Female $83,000 Moon White

This example creates temporary formats that exist only for the current job or session. Creating and
using permanent formats is discussed under the FORMAT Procedure in the SAS Help and
Documentation.

iy

The Little SAS Book

Writing Simple Custom Reports

PROC PRINT is flexible and easy to use. Still, there are times when PROC PRINT just won't do:
when your report to a state agency has to be spaced just like their fill-in-the-blank form, or when
your client insists that the report contain complete sentences, or when you want one page per
observation. At those times you can use the flexibility of the DATA step, and format to your -
heart’s content.

You can write data in a DATA step the same way you read data—but in reverse. Instead of using
an INFILE statement, you use a FILE statement; instead of INPUT statements, you use PUT
statements. This is similar to writing a raw data file in a DATA step (section 9.5), but to write a
report you use the PRINT option telling SAS to include the carriage returns and page breaks
needed for printing. Here is the general form of a FILE statement for creating a report:

FILE ‘file-specification’ PRINT;

Like INPUT statements, PUT statements can be in list, column, or formatted style, but since SAS
already knows whether a variable is numeric or character, you don’t have to put a $ after
character variables. If you use list format, SAS will automatically put a space between each
variable. If you use column or formatted styles of PUT statements, SAS will put the variables
wherever you specify. You can control spacing with the same pointer controls that INPUT
statements use: @n to move to column 7, +7 to move z columns, / to skip to the next line, #1 to
skip to line 7, and the trailing @ to hold the current line. In addition to printing variables, you
can insert a text string by simply enclosing it in quotation marks.

Example To show how this differs from PROC PRINT, we’ll use the candy sales data again.
Two fourth-grade classes have sold candy to raise money for a field trip. Here are the data with
each student’s name, classroom number, the date they turned in their money, the type of candy:
mint patties or chocolate dinosaurs, and the number of boxes sold:

Adriana 21 3/21/2000 MP 7
Nathan 14 3/21/2000 CD 19
Matthew 14 3/21/2000 CD 14
Claire 14 3/22/2000 CD 11
Caitlin 21 3/24/2000 CD 9
Tan 21 3/24/2000 MP 18
Chris 14 3/25/2000 CD 6

Anthony 21 3/25/2000 Mp 13
Stephen 14 3/25/2000 CD 10
Erika 21 3/25/2000 MP 17

The teachers want a report for each student showing how much money that student earned.
They want each student’s report on a separate page so it is easy to hand out. Lastly, they want it
to be easy for fourth graders to understand, with complete sentences. Here is the program:

*

D2

eport with FILE and PUT statements;

"INFILE 'c:\MyRawData\Candy.dat';
INPUT Name $ 1-11 Class @15 DateReturmned MMDDYY10.
CandyType $ Quantity;

Chapter 4: Sorting, Printing, and Summarizing Your Data 115

Notice that the keyword _NULL_ appears in the DATA statement instead of a data set name.
NULL tells SAS not to bother writing a SAS data set (since the goal is to create a report not a
data set), and makes the program run slightly faster. The FILE statement creates the output file
for the report, and the PRINT option tells SAS to include carriage returns and page breaks. The
null TITLE statement tells SAS to eliminate all automatic titles.

The first PUT statement in this program starts with a pointer, @5, telling SAS to go to column 5.
Then it tells SAS to print the words Candy sales report for followed by the current value of
the variable Name. The variables Name, Class, and Quantity are printed in list style whereas Profit
is printed using formatted style and the DOLLARS6.2 format. A slash line pointer tells SAS to skip
to the next line; two slashes skips two lines. You could use multiple PUT statements instead of
slashes to skip lines because SAS goes to a new line every time there is a new PUT statement. The
statement PUT _PAGE_ inserts a page break after each student’s report. When the program is run,
the log will contain these notes:

NOTE: 10 records were read from the infile 'c:\MyRawData\Candy.dat'.

NOTE: 30 records were written to the file 'c:\MyRawData\Student.rep'.

The first three pages of the report look like this:

Candy sales report for Adriana from classroom 21

Congratulations! You sold 7 boxes of candy
and earned $8.75 for our field trip.

Candy sales report for Nathan from classroom 14

Congratulations! You sold 19 boxes of candy
and earned $23.75 for our field trip.

Candy sales report for Matthew from classroom 14

Congratulations! You sold 14 boxes of candy
and earned $17.50 for our field trip.

116

The Little SAS Book

Summarizing Your Data Using PROC MEANS

One of the first things people usually want to do with their data, after reading it and making
sure it is correct, is look at some simple statistics. Statistics such as the mean value, standard
deviation, and minimum and maximum values give you a feel for your data. These types of
information can also alert you to errors in your data (a score of 980 in a basketball game, for
example, is suspect). The MEANS procedure provides simple statistics on numeric variables.

The MEANS procedure starts with the keywords PROC MEANS, followed by options listing the
statistics you want printed:

PROC MEANS options;

If you do not specify any options, MEANS will print the number of non-missing values, the
mean, the standard deviation, and the minimum and maximum values for each variable. There
are over 30 different statistics you can request with the MEANS procedure. The following is a
list of some of the simple statistics. More options for the MEANS procedure are discussed in
section 8.2.

MAX the maximum value

MIN the minimum value

MEAN the mean

MEDIAN the median

N number of non-missing values
NMISS number of missing values
RANGE the range

STDDEV the standard deviation

SUM the sum

If you use the PROC MEANS statement with no other statements, then you will get statistics
for all observations and all numeric variables in your data set. Here are some of the optional
statements you may want to use:

The BY statement performs separate analyses for each
level of the variables in the list.! The data must first be
sorted in the same order as the varigble-list. (You can use
PROC SORT to do this.)

BY variable-list;

The CLASS statement also performs separate analyses
for each level of the variables in the list,” but its output
is more compact than with the BY statement, and the
data do not have to be sorted first.

CLASS variable-list;

The VAR statement specifies which numeric variables to
use in the analysis. If it is absent then SAS uses all
numeric variables.

VAR variable-list;

Chapter 4: Sorting, Printing, and Summarizing Your Data 117

Example A wholesale nursery is selling garden flowers, and they want to summarize their sales
figures by month. The data file which follows contains the customer ID, date of sale, and number of
petunias, snapdragons, and marigolds sold:

756-01 05/04/2001 120 80 110
834-01 05/12/2001 90 160 60
901-02 05/18/2001 50 100 75
834-01 06/01/2001 80 60 100
756-01 06/11/2001 100 160 75
901-02 06/19/2001 60 60 60
756-01 06/25/2001 85 110 100

The following program reads the data; computes a new variable, Month, which is the month of the
sale; sorts the data by Month using PROC SORT; then summarizes the data by Month using PROC
MEANS with a BY statement:

DATA sales;
INFILE 'c:\MyRawData\Flowers.dat';
INPUT CustomerID $ @9 SaleDate MMDDYY10. Petunia SnapDragon
Marigold;
Month = MONTH (SaleDate) ;
PROC SORT DATA = sales;
BY Month;
* Calculate means by Month for flower sales;

TITLE 'Summary of Flower Sales by Month'
RUN;

Here are the results of the PROC MEANS:

! By default, observations are excluded if they have missing values for BY or CLASS variables. If you want to include missing
values, add the MISSING option to the PROC MEANS statement.

Summary of Flower Sales by Month 1
--------------------------------- Month=5 -------mmmmmmee
The MEANS Procedure
Variable N Mean Std Dev Minimum Maximum
Petunia 3 86.6666667 35.1188458 50.0000000 120.0000000
SnapDragon 3 113.3333333 41,6333200 80.0000000 160.0000000
Marigold 3 81.6666667 25.6580072 60.0000000 110.0000000
--------------------------------- Month=6 ~«-------ommmmm
Variable N Mean Std Dev Minimum Maximum
Petunia 81.2500000 16.5201897 60.0000000 100.0000000
SnapDragon 97.5000000 47.8713554 60.0000000 160.0000000
Marigold 83.7500000 19.7378655 60.0000000 100.0000000

118 The Little SAS Book Chapter 4: Sorting, Printing, and Summarizing Your Data 119

WI' 1t1ng Summar y Statistics toa SAS Data Set Example The following are sales data for a wholesale nursery with the customer ID; date of

‘ o sale; and the number of petunias, snapdragons, and marigolds sold:
Sometimes you want to save summary statistics to a SAS data set for further P Snaperag 8

analysis, or to merge with other data. For example, you might want to 756-01 05/04/2001 120 80 110
plot the hourly temperature in your office to show how it heats up every gg‘ll } 8% 82 ; ig ; % 881 28 %88 gg
afternoon causing you to fall asleep, but the instrument you have records 834-01 06/01/2001 80 &0 100
data for every minute. The MEANS procedure can condense the data by 756-01 06/11/2001 100 160 75
computing the mean temperature for each hour and then save the results in a 901-02 06/19/2001 60 60 60

756-01 06/25/2001 85 110 100

SAS data set so it can be plotted.

You want to summarize the data so that you have only one observation per customer containing
the sum and mean of the number of plant sets sold, and you want to save the results in a SAS data
set for further analysis. The following program reads the data from the file; sorts by the variable,
CustomerID; and then uses the MEANS procedure with the NOPRINT option to calculate the sums

There are two methods in PROC MEANS for saving summary statistics in a SAS data set. You
can use the Output Delivery System (ODS), which is covered in section 5.3, or you can use the
OUTPUT statement. The OUTPUT statement has the following form:

OUTPUT OUT = data-set output-statistic-list; and means by CustomerID. The results are saved in a SAS data set named TOTALS in the QUTPUT
‘ ' statement. The sums are given the original variable names Petunia, SnapDragon, and Marigold,
Here, data-set is the name of the SAS data set which will contain the results (this can be either and the means are given new variable names MeanPetunia, MeanSnapDragon, and MeanMarigold.
temporary or permanent), and output-statistic-list defines which statistics you want and the A PROC PRINT is used to show the TOTALS data set:

associated variable names. You can have more than one OUTPUT statement and multiple output

statistic lists. The following is one of the possible forms for output-statistic-list: DATA sales;

INFILE 'c:\MyRawData\Flowers.dat';
INPUT CustomerID % @9 SaleDate MMDDYY10. Petunia SnapDragon Marigold;

statistic(variable-1ist) = name-list PROC SORT DATA = sales;
- BY CustomerID;
Here, statistic can be any of the statistics available in PROC MEANS (SUM, N, MEAN, for * Calculate by CustomerID, output sum and mean to mew data set

example), variable-list defines which of the variables in the VAR statement you want to output, PROC MEANS N T DATA = sales;
and name-list defines the new variable names for the statistics. The new variable names must be BY CustomeriID; .
in the same order as their corresponding variables in variable-list. For example, the following VAR Petunia Snapbragon Marigold,
PROC MEANS statements produce a new data set called ZOOSUM, which contains one
observation with the variables LionWeight, the mean of the lions” weights, and BearWeight,
the mean of the bears” weights:

PROC PRINT DATA totals;)
TITLE 'Sum of Flower Data over Customer ID';
FORMAT MeanPetunia MeanSnapDragon MeanMarigold 3.;

PROC MEANS DATA = zoo NOPRINT; UM
VAR Lions Tigers Bears; ‘
OUTPUT OUT = zoosum MEAN(Lions Bears) = LionWeight BearWeight;
RUN: Here are the results:
Tfh.e NOPRINT qphon in the PRQC MEANS st.atement tells SASl there is no need to produce any sum of Flower Data over Customer ID)
printed results since we are saving the results in a SAS data set.
The SAS data set created in the OUTPUT statement will contain all the variables defined in the Mean
output statistic list; any variables listed in a BY or CLASS statement; plus two new variables, Customer Mean . Snap Mean Snap
_TYPE_and _FREQ_. If there is no BY or CLASS statement, then the data set will have just one Obs D _TYPE_ _FREQ_ Petunia Dragon Marigold Petunia Dragon Marigold
observation. If there is a BY statement, then the data set will have one observation for each level
of the BY group. CLASS statements produce one observation for each level of interaction of the 1 756-01 0 3 102 117 95 305 350 285
class variables. The value of the _TYPE_ variable depends on the level of interaction. The 2 834-01 0 2 85 110 80 170 220 160
observation where "TYPE_ has a value of zero is the grand total.? 3 901-02 0 2 55 80 68 110 160 135

h Using PROC MEANS with a NOPRINT option is the same as using PROC SUMMARY.
? For a more detailed explanation of the _TYPE_ variable, see the SAS Help and Documentation.

120

a2l

The Little SAS Book

Counting Your Data with PROC FREQ

I A frequency table is a simple list of counts answering the question “How many?”

Apples

Oranges

When you have counts for one variable, they are called one-way frequencies.
I When you combine two or more variables, the counts are called two-way, three-
m way, and so on up to n-way frequencies; or simply cross-tabulations.

