Epidemiology Models

i. General: $E[\#$ events $]=$ Rate $\times P T$
ii. Specific way that rates are interrelated (form of 'rate model')
(a) (Additive, Rate Difference): Rate $=$ Rate $_{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots$
(b) (Multiplicative, Rate Ratio): Rate $=$ Rate $_{0} \times \exp \left\{\beta_{1} X_{1}+\beta_{2} X_{2} \ldots\right\}$ (or, equivalently,) $: \log ($ Rate $)=\log \left(\right.$ Rate $\left._{0}\right)+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots$

Statistical Fitting of these Models

i. General: $E[\#$ events $]=$ Rate $\times P T$
ii. Specifically, how model is implemented in statistical packages: In both instances, expand the Rate $\times P T$ product
(a) (Add.): $E[\#$ events $]=\left\{\right.$ Rate $\left._{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots\right\} \times P T$
$E[\#$ events $]=$ Rate $_{0} \times \underline{P T}+\beta_{1} \times \underline{X_{1} \times P T}+\beta_{2} \times \underline{X_{2} \times P T} \cdots$ (specify 'no-intercept' ; in R, \#events $\sim-1+\ldots$,)
(b) (Mult): $E[\#$ events $]=$ Rate $_{0} \times \exp \left\{\beta_{1} X_{1}+\beta_{2} X_{2} \ldots\right\} \times P T$ $\log \{E[\#$ events $]\}=\log \left(\right.$ Rate $\left._{0}\right)+\beta_{1} \times \underline{X_{1}}+\beta_{2} \times \underline{X_{2}} \cdots+\log (P T)$ (use ' $\log (P T)$ as 'offset' ; cf worked e.g.'s for R / SAS code)

1 Rate : no. of cases / \{amount of experience (P-T)\}

- Inference Model: Poisson distribution for numerator.
- Déjà: Exact (discrete distrn.) \& Gaussian approximations
- New: Regression Approach:

$$
\begin{aligned}
\text { "Usual" Linear model } & :(\text { not appropriate }) \\
\text { E[cases] } & =\text { rate } \times \text { Denominator } \\
=\beta & \times \text { Denominator }
\end{aligned}
$$

"No-intercept" model (Gaussian variation around line)

```
# Ayas et al data on PI's in Residents
## Incidence, Overall
cases=c(498); InternMonths=c(17003);
## regression through origin,
    Gaussian variation around mean [true line]
summary( lm(cases ~ -1+InternMonths) )
```

Residuals:
ALL 1 residuals are 0: no residual degrees of freedom!
Coefficients:

	Estimate	Std. Error t value	$\operatorname{Pr}(>\|t\|)$	
InternMonths	0.02929	NA	NA	NA

Residual standard error: NaN on 0 degrees of freedom Multiple R-Squared: 1, Adjusted R-squared: NaN F-statistic: $N a N$ on 1 and 0 DF, p-value: NA

Estimate, namely 0.02929 cases/InternMonth is sensible. But : no df with which to calculate SE or Cl

- New: Regression Approach:
"Generalized" Linear model : (Poisson variation)

$$
\begin{aligned}
& \begin{aligned}
\text { E[cases] } & =\text { rate } \times \text { Denominator } \\
= & \beta \times \text { Denominator }
\end{aligned} \\
& \text { same "no-intercept" model, but Poisson variation }
\end{aligned}
$$

(Dispersion parameter for poisson family taken to be 1)

Null deviance:	Inf on 1
Residual	deviance:
$3.1086 e-15$	on 0
$d f$	

Check: SE[rate] $=$ sqrt[\#cases) / Denominator

$$
=\text { sqrt[498] / } 17003=\underline{0.001312}
$$

- Since rates >0; safer to model (natural) log of the rate

$\mathrm{E}[$ cases $]$	$=$ rate	\times	Denominator
$\log [\mathrm{E}[$ cases $]]$	$=\log \{$ rate $\}$	+	$\log [$ Denominator]
$\log [\mu \mid]$	$=$	γ	+

(no need to estimate γ_{1}; already know $\gamma_{1}==1$)
in this instance, log[Denominator] is an "offset"
To model log [$\mu \mid x]$, use log "link" (default link for Poisson)
Canonical links (Binomial : logit; Poisson: log) ensure that whatever the value of the linear predictor, any fitted proportion will be between 0 and 1 , and any rate (no. cases) between 0 and infinity.

