Epidemiology Models

i. General: $E[\#\text{events}] = \text{Rate} \times PT$

ii. Specific way that rates are interrelated (form of ‘rate model’)

(a) (Additive, Rate Difference): $\text{Rate} = \text{Rate}_0 + \beta_1 X_1 + \beta_2 X_2 \ldots$

(b) (Multiplicative, Rate Ratio): $\text{Rate} = \text{Rate}_0 \times \exp\{\beta_1 X_1 + \beta_2 X_2 \ldots\}$

(or, equivalently,): $\log(\text{Rate}) = \log(\text{Rate}_0) + \beta_1 X_1 + \beta_2 X_2 \ldots$

Statistical Fitting of these Models

i. General: $E[\#\text{events}] = \text{Rate} \times PT$

ii. Specifically, how model is implemented in statistical packages:

In both instances, expand the $\text{Rate} \times PT$ product

(a) (Add.): $E[\#\text{events}] = \{\text{Rate}_0 + \beta_1 X_1 + \beta_2 X_2 \ldots\} \times PT$

$E[\#\text{events}] = \text{Rate}_0 \times PT + \beta_1 \times X_1 \times PT + \beta_2 \times X_2 \times PT \ldots$

(specify ‘no-intercept’ ; in R, #events $\sim -1 + ...$,)

(b) (Mult): $E[\#\text{events}] = \text{Rate}_0 \times \exp\{\beta_1 X_1 + \beta_2 X_2 \ldots\} \times PT$

$\log\{E[\#\text{events}]\} = \log(\text{Rate}_0) + \beta_1 \times X_1 + \beta_2 \times X_2 \cdots + \log(PT)$

(use ‘log(PT) as ‘offset’ ; cf worked e.g.’s for R / SAS code)
1 Rate: no. of cases / {amount of experience (P-T)}

- Inference Model: Poisson distribution for numerator.
- Déjà: Exact (discrete distrn.) & Gaussian approximations
- New: Regression Approach:

"Usual" Linear model: (not appropriate)
\[
E[\text{cases}] = \text{rate} \times \text{Denominator} = \beta \times \text{Denominator}
\]
"No-intercept" model (Gaussian variation around line)

\[
\text{summary}(\text{glm}(\text{cases} \sim -1 + \text{InternMonths}, \text{family} = \text{poisson}(\text{link}=\text{identity})))
\]

Deviance Residuals: [1] 0
Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| InternMonths | 0.029289 | 0.001312 | 22.32 | <2e-16 |

Since rates > 0; safer to model (natural) log of the rate

\[
\log \left[E[\text{cases}] \right] = \log(\text{rate}) + \log[\text{Denominator}]
\]
\[
\text{log} \left[\mu \right] = \gamma + \log[\text{Denominator}]
\]
\[
\text{log} \left[\mu \right] = \gamma_0 + 1 \times \log[\text{Denominator}]
\]
\[
\text{log} \left[\mu \right] = \gamma_0 + \gamma_1 \times \log[\text{Denominator}]
\]

(no need to estimate \(\gamma_1\); already know \(\gamma_1 = 1\))
in this instance, \(\log[\text{Denominator}]\) is an "offset"
To model \(\log [\mu | x]\), use log "link" (default link for Poisson)

Canonical links (Binomial: logit; Poisson: log) ensure that whatever the value of the linear predictor, any fitted proportion will be between 0 and 1, and any rate (no. cases) between 0 and infinity.
"Generalized" Linear model : (Poisson variation, log link)

summary(glm(cases ~ 1, family=poisson,
 offset=log(InternMonths)))

Deviance Residuals: [1] 0

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.53055 0.04481 -78.79 <2e-16

log[rate]

i.e., log[498/17003]

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.0747e-13 on 0 df
Residual deviance: 1.0747e-13 on 0 df AIC: 10.049

*Check: SE[log rate] = sqrt[1 / #cases]
 = sqrt[1 / 498] = 0.04481

Note that we are able to calculate an SE for the estimate of the rate (previous page) and for the estimate of the log rate, even though we have no df with which to estimate the residual variation around the line (the line goes through our one data point). We are able to do this because the variance of a Poisson random variable is equal to the mean of the random variable. So, since the fitted mean no. of cases is 498, the model is able to provide an estimate of how much variation there would be if the mean were indeed 498, i.e. SD = sqrt[498]. The SE ‘borrowed from’ the model’ is called a "model-based" SE.