The most obvious reason for using PROC FREQ is to create tables showing the
distribution of categorical data values, but PROC FREQ canalso reveal irregu-
larities in your data. You could get dizzy proofreading a large data set, but data
entry errors are often glaringly obvious in a frequency table. The basic form of
PROC FREQ is

PROC FREQ;
TABLES variable-combinations;

To produce a one-way freﬁuency table, just list the variable name. This statement produces a
frequency table listing the number of observations for each value of YearsEducation:

TABLES YearsEducation;

To produce a cross-tabulation, list the variables separated by an asterisk. This statement produces a
cross-tabulation showing the number of observations for each combination of Sex by YearsEducation:

TABLES Sex * YearsEducation;

You can specify any number of table requests in a single TABLES statement, and you can have
as many TABLES statements as you wish. Be careful though; reading cross-tabulations of three
or more levels is like playing three-dimensional tic-tac-toe without the benefit of a three-dimen-
sional board.

Options, if any, appear after a slash in the TABLES statement. For a list of statistical opﬁbns for
PROC FREQ see section 8.3. Options for controlling the output of PROC FREQ include

LIST prints cross-tabulations in list format rather than grid
MISSING includes missing values in frequency statistics

NOCOL suppresses printing of column percentages in cross-tabulations
NOROW suppresses printing of row percentages in cross-tabulations
OUT = data-set writes a data set containing frequencies

The statement below, for instance, tells SAS to include missing values in the frequencies:

TABLES Sex * YearsEducation / MISSING;

Example The proprietor of a local coffee shop, Cathy’s Coffee Cup, keeps a record of all sales.
For each drink sold, she records the type of coffee (cappuccino, espresso, kona, or iced coffee),
and whether the customer walked in or came to the drive-up window. Here are the data with ten
observations per line of raw data:

esp w cap 4 cap w kon w ice w kon d esp d kon w ice d esp d
cap w esp d cap d Kon d . d kon w esp @ cap w ice w kon w
kon w kon w ice d esp @ kon w esp d esp w kon w cap w kon w

Chapter 4: Sorting, Printing, and Summarizing Your Data 121

The following program reads the data and produces one-way and two-way frequencies:

DATA orders;
INFILE 'c:\MyRawData\Coffee.dat';
INPUT Coffee $ Window $ @Q@Q;

RUN;

The output contains two tables. The first is a one-way frequency table for the variable Window.
You can see that 13 customers came to the drive-up window while 17 walked into the restaurant.

The FREQ Procedure

Cumulative Cumulative
Window Frequency Percent Frequency Percent
d 13 43.33 13 43.33
17 56.67 30 100.00

Table of Window by Coffee

Window Coffee

Frequency

Percent

Row Pct

Col Pct Kon cap esp ice kon Total

d 1 2 6 2 1 12
3.45 6.90 20.69 6.90 3.45 41.38
8.33 16.67 50.00 16.67 8.33

100.00 33.33 75.00 50.00 10.00

w 0 4 2 2 9 17
0.00 13.79 6.90 6.90 31.03 58.62
0.00 23.53 11.76 11.76 52.94

0.00 66.67 25.00 50.00 90.00

Total 1 6 8 4 10 29
3.45 20.69 27.59 13.79 34.48 100.00

Frequency Missing = 1

The second table is a two-way cross-tabulation of Window by Coffee. Inside each cell, SAS

prints the frequency, percentage, percentage for that row, and percentage for that column; while
cumulative frequencies and percents appear along the right side and bottom. Notice that the
missing value is mentioned but not included in the statistics. (Use the MISSING option if you want
missing values to be included in the table.) Also, there is one observation with a value of Kon for
Coffee. This data entry error should be kon.

122 The Little SAS Book

Producing Tabular Reports with PROC TABULATE

Every summary statistic the TABULATE procedure computes can also be produced
by other procedures such as PRINT, MEANS, and FREQ, but PROC TABULATE is
popular because its reports are pretty. If TABULATE were a box, it would be gift-

wrapped.

PROC TABULATE is so powerful that entire books have been written about it, but it
is also so concise that you may feel like you're reading hieroglyphics. If you find the
syntax of PROC TABULATE a little hard to get used to, that may be because it has
roots outside of SAS. PROC TABULATE is based in part on the Table Producing
Language, a complex and sophisticated language developed by the U.S. Department of Labor.
The general form of PROC TABULATE is

PROC TABULATE;

CLASS classification-variable-1list;) ’
TABLE page-dimension, row-dimension, column-dimension;

The CLASS statement tells SAS which variables contain categorical data to be used for dividing
observations into groups, while the TABLE statement tells SAS how to organize your table and
what numbers to compute. Each TABLE statement defines only one table, but you may have
multiple TABLE statements. If a variable is listed in a CLASS statement, then, by default, PROC
TABULATE produces simple counts of the number of observations in each category of that
variable. PROC TABULATE offers many other statistics too, and section 4.13 describes how to

request those.

Dimensions Each TABLE statement can specify up to three dimensions. Those dimensions,
separated by commas, tell SAS which variables to use for the pages, rows, and columns in the
report. If you specify only one dimension, then that becomes, by default, the column dimension.
Tf you specify two dimensions, then you get rows and columns, but no page dimension. If you
specify three dimensions, then you get pages, rows, and columns.

When you write a TABLE statement, start with the column dimension. Once you have that
debugged, add the rows. Once you are happy with your rows and columns, then you are ready
to add a page dimension, if you need one. Notice that the order of dimensions in the TABLE
statement is page, then row, then column. So, to avoid scrambling your table when you add
dimensions, insert the page and row specifications in front of the column dimension.

Missing data By default, observations are excluded from tables if they have missing values
for variables listed in a CLASS statement. If you want to keep these observations, then simply
add the MISSING option to your PROC statement like this:

PROC TABULATE MISSING;

Example Here are data about pleasure boats including the name of each boat, its home port,
whether it is a sailing or power vessel, the type of boat (schooner, catamaran, or yacht), and the
price of an excursion. :

Chapter 4: Sorting, Printing, and Summarizing Your Data

Silent Lady Maalea sail sch 75.00
America II Maalea sail vyac 32.95
Aloha Anai Lahaina sail cat 62.00
Ocean Spirit Maalea power cat 22.00
Anuenue Maalea- sail sch 47.50
Hana Lei Maalea ©power cat 28.99
Leilani Maalea power yac 19.99
Kalakaua Maalea power cat 29.50
Reef Runner Lahaina power yac 29.95
Blue Dolphin Maalea sail cat 42.95

123

Suppose you want a report showing the number of boats of each type that are sailing or power
vessels in each port. The following DATA step reads the data from a raw data file named Boats.dat.
Then PROC TABULATE creates a three-dimensional report with the values of Port for the pages,
Locomotion for the rows, and Type for the columns.
DATA boats;
INFILE 'c:\MyRawData\Boats.dat';
INPUT Name $ 1-12 Port $ 14-20 Locomotion $ 22-26 Type $ 28-30
Price 32-36;

* Tabulations with three dimensions;

, Locomotion, and Type';

This report has two pages, one for each value of the page dimension. Here is one page:

Number of Boats by Port, Locomotion, and Type 2

Port Maalea

Type
cat sch yac
N N N
Locomotion
power 3.00| . 1.00
sail 1.00 2.00 1.00

The value of the page dimension appears in the top, left corner of the output. You can see that this
is the page for the port of Maalea. The heading N tells you that the numbers in this table are simple
counts, the number of boats in each group.

1t

124

The Little SAS Book

Adding Statistics to PROC TABULATE Output

By default, PROC TABULATE produces simple counts for variables listed in a CLASS statement,
but you can request many other statistics in a TABLE statement. You can also concatenate or
cross variables within dimensions. In fact, you can write TABLE statements so complicated that
even you won't know what the report is going to look like until you run it.

While the CLASS statement lists categorical variables, the VAR statement tells SAS which
variables contain continuous data. Here is the general form:

PROC TABULATE;
VAR analysis—variable—list; .
CLASS classification—variable—list;
TABLE page—dimension, row-dimension, column-dimension;

You may have both a CLASS statement and a VAR statement, or just one, but all variables listed
in a TABLE statement must also appear in either a CLASS or a VAR statement.

Keywords In addition to variable names, each dimension can contain keywords. These are a
few of the values TABULATE can compute.

ALL adds a row, column, or page showing the total
MAX highest value
MIN lowest value
MEAN " the arithmetic mean
MEDIAN the median
"N number of non-missing values
NMISS number of missing values
PS0 the 90" percentile
PCTN the percentage of observations for that group
PCTSUM the percentage of a total sum represented by that group
STDDEV the standard deviation
SUM the sum

Concatenating, crossing, and grouping Within a dimension, variables and keywords
can be concatenated, crossed, or grouped. To concatenate variables or keywords simply list them
separated by a space, t0 Cross variables or keywords separate then with an asterisk (*), and to
group them enclose the variables or keywords in parentheses. The keyword ALL is generally
concatenated. To request other statistics, however, cross that keyword with the variable name.

Concatenating: TABLE Locomotion Type ALL;
Crossing: TABLE MEAN * Price;
Crossing, grouping, and concatenating: TABLE PCTN * (Locomotion Type)

Example Here again are the boat data containing the name of each boat, its home port,
whether it is a sailing or power vessel, the type of boat (schooner, catamaran, Or yacht), and the
price of an excursion.

Silent Lady Maalea sail sch 75.00
America II Maalea sail yac 32.95
Aloha Anai Lahaina sail cat 62.00
Ocean Spirit Maalea power cat 22.00
Anuenue Maalea sail sch 47.50
Hana Lei Maalea power cat 28.99

Chapter 4: Sorting, Printing, and Summarizing Your Data

Leilani Maalea power yac 19.99
Kalakaua Maalea power cat 29.50
Reef Runner Lahaina power yac 29.95
Blue Dolphin Maalea sail cat 42.95

i'In'htle uf((;llowi;\;ciﬁ)rogram is similar to the one in section 4.12. However, this PROC TABULATE
cludes a statement. The TABLE statement in this tai i

. program contains onl ions;
but it also concatenates, crosses, and groups variables and stgaﬁsﬁcs. y two dimensions

DATA boats;
INFILE 'c:\MyRawData\Boats.dat';

INPUT Name $ 1-12 Port $ 14-20 Lo .
t _
Price 32-36; comotion § 22-26 Type $ 28-30

7_’1’:abi%lations with two dimensions and statistics;

AR £,

RUN"_;[‘ITLE 'Mean Price by Locomotion and Type';
Thedrow dimension of this tal?le concatenates the classification variable Locomotion with ALL to
pro Eie totcals. The c.olumn dimension, on the other hand, crosses MEAN with the analysis
variable Prl.ce and with the classification variable Type (which happens to be concatenated and
grouped with ALL). Here are the results:

125

Mean Price by Locomotion and Type 1
Mean
Price
Type
cat sch yac All

Locomotion
power 26.83 . 24.97 26.09
sail 52.48 61.25 32.95 52.08
All 37.09 61.25 27.63 39.08

126

The Little SAS Book

Enhancing the Appearance of PROC TABULATE Output

When you use PROC TABULATE, SAS wraps your data in tidy little boxes, but there may be
times when they just don’t look right. Using three simple options, you can enhance the
appearance of your output. Think of it as changing the wrapping paper.

FORMAT= option To change the format of all the data cells in your table, use the
FORMAT= option in your PROC statement. For example, if you needed the numbers in your
table to have commas and no decimal places, you could use this PROC statement

PROC TABULATE FORMAT=COMMA10.0;
telling SAS to use the COMMA10.0 format for all the data cells in your table.

BOX= and MISSTEXT= options While the FORMAT= option must be used in your
PROC statement, the BOX= and MISSTEXT= options go in TABLE statements. The BOX= option
allows you to write a brief phrase in the normally empty box that appears in the upper left
corner of every TABULATE report. Using this empty space can give your reports a nicely
polished look. The MISSTEXT= option, on the other hand, specifies a value for SAS to print in
empty data cells. The period that SAS prints, by default, for missing values can seem downright
mysterious to someone, perhaps your CEO, who is not familiar with SAS output. You can give
them something more meaningful with the MISSTEXT= option. This statement

TABLE Region, MEAN*Sales / BOX='Mean Sales by Region' MISSTEXT='No Sales';

tells SAS to print the title "Mean Sales by Region” in the upper left corner of the table, and to
print the words “No Sales” in any cells of the table that have no data. The BOX= and
MISSTEXT= options must be separated from the dimensions of the TABLE statement by a slash.

Example Here again are the boat data containing the name of each boat, its home port,
whether it is a sailing or power vessel, the type of boat (schooner, catamaran, or yacht), and the
price of an excursion.

Silent Lady Maalea sail sch 75.00
America II Maalea sail yac 32.95
Aloha Anai Lahaina sail cat 62.00
Ocean Spirit Maalea power cat 22.00

Anuenue Maalea sail sch 47.50
Hana Lei Maalea power cat 28.99
Leilani Maalea power yac 19.99
Kalakaua Maalea power cat 29.50

Reef Runner Lahaina power yac 29.95
Blue Dolphin Maalea sail cat 42.95

The following program is the same as the one in the previous section except that the FORMAT=,
BOX=, and MISSTEXT= options have been added. Notice that the FORMAT= option goes in the
PROC statement, while the BOX= and MISSTEXT= options go in the TABLE statement following a
slash. Because the BOX= option serves as a title, a null TITLE statement is used to remove the usual
title.