"Generalized" Linear model : (Poisson variation, log link)

```
summary( glm(cases ~ 1, family=poisson,
    offset=log(InternMonths) ) )
Deviance Residuals: [1] 0
Coefficients:
    Estimate Std. Error z value Pr(> z|)
(Intercept) -3.53055 0.04481* -78.79 <2e-16
            log[ rate ]
    i.e., log[498/17003]
(Dispersion parameter for poisson family taken to be 1)
```

```
    Null deviance: 1.0747e-13 on 0 df
```

 Null deviance: 1.0747e-13 on 0 df
 Residual deviance: 1.0747e-13 on 0 df
Residual deviance: 1.0747e-13 on 0 df
AIC: 10.049
AIC: 10.049
*Check: SE[log rate] = sqrt[1 / \#cases]
*Check: SE[log rate] = sqrt[1 / \#cases]
= sqrt[1 / 498] = 0.04481

```
    = sqrt[ 1 / 498 ] = \underline{0.04481}
```

Note that we are able to calculate an SE for the estimate of the rate (previous page] and for the estimate of the log rate, even though we have no df with which to estimate the residual variation around he line (the line goes through our one data point). We are able to do this because the variance of a Poisson random variable is equal to the mean of the random variable. So, since the fitted mean no. of cases is 498 , the model is able to provide an estimate of how much variation there would be if the mean were indeed 498, ie SD = sqrt[498]. The SE 'borrowed from' the model' is called a "model-based" SE.

In the usual regression with Gaussian variation, (i) the variance is estimated separately, using the mean of the squared residuals and (ii) the variance about the (true) line of means is assumed to be the same at all values of x. The Poisson model better reflects the variability of counts: the variation is higher when the expected (or average) count is higher (but the cv is smaller, the larger the count ie $c v=\sigma / \mu=\operatorname{sqrt}[\mu] / \mu=1 / \operatorname{sqrt}[\mu]$.

Comparison of 2 Rates

- Rate difference / Ratio•

Example

```
Extended Periods (coded 'X' = 1)
```

35 percutaneous injuries in 26667 opportunities
vs.
Non-Extended Periods (coded 'X' = 0)
46 percutaneous injuries in 60763 opportunities

Regression framework for rate difference (RD)

observed rate when $\mathrm{x}=0$ (reference category)

$$
\mathrm{b}_{0}=\operatorname{rate}[0]=46 / 60763=\underline{0.0007570}
$$

observed rate difference, rd

```
rd = 35/26667-46/60763=0.0005554
```

In general (single, binary x)

RATE $\mid \mathrm{X}$	$=$ RATE $_{0}+\mathrm{RD} \times \mathrm{X}$
	$=\mathrm{B}_{0}+\mathrm{B}_{1} \times \mathrm{X}$

So...

$$
\begin{aligned}
\mathrm{E}[\text { \#CASES | } \mathrm{X}] & =\mathrm{RATE}_{\mathrm{x}} \times \mathrm{PT} \\
& =\left(\mathrm{B}_{0}+\mathrm{B}_{1} \times \mathrm{X}\right) \times \mathrm{PT} \\
& =\mathrm{B}_{0} \times \mathrm{PT}+\mathrm{B}_{1} \times \underline{\mathrm{X} \times \mathrm{PT}} \\
& =\mathrm{B}_{0} \times \mathrm{Z}_{0}+\mathrm{B}_{1} \times \mathrm{Z}_{1}
\end{aligned}
$$

This is a regression with 2 terms $\left(\mathrm{Z}_{0} \& \mathrm{Z}_{1}\right)$, and no intercept

Rate difference (rd), and CI for RD, via regression framework

```
cases=c(35,46); PT=c(26667,60763);
e=c(1,0); ePT = e*PT;
ds <- data.frame(cases=cases, opps=PT, extended=e,
extended.opps = ePT);
```

ds
cases opps extended extended.opps

1	35	26667	1	26667
2	46	60763	0	0

attach (ds)
\# regression to obtain rate difference

summary (glm (cases $\sim-1+$ opps + extended.opps,

 family=poisson(link=identity)))Deviance Residuals:
[1] 0

*Check: SE[rate difference], as in Rothman,

Regression framework for rate ratio (RR) [2 Rates]

(same, e.g., ignoring, for now, the self-paired structure) observed rate when $\mathrm{x}=0$ (reference category)

$$
\mathrm{b}_{0}=\operatorname{rate}[0]=46 / 60763=\underline{0.0007570}
$$

observed rate ratio, rr

$$
r r=(35 / 26667) /(46 / 60763)=1.73
$$

In general
So...