In the usual regression with Gaussian variation, (i) the variance is estimated separately, using the mean of the squared residuals and (ii) the variance about the (true) line of means is assumed to be the same at all values of x. The Poisson model better reflects the variability of counts: the variation is higher when the expected (or average) count is higher (but the cv is smaller, the larger the count i.e. $cv = \sigma/\mu = \text{sqrt}[\mu]/\mu = 1/\text{sqrt}[\mu]$.

Comparison of 2 Rates

- Rate difference / Ratio

Example

Extended Periods (coded 'X' = 1)
35 percutaneous injuries in 26667 opportunities vs.
Non-Extended Periods (coded 'X' = 0)
46 percutaneous injuries in 60763 opportunities

Regression framework for rate difference (RD)

observed rate when $X = 0$ (reference category)

\[b_0 = \text{rate}[0] = 46 / 60763 = 0.0007570 \]

observed rate difference, rd

\[rd = 35/26667 - 46 / 60763 = 0.0005554 \]

In general (single, binary X)

\[\text{RATE} \mid X = \text{RATE}_0 + \text{RD} \times X \]

\[= B_0 + B_1 \times X \]

So...

\[E[\text{#CASES} \mid X] = \text{RATE}_X \times PT \]

\[= (B_0 + B_1 \times X) \times PT \]

\[= B_0 \times PT + B_1 \times X \times PT \]

\[= B_0 \times Z_0 + B_1 \times Z_1 \]

This is a regression with 2 terms (Z_0 & Z_1), and no intercept
Rate difference (rd), and CI for RD, via regression framework

cases=c(35, 46); PT=c(26667, 60763);
 e=c(1, 0); ePT = e*PT;

ds <- data.frame(cases=cases, opps=PT, extended=e, extended.opps = ePT);

ds

 | cases | opps | extended | extended.opps | Rate |
|-------|------|----------|---------------|------|------|
| 1 | 35 | 26667 | 1 | 0.0007570 |
| 2 | 46 | 60763 | 0 | 0.0007570 |

In general

\[
\text{rate ratio (RR) [2 Rates]} \\
\text{(same, e.g., ignoring, for now, the self-paired structure)} \\
\text{observed rate when } X = 0 \text{ (reference category)} \\
\]

\[
b_0 = \text{rate}[0] = 46 / 60763 = 0.0007570 \\
\]

\[
\text{observed rate ratio, } rr \\
rr = (35/26667) / (46/60763) = 1.73 \\
\]

\[
\text{In general} \\
\text{RATE} | X = \text{RATE}_0 \times \text{RR} \text{ if } X=1 \\
= \text{RATE}_0 \times \exp[\log[\text{RR}] \times X] \\
\]

So...

\[
\log[\text{RATE} | X] = \log[\text{RATE}_0] + \log[\text{RR}] \times X \\
= B_0 + B_1 \times X \\
\]

So...

\[
\log[\text{E[#CASES | X] }] = \log[\text{RATE}_x] + \log[\text{PT}] \\
= B_0 + B_1 \times X + \log[\text{PT}] \\
= B_0 + B_1 \times X + 1 \times \log[\text{PT}] \\
\text{"offset"} \\
\]

(An "offset" is a term whose coefficient is KNOWN to be 1)
regression models for 'event rate' data

Rate ratio (rr), and CI for RR, via regression framework

to obtain rate ratio [log.opps = log(opps)]

summary(glm(cases ~ extended, offset=log.opps))