Chapter 4: Sorting, Printing, and Summarizing Your Data 127

DATA boats;) .
INFILE 'c:\MyRawData\Boats.dat';
INPUT Name $ 1-12 Port $ 14-20 Locomotion $ 22-26 Type $ 28-30

Price 32-36;

* PROC TABULATE report withhgggigns;
PROC TABULATE DATA = boats HQRVEN
CLASS Locomotion Type;

VAR Price;
TABLE Locomotio LL)
TEORETRTED e
TITLE;
RUN;

Here is the enhanced output:

1
Full Day Mean
Excursions

Price

Type
cat sch yac All

Locomotion
power $26.83 none $24.97 $26.09
sail $52.48 $61.25 $32.95 $52.08
All $37.09| $61.25| $27.68| $89.08

Notice that all the data cells now use the DOLLAR9.2 format as specified in the FORMAT= option.
The text “Full Day Excursions” now appears in the upper left corner which was empty in the
previous section. In addition, the one data cell with no data now shows the word “none” instead of

a period.

128

The Little SAS Book

Changing Headers in PROC TABULATE Output

The TABULATE procedure produces reports with a lot of headers. Sometimes there are so many
headers that your reports look cluttered; at other times you may simply feel that a different
header would be more meaningful. Before you can change a header, though, you need to
understand what type of header it is. TABULATE reports have two basic types of headers:
headers that are the values of variables listed in a CLASS statement, and headers that are the
names of variables and keywords. You use different methods to change different types of
headers.

CLASS variable values To change headers which are the values of variables listed in a
CLASS statement, use the FORMAT procedure to create a user-defined format. Then assign the
format to the variable in a FORMAT statement (section 4.7).

Variable names and keywords To change headers which are the names of variables or
keywords, put an equal sign after the variable or keyword followed by the new header enclosed
in quotation marks.' You can eliminate a header entirely by setting it equal to blank (two
quotation marks with nothing in between), and SAS will remove the box for that header. This
TABLE statement

TABLE Region='', MEAN=''*Sales='Mean Sales by Region';

tells SAS to remove the headers for Region, and MEAN, and to change the header for the
variable Sales to “Mean Sales by Region.”

In some cases SAS leaves the empty box when a row header is set to blank. This happens for
statistics and analysis variables (but not class variables). To force SAS to remove the empty box,
add the ROW=FLOAT option to the end of your TABLE statement like this:

TABLE MEAN=''*Sales='Mean Sales by Region', Region='"' / ROW=FLOAT;

Example Here again are the boat data containing the name of each boat, its home port,
whether it is a sailing or power vessel, the type of boat (schooner, catamaran, or yacht), and the
price of an excursion.

Silent Lady Maalea sail sch 75.00
America II Maalea sail yac 32.95
Aloha Anai Lahaina sail cat 62.00
Ocean Spirit Maalea power cat 22.00

Anuenue Maalea sail sch 47.50
Hana Lei Maalea power cat 28.99
Leilani Maalea power yac 19.99
Kalakaua Maalea power cat 29.50

Reef Runner Lahaina power yac 29.95
Blue Dolphin Maalea sail cat 42.95

The following program is the same as the one in the previous section except that the headers have
been changed. To start with, a FORMAT procedure creates a user-defined format named $typ.

' You can also change variable headers with a LABEL statement (section 4.1), and keyword headers with a KEYLABEL statement.

However, the TABLE statement method used in this section is the orly way that you can remove a variable header without
leaving a blank box behind.

Chapter 4: Sorting, Printing, and Summarizing Your Data 129

Then the $typ. format is assigned to the variable Type using a FORMAT statement. In the TABLE
statement, more headers are changed. The headers for Locomotion, MEAN, and Type are all set to
blank, while the header for Price is set to “Mean Price by Type of Boat.”

DATA boats;
INFILE 'c:\MyRawData\Boats.dat';
INPUT Name $ 1-12 Port $ 14-20 Locomeotion $ 22-26 Type $ '28-30

Price 32-36;

* Changing headers;

PROC TABULATE DATA = boats FORMAT=DOLLARS.2;
CLASS Locomotion Type;
VAR Price;

TABLE Locomotio
MEA
/BOX='Full Day Excursions

TITLE;

RUN;

ALL)

y (Types
MISSTEXT='none';

This program does not require the ROW=FLOAT option because the only variable being set to
blank in the row dimension is a class variable. If you put an analysis variable or statistics keyword
in the row dimension and set it equal to blank, then you would need to add the ROW=FLOAT
option to remove empty boxes. Here is the output:

1
Full Day Mean Price by Type of Boat
Excursions
catamaran|schooner yacht All
power $26.83 none $24.97 $26.09
sail $52.48 $61.25 $32.95 $52.08
All $37.09 $61.25 $27.63 $39.08

This output is the same as the output in the preceding section, except for the new headers. Notice
how much cleaner and more compact this report is.

130

The Little SAS Book

Specifying Multiple Formats for Data Cells in PROC
TABULATE Output

Using the FORMAT= option in a PROC TABULATE statement, you can easily specify a format
for the data cells; but you can only specify one format, and it must apply to all the data cells. If
you want to use more than one format in your table, you can do that by putting the FORMAT=
option in your TABLE statement.

To apply a format to an individual variable, cross it with the variable name. The general form of
this is

variable-name*FORMAT=formatw.d
Then you insert this rather convoluted construction in your TABLE statement.

TABLE Region, MEAN* (Sales*FORMAT=COMMAS.0 Profit*FORMAT=DOLLAR10.2);

This TABLE statement applies the COMMAS.0 format to a variable named Sales, and the
DOLLAR10.2 format to Profit.

Example Here again are the boat data containing the name of each boat, its home port,
whether it is a sailing or power vessel, the type of boat (schooner, catamaran, or yacht), and the
price of an excursion. A new variable has been added showing the length of each boat in feet.

Silent Lady Maalea sall sch 75.00 64
America II Maalea sail vyac 32.95 65
Aloha Anai Lahaina sail cat 62.00 60
Ocean Spirit Maalea power cat 22.00 65

Anuenue Maalea sail sch 47.50 52
Hana Leil Maalea power cat 28.99 110
Leilani Maalea power yac 19.99 45
Kalakaua Maalea power cat 29.50 70

Reef Runner Lahaina power yac 29.95 50
Blue Dolphin Maalea sail cat 42.95 65

Suppose you want to show the mean price and mean length of boats side-by-side in the same
report. Using dollar signs makes sense for price, but not for length. In the program below, the
format DOLLARG.2 is applied to the variable Price, while the format 6.0 is applied to Length.

Notice that the FORMAT= options are crossed with the variables using an asterisk.

DATA boats;
INFILE 'c:\MyRawData\Boats.dat';
INPUT Name $ 1-12 Port $ 14-20 Locomotion $ 22-26 Type $ 28-30
Price 32-36 Length 38-40;

* Using the FORMAT= option in the TABLE statement;
PROC TABULATE DATA = boats;

CLASS Locomotion Type;

VAR Price Length;

TABLE Locomotion

MEAN * (Price’

TITLE 'Price and

RUN;

* (Type ALL);

Chapter 4: Sorting, Printing, and Summarizing Your Data 131
Here is the resulting output:
Price and Length by Type of Boat 1
Mean
Price Length
Type Type
cat sch yac All cat sch yac All

Locomotion
power $26.83 . [$24.97%$26.09 82 . 48 68
sail $52.48|$61.251$32.95)$52.08 63 58 65 61
All $37.09|$61.25|$27.63|$39.08 74 58 53 65

Notice that the values for Price and Length are printed ﬁsing different formats.

132 The Little SAS Book

¥ Producing Simple Output with PROC REPORT

The REPORT procedure shares features with the PRINT, MEANS, TABULATE, and
SORT procedures and the DATA step. With all those features rolled into one procedure,
it’s not surprising that PROC REPORT can be complex—in fact entire books have been
written about it—but with all those features comes power.

L,

REPORT

Here is the general form of a basic REPORT procedure:

PROC REPORT NOWINDOWS;
COLUMN variable-list;

In its simplest form, the COLUMN statement is similar to a VAR statement in PROC PRINT,
telling SAS which variables to include and in what order. If you leave out the COLUMN
statement, SAS will, by default, include all the variables in your data set. If you leave out the
NOWINDOWS option, SAS will open the interactive Report window.'

By default, PROC REPORT prints your data immediately beneath the column headers. To
visually separate the headers and data, use the HEADLINE or HEADSKIP options like this:

PROC REPORT NOWINDOWS HEADLINE HEADSKIP;

HEADLINE draws a line under the column headers while HEADSKIP puts a blank line beneath
the column headers.?

Numeric versus character data The type of report you get from PROC REPORT depends,
in part, on the type of data you use. If you have at least one character variable in your report,
then, by default, you will get a detail report with one row per observation. If, on the other hand,
your report includes only numeric variables, then, by default, PROC REPORT will sum those
variables. Even dates will be summed, by default, because they are numeric.’

Example Here are data about national parks and monuments in the USA. The variables are
name, type (NP for national park or NM for national monument), region (East or West), number
of museums (including visitor centers), and number of campgrounds.

Dinosaur NM West 2 6
Ellis Island NM East 1 0
Everglades NP East 5 2
Grand Canyon NP West 5 3
Great Smoky Mountains NP East 3 10
Hawaii Volcanoes NP West 2 2
Lava Beds NM West 1 1
Statue of Liberty NM East 1 0
Theodore Roosevelt NP . 2 2
Yellowstone NP West 9 11
Yosemite NP West 2 13

"The Report window is a non-programming approach to using PROC REPORT. For more information see the SAS Help and
Documentation.

? The HEADLINE and HEADSKIP options work only for the LISTING destination. If you send your output to another
destination such as HTML, SAS will ignore these options. See chapter 5 for an explanation of destinations.

® You can override this default by assigning one of your numeric variables a usage type of DISPLAY in a DEFINE statement.
See section 4.18.

Chapter 4: Sorting, Printing, and Summarizing Your Data 133

The following program reads the data in a DATA step, and then runs two reports. The first report
has no COLUMN statement so SAS will use all the variables, while the second uses a COLUMN
statement to select just the numeric variables.

DATA natparks;
INFILE 'c:\MyRawData\Parks.dat';
INPUT Name $ 1-21 Type $ Region $ Museums Camping;

=t

TITLE 'Report with Character and Numeric Variables';
RUN;

TITLE 'Report with Onl
RUN;

Numeric Variables';

While the two PROC steps are only slightly different, the reports they produced differ
dramatically. The first report is almost identical to the output you would get from a PROC PRINT
except for the absence of the OBS column. The second report, since it contained only numeric
variables, was summed.

Report with Character and Numeric Variables 1
Name Type Region Museums Camping
Dinosaur NM West 2 6
Ellis Island NM East 1 0
Everglades NP East 5 2
Grand Canyon NP West 5 3
Great Smoky Mountains NP East 3 10
Hawaii Volcanoes NP - West 2 2
Lava Beds NM West 1 1
Statue of Liberty NM East 1 0
Theodore Roosevelt NP 2 2
Yellowstone NP West 9 11
Yosemite NP West 2 13
Report with Only Numeric variables 2

Museums Camping

33 50

134

The Little SAS Book

Using DEFINE Statements in PROC REPORT

The DEFINE statement is a general purpose statement that specifies options for an individual
variable. You can have a DEFINE statement for every variable, but you only need to have a
DEFINE statement if you want to specify an option for that particular variable. The general form
of a DEFINE statement is

DEFINE variable / options ’'column-header’;

In a DEFINE statement, you specify the variable name followed by a slash and any options for
that particular variable. ' :

Usage Options The most important option is a usage option that tells SAS how that variable
is to be used. Possible values of usage options include:’

ACROSS creates a column for each unique value of the variable.

ANALYSIS calculates statistics for the variable. This is the default usage for numeric
variables, and the default statistic is sum.

DISPLAY creates one row for each observation in the data set. This is the default usage
for character variables.

GROUP creates a row for each unique value of the variable.

ORDER creates one row for each observation with rows arranged according to the
values of the order variable.

Changing column headers There are several ways to change column headers in PROC
REPORT including using a LABEL statement as described in section 4.1, or specifying a column
header in a DEFINE statement.” The following statement tells SAS to arrange a report by the
values of the variable Age, and use the words ”"Age at Admission” as the column header for that
variable. Using a slash in a column header tells SAS to split the header at that point.’

DEFINE Age / ORDER 'Age at/Admission';

Missing data By default, observations are excluded from reports if they have missing values
for order, group, or across variables. If you want to keep these observations, then simply add the
MISSING option to your PROC statement like this:

PROC REPORT NOWINDOWS MISSING;

Example Here again are the data about national parks and monuments. The variables are
name, type (NP for national park or NM for national monument), region (East or West), number
of museums (including visitor centers), and number of campgrounds.

! Another usage type is COMPUTED. See the SAS Help and Documentation for more information.

?In addition to the LABEL and DEFINE statements, you can change column headers in the COLUMN statement which allows
you to create spanning headers. See the SAS Help and Documentation for more information.