$\log [\operatorname{RATE} \mid \mathrm{X}]$	$=\log \left[\mathrm{RATE}_{0}\right]$
	$=\log [\mathrm{RR}] \times \mathrm{X}$
	$=\mathrm{B}_{0}+\quad+\quad \mathrm{B}_{1} \times \times \mathrm{X}$

	\#CASES	X]		$\mathrm{RATE}_{\mathrm{x}}$	\times	PT
$\log [\mathrm{E}$	\#CASES	X]	$=$	$\log \left[\mathrm{RATE}_{\mathrm{x}}\right]$	+	$\log [\mathrm{PT}]$
				$\mathrm{B}_{0}+\mathrm{B}_{1} \times \mathrm{X}$	+	$\log [\mathrm{PT}]$
				$\mathrm{B}_{0}+\mathrm{B}_{1} \times \mathrm{X}$	+	$\underline{\log [P T]}$
						"offset"

(an "offset" is a term whose coefficient is KNOWN to be 1)

Rate ratio (rr), and Cl for RR , via regression framework

```
# to obtain rate ratio [ log.opps = log(opps) ]
```

```
summary(glm(cases ~ extended,
    family=poisson(link=log*),offset=log.opps))
```

Deviance Residuals:
[1] 0

	Estimate	Std.	Error	z value		(> $\mathrm{z} \mid$)
(Intercept)	-7.1861		0.1474	-48.739		<2e-16
extended	$\underline{0.5503}$		$\underline{0.2243}$	2.453		0.0142

```
(Dispersion parameter for poisson family taken to be 1)
```

 Null deviance: \(5.8023 \mathrm{e}+00\) on 1 df
 Residual deviance: -3.7748e-15 on 0 df AIC: 15.068
*Check:

```
-7.1861 = log[rate ] = log[ 46/60763 ]
0.5503 = log[rateRatio]
    = log[(35/26667) / (46/60763) ]
```

So, rateratio $=\exp [\log$ rateRatio $]=\exp [0.5503]=1.73$
SE[log of rate ratio], as in Rothman,
$=\operatorname{sqrt}[1 / 35+1 / 46]=\underline{0.2243}$

95\% CI for log[RateRatio]: $\underline{0.5503}+/-1.96 \times \underline{0.2243}$
95\% CI for RateRatio: $\exp [\underline{0.5503}+/-1.96 \times \underline{0.2243}]$

[^0]
Rates \& Rate ratios: multiple regression [Many Rates]

Example: age-specific death rates, male/female 1991, Québec.

```
ds=read.table("quedata.txt", header=T)
ds7191=ds[(ds$age > 40) & (ds$age < 85 ) & (
(ds$year==1971) | (ds$year==1991)),] ;attach(ds7191)
# age and sex specific death rates '91
y91=ds[(ds$age > 40) & (ds$age < 85 ) & (ds$year==1991) ,]
y91$age=y91$age - 40
(y91m$deaths/y91m$population) / (y91f$deaths/y91f$population)
1.64 1.82 1.93 1.95 2.08 2.00 2.04 1.89 1.72
mean 1.90
plot(y91$age, log( y91$deaths / y91$population ) ) next page
summary( glm(deaths ~ age + male, family=poisson,
    offset=log(population), data=y91) )
Coefficients:
    Estimate Std. Error z value Pr (>|z|)
\begin{tabular}{lrrrr} 
(Intercept) & -6.9030313 & 0.0172228 & -400.81 & \(<2 e-16 * * *\) \\
age & \(\underline{0.0956970}\) & 0.0004896 & 195.47 & \(<2 e-16 \quad * * *\) \\
male & \(\underline{0.6506765}\) & 0.0106740 & 60.96 & \(<2 e-16 * * *\)
\end{tabular}
rr = exp[\underline{0.0956970]}]=1.10 rr= exp[\underline{0.6506765]}=1.91
    Null deviance: 47005.299 on 17 df
Residual deviance: 63.095 on 15 df AIC: 234.73
summary( glm(deaths ~ age t male t age*male,
    family=poisson, offset=log(population), data=y91)
)
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error & z value & Pr \((>|z|)\) & \\
(Intercept) & -6.9308474 & 0.0256471 & -270.239 & \(<2 \mathrm{e}-16\) & \(\star * *\) \\
age & 0.0965921 & 0.0007816 & 123.579 & \(<2 \mathrm{e}-16\) & \(\star * *\) \\
male & 0.6952540 & 0.0321127 & 21.650 & \(<2 \mathrm{e}-16\) & \(\star * *\) \\
age:male & -0.0014773 & 0.0010029 & -1.473 & 0.141
\end{tabular}
Residual deviance: 60.923 on 14 df AIC: 234.56
```