Deviance Residuals:
[1] 0 0

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.1861 0.1474 -48.74 <2e-16 ***
extended 0.5503 0.2243 2.453 0.0142 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 1

Null deviance: 5.8023 on 1 df
Residual deviance: -3.7748 on 0 df AIC: 15.068

*Check:
-7.1861 = log[rate0] = log[46/60763]
0.5503 = log[rateRatio]
 = log[(35/26667) / (46/60763)]

So, rateratio = exp[log rateRatio] = exp[0.5503] = 1.73

SE[log of rate ratio], as in Rothman,
 = sqrt[1/ 35 + 1/46] = 0.2243

95% CI for log[RateRatio]: 0.5503 +/- 1.96 x 0.2243
95% CI for RateRatio: exp[0.5503 +/- 1.96 x 0.2243]

Rates & Rate ratios: multiple regression [Many Rates]

Example: age-specific death rates, male/female 1991, Québec.
d$s7191=ds[(ds$age > 40) & (ds$age < 85) & (ds$year==1971) | (ds$year==1991)),]

y91=ds[(ds$age > 40) & (ds$age < 85) & (ds$year==1991) ,]

y91$age=y91$age - 40
(y91m$deaths/y91m$population) / (y91f$deaths/y91f$population)

1.64 1.82 1.93 1.95 2.08 2.00 2.04 1.89 1.72
mean 1.90

plot(y91$age, log(y91$deaths / y91$population))

Null deviance: 47005.299 on 17 df
Residual deviance: 63.095 on 15 df AIC: 234.73

summary(glm(deaths ~ age + male + age*male, offset=log(population), data=y91))

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.9030313 0.0172228 -400.81 <2e-16 ***
age 0.0956970 0.0004896 195.47 <2e-16 ***
male 0.6506765 0.0106740 60.96 <2e-16 ***
age:male -0.0014773 0.0010029 -1.473 0.141

95% CI for log[RateRatio]: 0.5503 +/- 1.96 x 0.2243
95% CI for RateRatio: exp[0.5503 +/- 1.96 x 0.2243]

* no need to specify, as Log is default link for Poisson

[see 'multiplicative' model of Clayton & Hills, Table 22.5 Ch 22]
upper=male; age=age-40

\[
\log(y91$deaths/y91$population)
\]
Summary

Background Ecological and observational studies suggest that male circumcision reduces the risk of HIV acquisition in men. Our aim was to investigate the effect of male circumcision on HIV incidence in men.

Methods: 4996 uncircumcised, HIV-negative men aged 15–49 years who agreed to HIV testing and counselling were enrolled in this randomised trial in rural Rakai district, Uganda. Men were randomly assigned to receive immediate circumcision (n=2474) or circumcision delayed for 24 months (2522). HIV testing, physical examination, and interviews were repeated at 6, 12, and 24 month follow-up visits. The primary outcome was HIV incidence. Analyses were done on a modified intention-to-treat basis. This trial is registered with ClinicalTrials.gov, with the number NCT00425984.

Findings: Baseline characteristics of the men in the intervention and control groups were much the same at enrolment. Retention rates were much the same in the two groups, with 90–92% of participants retained at all time points. In the modified intention-to-treat analysis, HIV incidence over 24 months was 0·66 cases per 100 person-years in the intervention group and 1·33 cases per 100 person-years in the control group (estimated efficacy of intervention 51%, 95% CI 16–72; p=0·006). The as-treated efficacy was 55% (95% CI 22–75; p=0·002): efficacy from the Kaplan-Meier time-to-HIV-detection as-treated analysis was 60% (30–77; p=0·003). HIV incidence was lower in the intervention group than it was in the control group in all sociodemographic, behavioural, and sexually transmitted disease symptom subgroups. Moderate or severe adverse events occurred in 84 (3·6%) circumcisions; all resolved with treatment. Behaviours were much the same in both groups during follow-up.

Interpretation Male circumcision reduced HIV incidence in men without behavioural disinhibition. Circumcision can be recommended for HIV prevention in men.