® At the time this book was written, PROC REPORT did not automatically split mixed case variable names the way most
procedures do.)

Chapter 4: Sorting, Printing, and Summarizing Your Data 135

Dinosaur NM West 2 6
Ellis Island NM East 1 O
Everglades NP East 5 2
Grand Canyon NP West 5 3
Great Smoky Mountains NP East 3 10
Hawail Volcanoes NP West 2 2
Lava Beds NM West 1 1
Statue of Liberty NM East-1 O
Theodore Roosevelt NP . 2 2
Yellowstone NP West 9 11
Yosemite NP West 2 13

The following PROC REPORT contains two DEFINE statements. The first defines Region as having
a usage type of ORDER. The second specifies a column header for the variable Camping. Camping
is a numeric variable and has a default usage of ANALYSIS, so the DEFINE statement does not
change its usage. Since the MISSING option appears in the PROC statement, observations with
missing values of Region will be included in the report.
DATA natparks;
INFILE 'c:\MyRawData\Parks.dat';
INPUT Name $ 1-21 Type $ Region $ Museums Camping;

* PROC REPORT with ORDER variable, MISSING option
PROC REPORT DATA = natparks NOWINDOWS HEADLINE
COLUMN Region Name Museums Camping;
i i

and column header;
)

TITLE 'National Parks and Monuments Arranged by Region’';
RUN;

Here is the resulting output:

National Parks and Monuments Arranged by Region 1

Camp
Region Name Museums Grounds

Theodore Roosevelt
East Ellis Island

Everglades

Great Smoky Mountains

Statue of Liberty
West Dinosaur

Grand Canyon

Hawaii Volcanoes

Lava Beds

Yellowstone

Yosemite

—_

N O~ NN = W =N
W= 2 N LoOOTooONMNMON

—_ =

Notice that there are three values of Region: missing, East, and West. If you have more than one
order variable, then the data will be arranged according to the values of the one that comes first in
the COLUMN statement, then by the one that comes second, and so on.

136

The Little SAS Book

Creating Summary Reports with PROC REPORT

Two different usage types cause the REPORT procedure to “roll up” data into summary groups
based on the values of a variable. While the GROUP usage type produces summary rows, the
ACROSS usage type produces summary columns.’

Group variables Defining a group variable is fairly simple. Just specify the GROUP usage
option in a DEFINE statement. By default, analysis variables will be summed.’ The following
PROC REPORT tells SAS to produce a report showing the sum of Salary and of Bonus with a
row for each value of Department.

Department Salary Bonus
A e —
B

PROC REPORT DATA = employees NOWINDOWS;
COLUMN Department Salary Bonus;
DEFINE Department / GROUP;

Across variables To define an across variable, you also use a DEFINE statement. However,
by default SAS produces counts rather than sums. To obtain sums’ for across variables, you must
tell SAS which variables to summarize. You do that by putting a comma between the across
variable and analysis variable (or variables if you enclose them in parentheses). The following
PROC REPORT tells SAS to produce a report showing the sum of Salary and of Bonus with one
column for each value of Department.

Salary Bonus Salary Bonus

PROC REPORT DATA = employees NOWINDOWS;
COLUMN Department , (Salary Bonus);
DEFINE Department / ACROSS;

Department
A B

Example Here again are the data about national parks and monuments. The variables are
name, type (NP for national park or NM for national monument), region (East or West), number
of museums (including visitor centers), and number of campgrounds.

Dinosaur NM West 2 6
Ellis Island NM East 1 O
Everglades NP East 5 2
Grand Canyon NP West 5 3
Great Smoky Mountains NP East 3 10
Hawaiil Volcanoes NP West 2 2
Lava Beds NM West 1 1
Statue of Liberty NM East 1 O
Theodore Roosevelt NP . 2 2
Yellowstone NP West 9 11
Yosemite NP West 2 13

! If you have any display or order variables in the COLUMN statement, SAS will produce a “detail” report instead of
consolidating data into summary groups.

* To request other statistics, see section 4.21.

Chapter 4: Sorting, Printing, and Summarizing Your Data 137

The following program contains two PROC REPORTSs. In the first, Region and Type. are both
defined as group variables. In the second, Region is still a group variable, but Type is an across
variable. Notice that the two COLUMN statements are the same except for punctuation added to
the second procedure to cross the across variable with the analysis variables.

DATA natparks;
INFILE 'c:\MyRawData\Parks.dat';
INPUT Name $ 1-21 Type $ Region $ Museums Camping;

* Region and Type as GROUP variables;
PROC REPORT DATA = natparks NOWINDOWS HEADLINE;
COLUMN Region Type Museums Camping;

TITLE 'Summary Report with Two Group Variables';
RUN;

* Region as GROUP and Type as ACROSS with sums;
PROC REPORT DATA natparks NOWINDOWS HEADLINE;

COLUMN Region

by

TITLE 'Summary Report with a Group and an Across Variable';
RUN;

Here is the resulting output:

Summary Report with Two Group Variables 1
hegion Type Museums Camping
East NM 2 0
NP 8 12
West NM 3 7
NP 18 29
Summary Report with a Group and an Across Variable 2
Type
NM NP
Region Museums Camping Museums Camping
East 2 0 8 12
West 3 7 18 29

138 The Little SAS Book Chapter 4: Sorting, Printing, and Summarizing Your Data 139

DATA natparks;

Addmg Summary Breaks to PROC REPORT Output : INFILE 'c:\MyRawData\Parks.dat';

INPUT Name $ 1-21 Type $ Region $ Museums Camping;

Two kinds of statements allow you to insert breaks into a report. The BREAK statement adds a
break for each unique value of the variable you specify, while the RBREAK statement does the
same for the entire report (or BY-group if you are using a BY statement). The general forms of
these statements are

* PROC REPORT with breaks;

PROC REPORT DATA = natparks NOWINDOWS HEADLINE;
COLUMN Name Region Museums Camping;
DEFINE Region / ORDER;

BREAK location variable / options; B ;Eﬁi;;ﬁ 1)
RBREAK location / options; REREAICE R UNMARE
. L, . TITLE 'National Parks';
where location has two possible values—BEFORE or AFTER—depending on whether you want RUN;

the break to precede or follow that particular section of the report. The options that come after
the slash tell SAS what kind of break to insert. Some of the possible options are’

oL draws a line over the break Here is the resulting output:

PAGE starts a new page National Parks 1
SKIP inserts a blank line
SUMMARIZE inserts sums of numeric variables Name Region Museums Camping
UL draws a line under the break

Ellis Island East
Notice that the BREAK statement requires you to specify a variable, but the RBREAK statement Everglades

does not. That’s because the RBREAK statement produces only one break (at the beginning or
end), while the BREAK statement produces one break for every unique value of the variable you
specify. That variable must be either a group or order variable and therefore must also be listed
in a DEFINE statement with either the GROUP or ORDER usage option. You can use an
RBREAK statement in any report, but you can use BREAK only if you have at least one group or
order variable.

Great Smoky Mountains
Statue of Liberty

o WU =
—
o

East 10 12

Dinosaur West
Grand Canyon

Hawaii Volcanoes

Lava Beds

Yellowstone

Yosemite

Example Here again are the data about national parks and monuments. The variables are
name, type (NP for national park or NM for national monument), region (East or West), number
of museums (including visitor centers), and number of campgrounds.

Dinosaur NM West 6
Ellis Island NM East
Everglades NP East
Grand Canyon NP West
Great Smoky Mountains NP East
Hawaii Volcanoes NP West
Lava Beds NM West
Statue of Liberty NM East
Theodore Roosevelt NP .

Yellowstone NP West
Yosemite NP West

(=)
DO =2 NN

W = 2N Wwo

I

West 21 36

=

31 48

NONFEFRERENDWOOORFEN
WENORFNOWDKN

=

The following program defines Region as an order variable, and then uses both BREAK and
RBREAK statements with the AFTER location. The SUMMARIZE option tells SAS to print totals for
numeric variables, while the OL and SKIP options tell SAS to draw a line above the totals and skip
a line under the totals.

' All these options work for the Listing destination; not all work for other destinations. At the time this book was written,
PAGE and SUMMARIZE worked for HTML, RTF, and PDF; OL, UL and SKIP were ignored.

[—

The Little SAS Book

Adding Statistics to PROC REPORT Output

There are several ways to request statistics in the REPORT procedure. An easy method is to
insert statistics keywords directly into the COLUMN statement along with the variable names.
This is a little like requesting statistics in a TABLE statement in PROC TABULATE, except that
instead of using an asterisk to cross a statistics keyword with a variable, you use a comma. In
fact, PROC REPORT can produce all the same statistics as PROC TABULATE and PROC
MEANS because it uses the same internal engine to compute those statistics. These are a few of
the statistics PROC REPORT can compute:

MAX highest value

MIN lowest value

MEAN the arithmetic mean

MEDIAN the median

N number of non-missing values

NMISS number of missing values

P30 the 90" percentile

PCTN the percentage of observations for that group
PCTSUM the percentage of a total sum represented by that group
STD the standard deviation

sUM the sum

Applying statistics to variables To request a statistic for a particular variable, insert a
comma between the statistic and variable in the COLUMN statement. One statistic, N, does not
require a comma because it does not apply to a particular variable. If you insert N in a COLUMN
statement, then SAS will print the number of observations that contributed to that row of the
report. This statement tells SAS to print two columns of data: the median of a variable named
Age, and the number of observations in that row.

COLUMN Age,MEDIAN N;

To request multiple statistics or statistics for multiple variables, put parentheses around the
statistics or variables. This statement uses parentheses to request two statistics for the variable Age,
and then requests one statistic for two variables, Height and Weight.

COLUMN Age, (MIN MAX) (Height Weight) ,h MEAN;

Example Here again are the data about national parks and monuments. The variables are
name, type (NP for national park or NM for national monument), region (East or West), number
of museums (including visitor centers}, and number of campgrounds.

Dinosaur NM West 2 6
Ellis Island NM East 1 O
Everglades NP EBast 5 2
Grand Canyon NP West 5 3
Great Smoky Mountains NP East 3 10
Hawaii Volcanoes NP West 2 2
Lava Beds NM West 1 1
Statue of Liberty NM East 1 0
Theodore Roosevelt NP . 2 2
Yellowstone NP West 9 11
Yosemite NP West 2 13

Chapter 4: Sorting, Printing, and Summarizing Your Data 141

The following program contains two PROC REPORTS. Both procedures request the statistics N and

MEAN, but the first report defin ; .
across variable. p etines Type as a group variable, while the second defines Type as an

DATA natparks;
INFILE 'c:\MyRawData\Parks.dat' ;
INPUT Name $ 1-21 Type $ Region $ Museums Camping;

*Statistics in COLUMN statement with two group variables;
PROC REPORT DATA = natparks NOWINDOWS HEADLINE; =
COLUMN Region Type ﬁ (Museums Camping)ﬁﬁﬁﬁﬁ:
DEFINE Region / GROUP; i
DEFINE Type / GROUP;

RUNTITLE 'Statistics with Two Group Variables!';

*Statistics in COLUM i

PROC REPORT DATA = n:t;;ji:msgélg;éasgﬁg;p T CTo% veriables;
COLUMN Region ¥ Type{(Museums Camping)
DEFINE Region / GROUP;
DEFINE Type / ACROSS;

TITLE ’Statistics with a Group and Across Variable';

RUN;
Here is the resulting output:
Statistics with Two Group Variables 1

_ Museums Camping

Region Type N MEAN MEAN

East NM 2 1 0

NP 2 4 6

West NM 2 1.5 3.5

NP 4 4.5 7.25
Statistics with a Group and Across Variable 2

Type
NM NP
Museums Camping Museums C i

. amping
Region N MEAN MEAN MEAN MEAN
East 4 1 0 4 6
West 6 1.5 3.5 4.5 7.25

Notice that these reports are Similar t the Iel) rts 'l e :l‘ n4 [9 ex e‘) a 1
(o] &) St () . i
. . C h t ese contain counts

sually say, ‘The computer Modifying and Combining SAS® Data Sets
is the dumbest thing on campus.
It dOeS exaCtly What you tEII]'t tO; 6.1 Modifying a Data Set Using the SET Statement 170

6.2 Stacking Data Sets Using the SET Statement 172
6.3 Interleaving Data Sets Using the SET Statement 174
6.4 Combining Data Sets Using a One-to-One Match Merge 176

6.5 Combining Data Sets Using a One-to-Many Match Merge 178

Necia A. BLack, RN., PH.D. 6.6 Merging Summary Statistics with the Original Data 180

6.7 Combining a Grand Total with the Original Data 182

6.8 Updating a Master Data Set with Transactions 184

6.9 Using SAS Data Set Options 186

6.10 Tracking and Selecting Observations with the IN= Option 188

6.11 Writing Multiple Data Sets Using the OUTPUT Statement 190

6.12 Making Several Observations from One Using the OUTPUT Statement 192
6.13 Changing Observations to Variables Using PROC TRANSPOSE 194

6.14 Using SAS Automatic Variables 196

From the SAS L Listserv, May 6, 1994, Reprinted by permission of the author.