Male and female death rates are 'close to proportional' [see 'multiplicative' model of Clayton \& Hills, Table 22.5 Ch 22]

upper=male; age=age-40

Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial: The Lancet Feb 252007

Ronald H Gray, Godfrey Kigozi, David Serwadda, Frederick Makumbi, Stephen Watya, Fred Nalugoda, Noah Kiwanuka, Lawrence H Moulton, Mohammad A Chaudhary, Michael Z Chen, Nelson K Sewankambo, Fred Wabwire-Mangen, Melanie C Bacon, Carolyn F M Williams, Pius Opendi, Steven J Reynolds, Oliver Laeyendecker, Thomas C Quinn, Maria J Wawer

Summary

Background Ecological and observational studies suggest that male circumcision reduces the risk of HIV acquisition in men. Our aim was to investigate the effect of male circumcision on HIV incidence in men.

Methods: 4996 uncircumcised, HIV-negative men aged 15-49 years who agreed to HIV testing and counselling were enrolled in this randomised trial in rural Rakai district, Uganda. Men were randomly assigned to receive immediate circumcision ($n=2474$) or circumcision delayed for 24 months (2522). HIV testing, physical examination, and interviews were repeated at 6,12 , and 24 month follow-up visits. The primary outcome was HIV incidence. Analyses were done on a modified intention-to-treat basis. This trial is registered with ClinicalTrials.gov, with the number NCT00425984.

Findings: Baseline characteristics of the men in the intervention and control groups were much the same at enrolment. Retention rates were much the same in the two groups, with $90-92 \%$ of participants retained at all time points. In the modified intention-to-treat analysis, HIV incidence over 24 months was 0.66 cases per 100 person-years in the intervention group and 1.33 cases per 100 person-years in the control group (estimated efficacy of intervention $51 \%, 95 \%$ CI 16-72; $\mathrm{p}=0.006$). The as-treated efficacy was 55% (95% CI 22-75; $\mathrm{p}=0.002$); efficacy from the KaplanMeier time-to-HIV-detection as-treated analysis was 60% (30-77; $p=0 \cdot 003$). HIV incidence was lower in the intervention group than it was in the control group in all sociodemographic, behavioural, and sexually transmitted disease symptom subgroups. Moderate or severe adverse events occurred in 84 (3.6%) circumcisions; all resolved with treatment. Behaviours were much the same in both groups during follow-up.

Interpretation Male circumcision reduced HIV incidence in men without behavioural disinhibition. Circumcision can be recommended for HIV prevention in men.

From Table 3 of article...

Deviance Residuals:

1	2	3	4	5	6
2.0379	0.7256	-1.0784	-0.4140	-1.5346	-0.3849

Coefficients:

	Estimate	Std. Error z value $\operatorname{Pr}(>\|z\|)$			
(Intercept)	-4.3224	0.1491	-28.996	$<2 e-16$	$* * *$
intervention	-0.7040	0.2601	-2.706	0.00681	

Null deviance: 16.3106 on 5 df
Residual deviance: 8.5173 on 4 df AIC: 37.095
> 0.01*round (100*exp(fit\$coefficients))

(Intercept)	intervention
0.01	0.49

observation: 1 | | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

* Proportional hazards?

Cumulative no. of participants	2387	2430	
Cumulative incident events	22	45	
Cumulative person-years	3352.4	3391.8	i.r.r.
Cumulative incidence per 100 p-y	??	0.66	1.33
			$\underline{0.49}$

[^0]: * no need to specify, as Log is default link for Poisson