170 The Little SAS Book Chapter 6: Modifying and Combining SAS Data Sets 171

Mod1fymg a Data Set US]Ilg the SET Statement The (’iata are read into a permanent SAS data set, TRAINS, sFored in the MySASLib directory on the
park’s central computer by means of the following program:

The SET statement in the DATA step allows you to read a SAS data .

* Create permanent SAS data set trains;

wr Wi set so you can add new variables, create a subset, or otherwise DATA 'c:\MySASLib\trains';
WL » modify the data set. If you were short on disk space, for example, INFILE 'c:\MyRawData\Train.dat';
W W you might not want to store your computed variables in a INPUT Time TIMES5. Cars People;
permanent SAS data set. Instead, you might want to calculate them RO
as needed for analysis. Likewise, to save processing time, you might want to create a subset of a This example uses direct referencing to tell SAS where to store the permanent SAS data set, but you
SAS data set when you only want to look at a small portion of a large data set. The SET statement could use a LIBNAME statement instead.

brings a SAS data set, one observation at a time, into the DATA step for processing.'
Each train car holds a maximum of six people. After collecting the data, the Fun Times manage-

To read a SAS data set, start with the DATA statement specifying the name of the new data set. ment decides they want to know the average number of people per car on each ride. This number
Then follow with the SET statement specifying the name of the old data set you want to read. If was not calculated in the original DATA step which created the permanent SAS data set, but can be
you don't want to create a new data set, you can specify the same name in the DATA and SET calculated by the following program:

statements. Then the results of the DATA step will overwrite the old data set named in the SET
statement.” The following shows the general form of the DATA and SET statements:

DATA new-data-set;
SET data-set;

D
PROC PRINT DATA = averagetrain;

. . ’ TITLE 'A Numb f Peopl r Train Car';
Any assignment, subsetting IF, or other DATA step statements usually follow the SET state- FORMAT T\irriza%?Mm) ;er o reopie be e

ment. For example, the following creates a new data set, FRIDAY, which is a replica of the RUN;
SALES data set, except FRIDAY has only the observations for Fridays, and it has an additional
variable, Total:

The DATA statement defines a new temporary SAS data set named AVERAGETRAIN. Then the
SET statement reads the permanent SAS data set TRAINS, and an assignment statement creates the

DATA friday; new variable PeoplePerCar. Here are the results of the PROC PRINT:
SET sales;
IF Day = 'F’; 3
Total = Popcorn + Peanuts; Average Number of People per Train Car 1
RUN;
E 1 o People
Xample TheFun Tur}es Arr.lusement Park is collecting data ébout their train ride. They can Obs Time Cars People Percar
add more cars on the train during peak hours to shorten the wait, or take them off when they're
not needed to save fuel costs. The raw data file contains data for the time of day, the number of 1 10:10 6 24 3.50000
cars on the train, and the total number of people on the train: 2 12 15 10 56 5.60000
10:10 6 21 3 16:30 10 25 2.50000
12:18 ig 56 4 11:30 8 34 4.25000
15:3 25 .
11:30 8 34 5 13:15 8 12 1.50000
13:15 8 12 6 10:45 6 13 2.16667
10:45 6 13 7 20:30 6 32 5.33333
20:30 6 32 .
53.15 6 12 8 23:15 6 12 2.00000

! The MODIFY statement also allows you to modify a single data set. See the SAS Help and Documentation for more
information.

z By default, SAS will not overwrite a data set in a DATA step that has errors.

172 The Little SAS Book

Stacking Data Sets Using the SET Statement

The SET statement with one SAS data set allows you to read and modify the
data. With two or more data sets, in addition to reading and modifying the
data, the SET statement concatenates or stacks the data sets one on top of the
other. This is useful when you want to combine data sets with all or most of
the same variables but different observations. You might, for example, have

! + =» data from two different locations or data taken at two separate times, but you
need the data together for analysis.
1 W
4 W In a DATA step, first specify the name of the new SAS data set in the DATA
statement, then list the names of the old data sets you want to combine in the
SET statement:

DATA new-data-set;
SET data-set-1 data-set-n;

The number of observations in the new data set will equal the sum of the number of observations
in the old data sets. The order of observations is determined by the order of the list of old data
sets. If one of the data sets has a variable not contained in the other data sets, then the obser-
vations from the other data sets will have missing values for that variable.

Example The Fun Times Amusement Park has two entrances where they collect data about
their customers. The data file for the south entrance has an S (for south) followed by the
customers’ Fun Times pass numbers, the sizes of their parties, and their ages. The file for the
north entrance has an N (for north), the same data as the south entrance, plus one more column
for the parking lot where they left their cars (the south entrance has only one lot). The following
shows samples of the two data files:

Data for South Enfrance Data for North Entrance
S 43 3 27 N 21 5 41 1
S 44 3 24 N 87 4 33 3
S 45 3 2 N 65 2 67 1
N 66 2 71

The first two parts of the following program read the raw data for the south and north entrances
into SAS data sets and print them to make sure they are correct. The third part combines the two
SAS data sets using a SET statement. The same DATA step creates a new variable, AmountPaid,
which tells how much each customer paid based on their age. This final data set is printed using
PROC PRINT:

DATA southentrance;

INFILE 'c¢:\MyRawData\South.dat"';

INPUT Entrance $ PassNumber PartySize Age;
PROC PRINT DATA = southentrance;

TITLE 'South Entrance Data';

DATA northentrance;

INFILE 'c:\MyRawData\North.dat';

INPUT Entrance $ PassNumber PartySize Age Lot;
PROC PRINT DATA = northentrance;

TITLE 'North Entrance Data';

Chapter 6: Modifying and Combining SAS Data Sets 173

* Create a data set, both, combining northentrance and southentrance;
* Create a variable, AmountPaid, based on value of variable Age;

fF Age . THEN AmountPaid = .
ELSE IF Age < 3 THEN AmountPaid = 0;
ELSE IF Age < 65 THEN AmountPaid = 35;

ELSE AmountPaid = 27;
PROC PRINT DATA = both;
TITLE 'Both Entrances';
RUN;

The following are the results of the three PRINT procedures in the program. Notice that the final
data set has missing values for the variable Lot for all the observations which came from the south
entrance. Because the variable Lot was not in the SOUTHENTRANCE data set, SAS assigned
missing values to those observations.

South Entrance Data 1
Pass Party
Obs Entrance Number Size Age
1 S 43 3 27
2 S 44 3 24
3 S 45 3 2
North Entrance Data 2
Pass Party
Obs Entrance Number Size Age Lot
1 N 21 5 41 1
2 N - 87 4 33 3
3 N 65 2 67 1
4 N 66 2 7 1
Both Entrances 3
Pass Party Amount
Obs Entrance Number Size Age Lot Paid
1 S 43 3 27 . 35
2 S 44 3 24 . 35
3 S 45 3 2 . 0
4 N 21 5 41 1 35
5 N 87 4 33 3 35
6 N 65 2 67 1 27
7 N 66 2 7 1 35

174 The Little SAS Book Chapter 6: Modifying and Combining SAS Data Sets 175

. . DATA northentrance;
Interleaving Data Sets Using the SET Statement INFILE 'c:\MyRawData\North.dat';
: INPUT Entrance $ PassNumber PartySize Age Lot;
The previous section explained how to stack data sets that have all or most of PROC SORT DATA = northentrance;

i i i i v BY PassNumber;
the same variables but different F)bservatlons. However, 1f‘you have dgta sets PROC PRINT DATA — northentrance;
that are already sorted by some important variable, then simply stacking the TITLE ‘North Entrance Data';
data sets may unsort the data sets. You could stack the two data sets and then
re-sort them using PROC SORT. But if your data sets are already sorted, itis p ﬁ;ggis.l\l;g“beri

+ =» more efficient to preserve that order, than to stack and re-sort. All you need to
do is use a BY statement with your SET statement. Here’s the general form: SRV S et it
1w b PROC PRINT DATA = interleave;
4 Wi DATA new-data-set; TITLE - 'Both Entrances, By Pass Number';

SET data-set-1 data-set-n;) RUN;
BY variable-list;

Here are the results of the three PRINT procedures. Notice how the observations have been

In a DATA statement, you specify the name of the new SAS data set you want to create. In a SET interleaved so that the new data set is sorted by PassNumber:

statement, you list the data sets to be interleaved. Then in a BY statement, you list one or more

variables that SAS should use for ordering the observations. The number of observations in the .
new data set will be equal to the sum of the number of observations in the old data sets. If one of South Entrance Data 1
the data sets has a variable not contained in the other data sets, then values of that variable will
be set to missing for observations from the other data sets. Pass Party
Obs Entrance Number Size Age
Before you can interleave observations, the data sets must be sorted by the BY variables. If one or ‘
the other of your data sets is not already sorted, then use PROC SORT to do the job. 1 S 43 3 27
: 2 S 44 3 24
Example To show how this is different from stacking data sets, we'll use the amusement park : 3 s 45 3 >
data again. There are two data sets, one for the south entrance and one for the north. For every
customer, the park collects the following data: the entrance (S or N), the customer’s Fun Times North Entrance Data >
pass number, size of that customer’s party, and age. For customers entering from the north, the
data set also includes parking lot number. Here is a sample of the data: Pass Party
Data for South Entrance Data for North Entrance Obs Entrance Number Size Age Lot
S 43 3 27 Nglzgé 1 N 21 5 41 1
S 44 3 24 N 87
s 453 2 N 65 2 67 1 2 N 65 2 67 1
N 66 2 71 3 N 66 2 7 1
4 N 87 4 33 3
Notice that the data for the south entrance are already sorted by pass number, but the data for
the north entrance are not. .Both Entrances, By Pass Number 3
Instead of stacking the two data sets, this program interleaves the data sets by pass number. Pass Party
This program first reads the data for the south entrance and prints them to make sure they are b . Number Size Ade Lot
correct. Then the program reads the data for the north entrance, sorts them, and prints them. s g
Then in the final DATA step, SAS combines the two data sets, NORHTENTRANCE and N o1 5 41]
SOUTHENTRANCE, creating a new data set named INTERLEAVE. The BY statement tells ! 3 3 o7
SAS to combine the data sets by PassNumber: 2 S 4
3 S 44 3 24
DATA southentrance; 4 S 45 3 2 .
INFILE 'c:\MyRawData\South.dat®; 5 N 65 > 67 1
INPUT Entrance $ PassNumber PartySize Age;
PROC PRINT DATA = southentrance; 6 N 66 2 7 1
TITLE 'South Entrance Data'; 7 N 87 4 33 3

The Little SAS Book

Combining Data Sets Using a One-to-One Match Merge

When you want to match observations from one data set
with observations from another, use the MERGE statement
in the DATA step. If you know the two data sets are in
EXACTLY the same order, you don’t have to have any
common variables between the data sets. Typically,
however, you will want to have, for matching purposes, a

common variable or several varlables which taken together uniquely identify each observation.
This is important. Having a common variable to merge by ensures that the observations are
properly matched. For example, to merge patient data with billing data, you would use the
patient ID as a matching variable. Otherwise you risk getting Mary Smith’s visit to the
obstetrician mixed up with Matthew Smith’s visit to the optometrist.

Merging SAS data sets is a simple process. First, if the data are not already sorted, use the SORT
procedure to sort all data sets by the common variables. Then, in the DATA statement, name the
new SAS data set to hold the results and follow with a MERGE statement listing the data sets to
be combined. Use a BY statement to indicate the common variables:

DATA new-data-set;
MERGE data-set-1 data-set-2;
BY variable-list;

If you merge two data sets, and they have variables with the same names—besides the BY
varjables—then variables from the second data set will overwrite any variables having the
same name in the first data set.

Example A Belgian chocolatier keeps track of the number of each type of chocolate sold each
day. The code number for each chocolate and the number of pieces sold that day are kept in a file.
In a separate file she keeps the names and descriptions of each chocolate as well as the code num-
ber. In order to print the day’s sales along with the descriptions of the chocolates, the two files must
be merged together using the code number as the common variable. Here is a sample of the data:

Sales data

c865 15
K086 9
A536 21
S163 34
K014 1
A206 12
B713 29

Descriptions

2206 Mokka Coffee buttercream in dark chocolate

A536 Walnoot Walnut halves in bed of dark chocolate

B713 Frambozen Raspberry marzipan covered in milk chocolate
C865 Vanille Vanilla-flavored rolled in ground hazelnuts
K014 Kroon Milk chocolate with a mint cream center

K086 Koning Hazelnut paste in dark chocolate

M315 Pyramide White with dark chocolate trimming

S163 Orbais Chocolate cream in dark chocolate

Chapter 6: Modifying and Combining SAS Data Sets 177

The first two parts of the following program read the descriptions and sales data. The
descriptions data are already sorted by CodeNum, so we don’t need to use PROC SORT. The
sales data are not sorted, so a PROC SORT follows the DATA step. (If you attempt to merge data
which are not sorted, SAS will refuse and give you this error message: ERROR: BY variables are
not properly sorted.)

DATA descriptions;

INFILE 'c:\MyRawData\chocolate.dat' TRUNCOVER;

INPUT CodeNum $§ 1-4 Name $§ 6-14 Description $ 15-60;
DATA sales;

INFILE 'c:\MyRawData\chocsales.dat';

INPUT CodeNum $ 1-4 PiecesSold 6-7;
PROC SORT DATA = sales;

BY CodeNum;

= QaeNUIL;
PROC PRINT DATA = chocolates;
TITLE "Today s Chocolate Sales”;
RUN;

The final part of the program creates a data set named CHOCOLATES by merging the SALES data
set and the DESCRIPTIONS data set. The common variable CodeNum in the BY statement is used
for matching purposes. The following output shows the final data set after merging:

Today's Chocolate Sales 1
Code Pieces
Obs Num Sold Name Description
1 A206 = 12 Mokka Coffee buttercream in dark chocolate
2 A536 21 Walnoot Walnut halves in bed of dark chocolate
3 B713 29 Frambozen Raspberry marzipan covered in milk chocolate
4 C865 15 vVanille Vanilla-flavored rolled in ground hazelnuts
5 KO14 1 Kroon Milk chocolate with a mint cream center
6 K086 9 Koning Hazelnut paste in dark chocolate
7 M315 . Pyramide White with dark chocolate trimming
8 8163 34 Orbais Chocolate cream in dark chocolate

Notice that the final data set has a missing value for PiecesSold in the seventh observation. This is
because there were no sales for the Pyramide chocolate. All observations from both data sets were
included in the final data set whether they had a match or not.

178 The Little SAS Book Chapter 6: Modifying and Combining SAS Data Sets 179

To find the sale price, the following program combines the two data files:

Combining Data Sets Using a One-to-Many Match Merge

DATA regular;

12

Sometimes you need to combine two data sets by matching INFILE ‘c:\MyRawData\Shoe.dat’;
1 Wr Wi one observation from one data set with more than one INPUT Style $ 1-15 ExerciseType $ RegularPrice;
2 WA W 1 a observation in another. Suppose you had data for every PROC SORT DATA = regular;
+ BY ExerciseType;
2 WA W 3 b state in the U.S. and wanted to combine it with data for
3 WA every county. This would be a one-to-many match merge DATA discount;
because each state observation matches with many county INFILE ‘c:\MyRawData\Disc.dat’;
3 WA W observations INPUT ExerciseType $ Adjustment;

* Perform many-to-one match merge;
TRk J
;

The statements for a one-to-many match merge are identical to the statements for a one-to-one
match merge:

DATA new-data-set; NewPrice ROUND (RegularPrice - (RegularPrice * Adjustment), .01);
MERGE data-set-1 data-set-2; PROC PRINT DATA = prices;
BY variable-list; TITLE ’'Price List for May"’;
RUN;

The order of the data sets in the MERGE statement does not matter to SAS. In other words, a

one-to-many merge is the same as a many-to-one merge. The first DATA step reads the regular prices, creating a data set named REGULAR. That data

set is then sorted by ExerciseType using PROC SORT. The second DATA step reads the price

Before you merge two data sets, they must be sorted by one or more common variables. If your adjustments, creating a data set named DISCOUNT. This data set is already arranged by Exer-
data sets are not already sorted in the proper order, then use PROC SORT to do the job. ciseType, so it doesn’t have to be sorted. The third DATA step creates a data set named PRICES,

_ merging the first two data sets by ExerciseType, and computes a varijable called NewPrice. The
You cannot do a one-to-many merge without a BY statement. SAS uses the variables listed in the output looks like this: :
BY statement to decide which observations belong together. Without any BY variables for
matching, SAS simply joins together the first observation from each data set, then the second Price List for May 1
observation from each data set, and so on. In other words, SAS performs a one-to-one
unmatched merge, which is probably not what you want. . Exercise Regular New

Obs Style Type Price Adjustment Price

If you merge two data sets, and they have variables with the same names—besides the BY
variables—then varjables from the second data set will overwrite any variables having the same

name in the first data set. For example, if you merge two data sets both containing a variable 1 Zip Sn?ak ¢ -tr‘e.un 92.99 0.25 69.74
named Score, then the final data set will contain only one variable named Score. The values for 2 Max Fl_lght running 142.99 0.30 100.09
Score will come from the second data set. You can fix this by renaming the variables (giving 3 Z(?om ﬁ.\lrbor‘ne running 112.99 0.30 79.09
them names such as Scorel and Score2) so that they will not overwrite each other.’ 4 Zip Fit Leather walking 83.99 0.20 67.19

5 Light Step walking 73.99 0.20 59.19
Example A distributor of athletic shoes is putting all its shoes on sale at 20 to 30% off the regular 6 Max Step Woven walking 75.99 0.20 60.79

price. The distributor has two data files, one with information about each type of shoe and one
with the discount factors. The first file contains one record for each shoe with values for style, type

of exercise (running, walking, or cross-training), and regular price. The second file contains one .)
record for each type of exercise and its discount. Here are the two raw data files: Notice that the values for Adjustment from the DISCOUNT data set are repeated for every

observation in the REGULAR data set with the same value of ExerciseType.

Shoes data Discount data
Max Flight running 142.99 c-train .25
Zip Fit Leather walking 83.99 running .30
zoom Airborne running 112.99 walking .20
Light Step walking 73.99
Max Step Woven walking 75.99
Zip Sneak c-train 92.99

! The RENAME= data set option is discussed in section 6.9.

180

The Little SAS Book

Merging Summary Statistics with the Original Data

Once in a while you need to combine summary statistics

1 a with your data, such as when you want to compare each
+ |2 - observation to the group mean, or when you want to
3 ¢ calculate a percentage using the group total. To do this,
summarize your data using PROC MEANS, and put the
f results in a new data set. Then merge the summarized data
PROC MEANS back with the original data using a one-to-many match

merge.

Example A distributor of athletic shoes is considering doing a special promotion for the top
selling styles. The vice-president of marketing has asked you to produce a report. The report
should be divided by type of exercise (running, walking, or cross-training) and show the
percentage of sales for each style within its type. For each shoe, the raw data file contains the
style name, type of exercise, and total sales for the last quarter:

Max Flight running 1930
Zip Fit Leather walking 2250
Zoom Airborne running 4150
Light Step walking 1130
Max Step Woven walking 2230
Zip Sneak c-train 1190

Chapter 6: Modifying and Combining SAS Data Sets 181

This program is long but straightforward. It starts by reading the raw data in a DATA step
and sorting them with PROC SORT. Then it summarizes the data with PROC MEANS by

the variable ExerciseType. The OUTPUT statement tells SAS to create a new data set named
SUMMARYDATA, containing a variable named Total, which equals the sum of the variable
Sales. The NOPRINT option tells SAS not to print the standard PROC MEANS report. Instead,
the summary data set is printed by PROC PRINT:

Summary Data Set 1
Exercise
Obs Type _TYPE_ _FREQ_ Total
1 c-train 0 1 1190
2 running 0 2 6080
3 walking 0 3 5610

In the last part of the program, the original data set, SHOES, is merged with SUMMARYDATA to
make a new data set, SHOESUMMARY. This DATA step computes a new variable called Percent.
Then the last PROC PRINT writes the final report with percentage of sales by ExerciseType for
each title. Using a BY and an ID statement together gives this report a little different look:

Here is the program:

DATA shoes;
INFILE ‘c:\MyRawData\Shoesales.dat’;
INPUT Style $ 1-15 ExerciseType $ Sales;
PROC SORT DATA = shoes;
BY ExerciseType;

* Summarize sales by ExerciseType and print;
PROC MEANS NOPRINT DATA = shoes;
VAR Sal

PROC PRINT DATA = summ
TITLE ‘Summary Data Set’;

* Merge iginal data set;

ent = les otal * 100;
PROC PRINT DATA = shoesummary;
BY ExerciseType:;
ID ExerciseType;
VAR Style Sales Total Percent;
TITLE ’‘Sales Share by Type of Exercise’;
RUN;

Sales Share by Type of Exercise 2
Exercise
Type Style Sales Total Percent’
c-train Zip Sneak 1190 1190 100.000
running Max Flight 1930 6080 31.743
Zoom Airborne 4150 6080 68.257
walking Zip Fit lLeather 2250 5610 40.107
Light Step 1130 5610 20.143
Max Step Woven 2230 5610 39.750

The Little SAS Book

Combining a Grand Total with the Original Data

You can use the MEANS procedure to create a data set
containing a grand total rather than BY group totals. But
you cannot use a MERGE statement to combine a grand
total with the original data because there is no common
variable to merge by. Luckily, there is another way. You
can use two SET statements like this:

+ liiau -

PROC MEANS
_

DATA new-data-set;
IF _N_ = 1 THEN SET summary-data-set;
SET original-data-set;

In this DATA step, original-data-set is the data set with more than one observation (the original
data) and summary-data-set is the data set with a single observation (the grand total). SAS reads
original-data-set in a normal SET statement, simply reading the observations in a straightforward
way. SAS also reads summary-data-set with a SET statement but only in the first iteration of the
DATA step (when _N_ equals 1)." SAS then retains the values of variables from summary-data-set
for all observations in new-data-set.

This works because variables read with a SET statement are automatically retained. Normally
you don’t notice this because the retained values are overwritten by the next observation. But in
this case the variables from summary-data-set are read once at the first iteration of the DATA step
and then retained for all other observations. The effect is similar to a RETAIN statement
(discussed in section 3.9). This technique can be used any time you want to combine a single
observation with many observations, without a common variable.

Example To show how this is different from merging BY group summary statistics with
original data, we'll use the same data as in the previous section. A distributor of athletic

shoes is considering doing a special promotion for the top-selling styles. The vice-president

of marketing asks you to produce a report showing the percentage of total sales for each style.
For each style of shoe the raw data file contains the style name, type of exercise, and sales for the
last quarter:

Max Flight running 1930
Zip Fit Leather walking 2250
Zoom Airborne running 4150

Light Step walking 1130
Max Step Woven walking 2230
Zip Sneak c-train 1190

Chapter 6: Modifying and Combining SAS Data Sets

Here is the program:

DATA shoes;
INFILE 'c¢:\MyRawData\Shoesales.dat';
INPUT Style $ 1-15 ExerciseType $ Sales;

* Qutput grand total of sales to a data set and print;
PROC MEANS NOPRINT DATA = shoes;
VAR Sales;

PROC PRINT DATA = summarydata;
TITLE 'Summary Data Set';

* Combine the grand total with t original data;
pc T

s A
Percent Sales / GrandTotal
PROC PRINT DATA = shoesummary;
VAR Style ExerciseType Sales GrandTotal Percent;
TITLE 'Overall Sales Share';

RUN;

100;

This program starts with a DATA step to input the raw data. Then PROC; MEANS creates

an output data set named SUMMARYDATA with one observation containing a varlable? named
GrandTotal, which is equal to the sum of Sales. This will be a grand total because there is no

BY or CLASS statement. The second DATA step combines the original data with the grand total
using two SET statements and then computes the variable Percent using the grand total data.

183

1See section 6.14 for an explanation of _N_.

The output looks like this:
Summary Data Set 1
Grand
Obs _TYPE_ _FREQ_ Total
A 0 6 12880
Overall Sales Share 2
Exercise Grand
Obs Style Type Sales Total Percent
1 Max Flight running 1930 12880 14.9845
2 Zip Fit Leather walking 2250 12880 17.4689
3 Zoom Airborne running 4150 12880 32.2205
4 Light Step walking 1130 12880 8.7733
5 Max Step Woven walking 2230 12880 17.3137
[§] Zip Sneak c-train 1190 12880 9.2391

184 The Little SAS Book Chapter 6: Modifying and Combining SAS Data Sets 185

Up dating a Master Data Set with Transactions The ﬁrs’f t-ran.sac.tion .is fpr areturning patient whose insurance has changed. The second
_ transaction fills in missing information for a returning patient. The last transaction is for a new
1 o Py The UPDATE statement is used far less than the MERGE patient who must be added to the database.
a statement, but it is just right for those times when you have .
2w w413 b . a master data set that must be updated with bits of new Since master data sets are updated frequently, they are usually saved as permanent SAS data sets.
3 WAL WM 5 ¢ d information. A bank account is a good example of this type To make this example more realistic, this program puts the master data into a permanent data set
4 W of transaction-oriented data, since it is regularly updated named PATIENTMASTER in the MySASLib directory on the C drive (Windows).
with credits and debits. LIBNAME perm ‘c¢:\MySASLib’;
DATA perm.patientmaster;
The UPDATE statement is similar to the MERGE statement, because both combine data sets by INFILE 'c:\MyRawData\Admit.dat';
matching observations on common variables.' However, there are critical differences: INPUT Account LastName $ 8-16 Address $ 17-34
BirthDate MMDDYY10. Sex $ InsCode $ 48-50 @52 LastUpdate MMDDYY10. ;
. RUN;
¢ First, with UPDATE the resulting master data set always has just one observation for
1?ach um%ue lZalue of :he Comtr.non Varlcalbles- .'fhat WZ};/ YEU don’t get a new observation The next program reads the transaction data and sorts them with PROC SORT. Then it adds the
or your bank account every time you deposit a paycheck. transactions to PATIENTMASTER with an UPDATE statement. The master data set is already
¢ Second, missing values in the transaction data set do not overwrite existing values in sorted by Account and, therefore, doesn’t need to be sorted again:
the master data set. That way, you are not obliged to enter your address and tax ID LIBNAME perm ‘c¢:\MySASLib';
number every time you make a withdrawal. DATA transactions;
INFILE ’'c:\MyRawData\NewAdmit.dat”’;
The basic form of the UPDATE statement is INPUT Account LastName $ 8-16 Address $ 17-34 BirthDate MMDDYY10.
Sex $ InsCode $ 48-50 @52 LastUpdate MMDDYY10. ;
DATA master-data-set; PROC SORT DATA = transactions;
UPDATE master-data-set transaction-data-set; BY Account;

BY variable-list;
* Update patient data with transactions:

Here are a few points to remember about the UPDATE statement. You can specify only two data
sets: one master and one transaction. Both data sets must be sorted by their common variables.
Also, the values of those BY variables must be unique in the master data set. Using the bank PROC DRINT DATA = perm.patientma
example, you could have many transactions for a single account, but only one observation per FORMAT BirthDate LastUpdate MMDDYY10.;
account in the master data set. TITLE ‘Admissions Data’;

RUN;
Example A hospital maintains a master database with information about patients. A sample
. . The res RIN i is:
appears below. Each record contains the patient’s account number, last name, address, date of ults of the PROC PRINT look like this:
birth, sex, insurance code, and the date that patient’s information was last updated.
Admissions Data 1
620135 Smith 234 Aspen St. 12-21-1975 m CBC 02-16-1998
645722 Miyamoto 65 3rd Ave. 04-03-1936 £ MCR 05-30-1999
645739 Jensvold 505 Glendale Ave. 06-15-1960 £ HLT 09-23-1993 Ins
874329 Kazoyan 76-C La Vista . . MCD 01-15-2003 Obs Account LastName Address BirthDate Sex Code LastUpdate
Whgnever a patient is adnutted to the hospital, the admlSSl.OnS staff check the datz.a for th.at 1 235777 Harman 5656 Land Way 01/18/2000 f MCD 06/15/2003
patient. They create a transaction record for every new patient and for any returning patients 5 620135 Smith o
whose status has changed. Here are three transactions: mit 84 Aspen St. 12/21/1975 'm HLT 06/15/2003
3 645722 Miyamoto 65 3rd Ave. 04/03/1936 f MCR 05/30/1999
620135 . X . . HLT 06-15-2003 4 645739 Jensvold 505 Glendale Ave. 06/15/1960 f HLT 09/23/1993
874329 . . 04-24-1954 m . 06-15-2003 5 874329 Kazoyan 76-C La Vista 04/24/1954 m M
235777 Harman 5656 Land Way 01-18-2000 £ MCD 06-15-2003 Y /24/ D 06/15/2003

! The MODIFY statement is another way to update a master data set. See the SAS Help and Documentation for more
information.

The Little SAS Book

Using SAS Data Set Options

In this book, you have already seen a lot of options. It may help to keep them straight if you .
realize that the SAS language has three basic types of options: system options, statement options,
and data set options. System options have the most global influence, followed by statement
options, with data set options having the most limited effect.

System options are those that stay in effect for the duration of your job or session. These options
affect how SAS operates, and are usually issued when you invoke SAS or via an OPTIONS
statement. System options include the CENTER option, which tells SAS to center all output, and
the LINESIZE= option setting the maximum line length for output.’

Statement options appear in individual statements and influence how SAS runs that particular
DATA or PROC step. The NOPRINT option in PROC MEANS, for example, tells SAS not to
produce a printed report. DATA= is a statement option that tells SAS which data set to use for a
procedure. You can use DATA= in any procedure that reads a SAS data set. Without it, SAS
defaults to the most recently created data set.

In contrast, data set options affect only how SAS reads or writes an individual data set. You can
use data set options in DATA steps (in DATA, SET, MERGE, or UPDATE statements) or in .
PROC steps (in conjuction with a DATA= statement option). To use a data set option, you simply
put it between parentheses directly following the data set name. These are the most frequently

used data set options:
KEEP = variable-list tells SAS which variables to keep.
DROP = variable~1list tells SAS which variables to drop.

RENAME = (oldvar = newvar) tells SAS to rename certain variables.
FIRSTOBS = n tells SAS to start reading at observation .
OBS=n tells SAS to stop reading at observation 7.

creates a temporary variable for tracking whether
that data set contributed to the current observation.

IN = new-var-name

Selecting and renaming variables Here are examples of the KEEP=, DROP=, and
RENAME-= data set options:

DATA small;)
SET animals (KEEP = Cat Mouse Rabbit):

PROC PRINT 5ATA = animals (DROP = Cat Mouse Rabbit):;

DATA animals (RENAME = (Cat = Feline Dog = Canine));
SET animals;

PROC PRINT DATA = animals (RENAME =(Cat = Feline Dog = Canine));

* Other system options are discussed in section 1.13.

Chapter 6: Modifying and Combining SAS Data Sets 187

You could probably get by without these options, but they play an important role in fine tuning
SAS programs. Data sets, for example, have a way of accumulating unwanted variables. Dropping
unwanted variables will make your program run faster and use less disk space. Likewise, when
you read a large data set, you often need only a few variables. By using the KEEP= option, you can
avoid reading a lot of variables you don't intend to use.

The DROP=, KEEP=, and RENAME-= options are similar to the DROP, KEEP, and RENAME
statements. However, the statements apply to all data sets named in the DATA statement while the
options apply only to the particular data set whose name they follow. Also, the statements are
more limited than the options since they can be used only in DATA steps, and apply only to the
data set being created. In contrast, the data set options can be used in DATA or PROC steps and
can apply to input or output data sets. Please note that these options do not change input data sets;
they change only what is read from input data sets.

Selecting observations by observation number You can use the FIRSTOBS= and OBS=
data set options together to tell SAS which observations to read from a data set. The options in the
following statements tell SAS to read just 20 observations:

DATA animals;
SET animals (FIRSTOBS = 101 OBS = 120);

PROC PRINT DATA = animals (FIRSTOBS = 101 OBS = 120);

If you use large data sets, you can save development time by testing your programs with a subset
of your data with the FIRSTOBS= and OBS= options.

The FIRSTOBS= and OBS= data set options are similar to statement and system options with the
same name. The statement options apply only to raw data files being read with an INFILE
statement, whereas the data set options apply only to existing SAS data sets that you read in a
DATA or PROC step. The system options apply to all files and data sets. If you use similar system
and data set options, the data set option will override the system option for that particular data set.

Tracking observations The IN= option is somewhat different from other options covered
here. While the other options affect existing variables, IN= creates a new variable. That new
variable is temporary and has the name you specify in the option. In this example, SAS would
create two temporary variables, one named InAnimals and the other named InHabitat:

DATA animals;
MERGE animals (IN = InAnimals) habitat (IN = InHabitat);
BY Species;

These variables exist only for the duration of the current DATA step and are not added to the
data set being created. SAS gives IN= variables a value of 0 if that data set did not contribute to
the current observation and a value of 1 if it did. You can use the IN= variable to track, select, or
eliminate observations based on the data set of origin. The next section explains the IN= option in
more detail.

-
f
]

The Little SAS Book

0 Tracking and Selecting Observations with the IN= Option

When you combine two data sets, you can use

IN= options to track which of the original data sets

a Wy a contributed to each observation in the new data set.

b v W c You can think of the IN= option as a sort of tag. Instead

c Wv of saying “Product of Canada,” the tag says something

OR like “Product of data set one.” Once you have that

information, you can use it in many ways including

Select non-matching observations selecting matching or non-matching observations

during a merge.

Select matching observations

awWw wh | <4|a 1t

b Wy W c W The IN= data set option can be used any time you read
c W W a SAS data set in a DATA step—with SET, MERGE, or
UPDATE—but is most often used with MERGE. To use
the IN= option, you simply put the option in parentheses directly following the data set you
want to track, and specify a name for the IN= variable. The names of IN= variables must follow
standard SAS naming conventions—start with a letter or underscore; be 32 characters or fewer in
length; and contain only letters, numerals, or underscores. :

The DATA step below creates a data set named BOTH by merging two data sets named STATE
and COUNTY. Then the IN= options create two variables named InState and InCounty:

DATA both;
MERGE state ({(IN = InState) county (IN = InCounty);
BY StateName;

Unlike most variables, IN= variables are temporary, existing only during the current DATA step.
SAS gives the IN= variables a value of 0 or 1. A value of 1 means that data set did contribute to
the current observation, and a value of 0 means the data set did not contribute. Suppose the
COUNTY data set above contained no data for Louisiana. (Louisiana has parishes, not counties.)
In that case, the BOTH data set would contain one observation for Louisiana which would have a
value of 1 for the variable InState and a value of 0 for InCounty because the STATE data set
contributed to that observation, but the COUNTY data set did not.

You can use this variable like any other variable in the current DATA step, but it is most often
used in subsetting IF or IF-THEN statements such as these:

Subsetting IF: IF InState = 1;
IF InCounty = 0;
IF InState = 1 AND InCounty = 1;

JF-THEN: IF InCounty = 1 THEN Origin = 1;
IF InState = 1 THEN State = 'Yes';

Example A sporting goods manufacturer wants to send a sales rep to contact all customers
who did not place any orders during the third quarter of the year. The company has two data
files, one that contains all customers and one that contains all orders placed during the third
quarter. To compile a list of customers without orders, you merge the two data sets using the
IN= option, and then select customers who had no observations in the orders data set. The
customer data file contains the customer number, name, and address. The orders data file

Chapter 6: Modifying and Combining SAS Data Sets 189

contains the customer number and total price, with one observation for every order placed
during the third quarter. Here are samples of the two raw data files:

Customer data Orders data
101 Murphy’s Sports 115 Main St. 102 562.01
102 Sun N Ski 2106 Newberry Ave. 104 254.98
103 sSports Outfitters 19 Cary Way 104 1642.00
104 Cramer & Johnson 4106 Arlington Blvd. 101 3497.56
105 Sports Savers 2708 Broadway 102 385.30

Here is the program that finds customers who did not place any orders:

DATA customer;
INFILE ’‘c:\MyRawData\Address.dat’ TRUNCOVER;
INPUT CustomerNumber Name $ 5-21 Address $ 23-42;
DATA orders;
INFILE ‘c:\MyRawData\OrdersQ3.dat’;
INPUT CustomerNumber Total;
PROC SORT DATA = orders;
BY CustomerNumber;

* gombine the data sets using the IN= option;

PROC PRINT DATA
TITLE ’‘Customers with No Orders in the Third Quarter’;
RUN;

The customer data are already sorted by customer number and so do not need to be sorted with
PROC SORT. The orders data, however, are in the order received and must be sorted by customer
number before merging. In the final DATA step, the IN= option creates a variable named Recent,
which equals 1 if the ORDERS data set contributed to that observation and 0 if it did not. Then a
subsetting IF statement keeps only the observations where Recent is equal to 0—those obser-
vations with no orders data. Notice that there is no IN= option on the CUSTOMER data set. Only
one IN= option was needed to identify customers who did not place any orders. Here is the list that
can be given to sales reps:

customers with No Orders in the Third Quarter 1
Customer
Obs Number Name Address Total
1 103 Sports Qutfitters 19 Cary Way
2 105 Sports Savers 2708 Broadway

The values for the variable Total are missing because these customers did not have observations in
the ORDERS data set. The variable Recent does not appear in the output because, as a temporary
variable, it was not added to the NOORDERS data set.

190 The Little SAS Book Chapter 6: Modifying and Combining SAS Data Sets 191

1 Writing Multiple Data Sets Using the OUTPUT Statement

Up to this point, all the DATA steps in this book have

a Wy W) created a single data set, except for DATA NULL_

1 WL W 5 Lk Timir| statements which produce no data set at all. Normally you
b W W want to make only one data set in each DATA step.
— However, there may be times when it is more efficient or

'Sr

PROC

7]

£ 1 z i I o
PRINT DATA

7 : 2] more convenient to create multiple data sets in a single TITLE 'Animals
2w i DATA step. You can do this by simply putting more than PROC PRINT DATA = afternoon;
3 W one data set name in your DATA statement. The statement RUN?ITLE ‘Animals with Afternoon Feedings';
below tells SAS to create three data sets named LIONS, !
TIGERS, and BEARS: This DATA step creates two data sets named MORNING and AFTERNOON. Then the

IF-THEN/ELSE statements tell SAS which observations to put in each data set. Because the

DATA lions tigers bears; .
final OUTPUT statement does not specify a data set, SAS adds those observations to both data

If that is all you do, then SAS will write all the observations to all the data sets, and you will have sets. The log contains these notes saying that SAS read one input file and wrote two data sets:
three identical data sets. Normally, of course, you want to create different data sets. You can do
that with an OUTPUT statement. NOTE: 9 records were read from the infile 'c:\MyRawData\Zoo.dat'.

Every DATA step has an implied OUTPUT statement at the end which tells SAS to write the NOTE: The data set WORK.MORNING has 5 observations and 4 variables.

current observation to the output data set before returning to the beginning of the DATA step to NOTE: The data set WORK.AFTERNOON has 6 observations and 4 variables.
process the next observation. You can override this implicit OUTPUT statement with your own
OUTPUT statement. The basic form of the OUTPUT statement is Here are the two reports, one for each data set:
OUTPUT data-set-name; Animals with Morning Feedings 1
If you leave out the data set name then the observation will be written to all data sets named in Feed
the DATA statement. OUTPUT statements can be used alone or in IF-THEN or DO-loop Obs Aninal Class Enclosure Time
processing.
IF family = 'Ursidae' THEN OUTPUT bears; 1 bears Mammalia E2 both
2 elephants Mammalia w3 am
Example A local zoo maintains a data base about the feeding of the animals. A portion of the 3 kangaroos Mammalia N4 am
data appears below. For each group of animals the data include the scientific class, the enclosure 4 tigers Mammalia wo both
those animals live in, and whether they get fed in the morning, afternoon, or both: 5 zebras Mammalia w2 am
bears Mammalia E2 both . . .
elephants Mammalia W3 am Animals with Afternoon Feedings 2
flamingos Aves Wl pm
frogs Amphibia S2 pm) Feed
kangaroos Mammalia N4 am . .
1ions Mammalia W6 pm Obs Animal Class Enclosure Time
snakes Reptilia S1 pm
tigers Mammalia W9 both 1 bears Mammalia E2 both
zebras Mammalia W2 am 2 flamingos Aves wi om
To help with feeding the animals, the following program creates two lists, one for morning 3 Irl‘ogs Amphle..a 52 pm
feedings and one for afternoon feedings. 4 10ns Mammalia we pm
5 snakes Reptilia St pm
6 tigers Mammalia wo both

OUTPUT statements have other uses besides writing muitiple data sets in a single DATA step and
can be used any time you want to explicitly control when SAS writes observations to a data set.

192

The Little SAS Book

) 12 Making Several Observations from One Using the

OUTPUT Statement

1 11 Wi
2 11 Wi

- Usually SAS writes an observation to a data set at the end of the DATA step,
but you can override this default using the OUTPUT statement. If you want
to write several observations for each pass through the DATA step, you

can put an OUTPUT statement in a DO loop or just use several OUTPUT
statements. The OUTPUT statement gives you control over when an
observation is written to a SAS data set. If your DATA step doesn’t have
an OUTPUT statement, then it is implied at the end of the step. Once you put an OUTPUT
statement in your DATA step, it is no longer implied, and SAS writes an observation only
when it encounters an OUTPUT statement.

Example The following program demonstrates how you can use an OUTPUT statement in a
DO loop to generate data. Here we have a mathematical equation (y=x") and we want to generate
data points for later plotting:

* Create data for variables x and y;
DATA generate;

PRINT DATA = generate;
TITLE 'Generated Data';
RUN;

This program has no INPUT or SET statement—so there is only one iteration of the entire DATA
step—but it has a DO loop with six iterations. Because the OUTPUT statement is inside the DO
loop, an observation is created each time through the loop. Without the OUTPUT statement, SAS
would have written only one observation at the end of the DATA step when it reached the
implied OUTPUT. The following are the results of the PROC PRINT:

Generated Data 1
Obs X y

1 1 1

2 2 4

3 3 9

4 4 16

5 5 25

6 6 36

Chapter 6: Modifying and Combining SAS Data Sets 193

Example Here’s how you can use OUTPUT statements to create several observations from a
single pass through the DATA step. The following data are for ticket sales at three movie
theaters. After the month are the theaters’ names and sales for all three theaters:

Jan Varsity 56723 Downtown 69831 Super-6 70025
Feb Varsity 62137 Downtown 43901 Super-6 81534
Mar Varsity 49982 Downtown 55783 Super-6 69800

For the analysis you want to do, you need to have the theater name as one variable and the ticket
sales as another variable. The month should be repeated three times, once for each theater.

The following program has three INPUT statements all reading from the same raw data file. The first
INPUT statement reads values for Month, Location, and Tickets, and then holds the data line using the
trailing at sign (@). The OUTPUT statement that follows writes an observation. The next INPUT
statement reads the second set of data for Location and Tickets and again holds the data line. Another
OUTPUT statement writes another observation. Month still has the same value because it isn’t in the
second INPUT statement. The last INPUT statement reads the last values for Location and Tickets, this
time releasing the data line for the next iteration through the DATA step. The final OUTPUT statement
writes the third observation for that iteration of the DATA step. The program has three OUTPUT
statements for the three observations created in each iteration of the DATA step:

* Create three observations for each data line read
* using three OUTPUT statements;
DATA theaters;

PROC PRINT DATA theaters;
TITLE 'Ticket Sales';
RUN;

The following are the results of the PROC PRINT. Notice that there are three observations in the
data set for each line in the raw data file and that the value for Month is repeated:

Ticket Sales 1

Obs Month Location Tickets

1 Jan Varsity 56723
2 Jan Downtown 69831
3 Jan Super-6 70025
4 Feb Varsity 62137
5 Feb Downtown 43901
6 Feb Super-6 81534
7 Mar Varsity 49982
8 Mar Downtown 55783
9 Mar Super-6 69800

194

The Little SAS Book

Changing Observations to Variables Using PROC TRANSPOSE

We have already seen ways to combine data sets, create new

X A B _NAME yarahles, and sort data. Now, using PROC TRANSPOSE,

X
1
1
2
2

Y
A
B
A
B

we will flip data—so get your spatulas ready.

The TRANSPOSE procedure transposes SAS data sets,
turning observations into variables or variables into

Z
W
W
W
ww observations. In most cases, to convert observations into

variables, you can use the following statements:

PROC TRANSPOSE DATA = old-data-set OUT = new-data-set;
BY variable-list;
ID variable;
VA% variable-1list;

In the PROC TRANSPOSE statement, old-data-set refers to the SAS data set you want to
transpose, and new-data-set is the name of the newly transposed data set.

BY statement You can use the BY statement if you have any grouping variables that you
want to keep as variables. These variables are included in the transposed data set, but they are
not themselves transposed. The transposed data set will have one observation for each BY level
per variable transposed. For example, in the figure above, the variable X is the BY variable. The
data set must be sorted by these variables before transposing.

ID statement The ID statement names the variable whose formatted values will become the
new variable names. The ID values must occur only once in the data set; or if a BY statement is
present, then the values must be unique within BY-groups. If the ID variable is numeric, then the
new variable names have an underscore for a prefix (_1 or _2, for example). If you don’t use an
ID statement, then the new variables will be named COL1, COL2, and so on. In the figure above,
the variable Y is the ID variable. Notice how its values are the new variable’s names in the
transposed data set.

VAR statement The VAR statement names the variables whose values you want to
transpose. In the figure above, the variable Z is the VAR variable. SAS creates a new variable,
NAME, which has as values the names of the variables in the VAR statement. If there is more
than one VAR variable, then _NAME_ will have more than one value.

Example Suppose you have the following data about players for minor league baseball
teams. You have the team name, player’s number, the type of data (salary or batting average),
and the entry: '

Garlics 10 salary 43000
Peaches 8 salary 38000
Garlics 21 salary 51000
Peaches 10 salary 47500
Garlics 10 batavg .281
Peaches 8 batavg .252
Garlics 21 batavg .265
Peaches 10 patavg .301

Chapter 6: Modifying and Combining SAS Data Sets 195

You want to look at the relationship between batting average and salary. To dg this, salary and
batting average must be variables. The following program reads the raw data into a SAS data set
and sorts the data by team and player. Then the data are transposed using PROC TRANSPOSE.

DATA baseball;
INFILE 'c:\MyRawData\Transpos.dat';
INPUT Team $ Player Type § Entry;
PROC SORT DATA = baseball;
BY Team Player;
PROC PRINT DATA = baseball; .
TITLE 'Baseball Data After Sorting and Before Transposing';

iables;

PROC PRINT Flipped; _ ‘
TITLE 'Baseball Data After Transposing';
RUN;

In the PROC TRANSPOSE step, the BY variables are Team and Player. You want those var.iables to
remain in the data set, and they define the new observations (you want only one 0bsewahqn for each
team and player combination). The ID variable is Type, whose values (.salary and batavg) will be .the
new variable names. The variable to be transposed, Entry, is specified in the VAR statement. Notice
that its name, Entry, now appears as a value under the variable NAME_. Thg TBANSPOSE
procedure automatically generates the _NAME_ variable, but in this application it is not very
meaningful and could be dropped.

Here are the results:
Baseball Data After Sorting and Before Transposing 1
Obs Team Player Type Entry
1 Garlics 10 salary 43000.00
2 Garlics 10 batavg 0.28
3 Garlics 21 salary 51000.00
4 Garlics 21 batavg 0.27
5 Peaches 8 salary 38000.00
6 Peaches 8 batavg 0.25
7 Peaches 10 salary 47500.00
8 Peaches 10 batavg 0.30
Baseball Data After Transposing 2
Obs Team Player _NAME_ salary batavg
1 Garlics 10 Entry 43000 0.281
2 Garlics 21 Entry 51000 0.265
3 Peaches 8 Entry 38000 0.252
4 Peaches 10 Entry 47500 0.301

196 The Little SAS Book Chapter 6: Modifying and Combining SAS Data Sets 197

PROC SORT DATA = ordered;
i ; : BY AgeG Time;
Using SAS Automatic Variables : geGroup Time

DS
In addition to the variables you create in your SAS data set, SAS creates a few more called
automatic variables. You don’t ordinarily see these variables because they are temporary and are
not saved with your data. But they are available in the DATA step, and you can use them just PRINT DATE = wincere

like you use any variable that you create yourself. TITLE 'Winners in Each Age Group';
RUN;

ion in each age group;

_N_and _ERROR_ The N_and ERROR_ variables are always available to you in the
DATA step. _N_ indicates the number of times SAS has looped through the DATA step. This is
not necessarily equal to the observation number, since a simple subsetting IF statement can
change the relationship between observation number and the number of iterations of the DATA
step. The _ERROR _ variable has a value of 1 if there is a data error for that observation and 0 if
there isn’t. Things that can cause data errors include invalid data (such as characters in a numeric
field), conversion errors (like division by zero), and illegal arguments in functions (including log
of zero).

The second part of this program produces a list of the top finishers in each age category. The
ORDERED data set containing the new Place variable is sorted by AgeGroup and Time. In the
DATA step, the SET statement reads the ORDERED data set. The BY statement in the DATA step
generates the FIRST. AgeGroup and LAST.AgeGroup temporary variables. The subsetting IF
statement, IF FIRST.AgeGroup = 1, keeps only the first observation in the BY group. Since the
Winners data set is sorted by AgeGroup and Time, the first observation in each BY group is the top
finisher of that group.

Here are the results of the two PRINT procedures. The first page shows the data after sorting by
Time and including the new variable Place. Notice that the _N_ temporary variable does not
appear in the printout. The second page shows the results of the second part of the program-—the
winners for each age category and their overall place:

FIRST.variable and LAST.variable Other automatic variables are available only in
special circumstances. The FIRST.variable and LAST.variable automatic variables are available
when you are using a BY statement in a DATA step. The FIRST.variable will have a value of 1
when SAS is processing an observation with the first occurrence of a new value for that variable

and a value of 0 for the other observations. The LAST.variable will have a value of 1 for an
observation with the last occurrence of a value for that variable and the value 0 for the other Results of Walk 1
observations.
Age
Example Your hometown is having a walk around the town square to raise money for the Obs Entry Group Time Place
library. You have the following data: entry number, age group, and finishing time. (Notice that :
there is more than one observation per line of data.) 1 3 adult 19.0 1
54 youth 35.5 21 adult 21.6 6 adult 25.8 13 senior 29.0 2 21 adult 21.6 2
38 senior 40.3 19 youth 39.6 3 adult 19.0 25 youth 47.3 3 11 adult 21.9 3
11 adult 21.9 8 senior 54.3 41 adult 43.0 32 youth 38.6 4 6 adult 25.8 4
. . o) 5 13 senior 29.0 5
The first thing you want to do is create a new variable for overall finishing place and print 6 54 youth 35.5 6
the results. The first part of the following program reads the raw data, and sorts the data by 7 32 youth 38.6 7
finishing time (Time). Then another DATA step creates the new Place variable and gives it the 8 19 youth 39.6 8
current value of _N_. The PRINT procedure produces the list of finishers: 9 38 senior 40.3 9
DATA walkers; 10 41 adult 43.0 10
INFILE 'c:\MyRawData\Walk.dat'; 11 25 youth 47.3 11
INPUT Entry AgeGroup $ Time @@; 10)
PROC SORT DATA = walkers; 8 senior 54.3 12
BY Time;
* Create a new variable, Place; Winners in Each Age Group 2
DATA ordered; Age
SET walkers; i
i ¥ Obs Entry Group Time Place
PROC PRINT DATA = ordered;
TITLE 'Results of Walk'; 1 3 adult 19.0 1
2 13 senior 29.0 5
3 54 youth 35.5 6

