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The Poisson Distribution

How it arises Random Distributions of Dots (events) in Space/Time

(1) When counting events (items) that occur randomly, and with low
homogeneous intensity, in space or time (different dot "intensity" in each panel)

asbestos fibres deaths from horse kicks

white cells typographical errors

'"wrong numbers" cancers

chocolate chips radioactive emissions

nuclear medicine cell occupancy

Distribution depends on single parameter  µ = Expected (count)
(For "Expected ", can read "Average")

Prob(count = y) = exp(- µ )  
µy

y!
      or     e- µ 

  
µy

y!
       (  y =  0, 1, 2, ... )

y : 0 1 2 3 . .

prob:  e- µ  e- µ 
  µ  e- µ 

 µ2/ (1×2) e- µ 
 µ3/ (1×2×3) ..

[computing  tip   use the recurrence relation ...

e = exp(1.0) = 2.718..      prob(Y = y)  =  prob(Y = y-1) ×   
µ
y

   ]

(2) As the limiting case of the Binomial (another "counting" distrn.)

For a Binomial with large number of "trials" (n) and small
probability  (π) of a "positive" on any one trial, the effective range
of variation in the count Y of positive individuals is confined to
small part of the lower end of the 0-n range. Used for "per mille"
(o/oo ) rather than percent (%) situations.

(3) As the sum of 2 or more independent Poisson random variables,
with (same or ) different expected values

Eg. Y1 and Y2 : counts of no. of 'events' from 2 indep. sources:

      Y1        ~       Poisson[ µ1 ]

      Y2        ~       Poisson[ µ2 ] (In epidemiology, each "cell" is a unit of person-time; each dot an event)

Y2 + Y1   ~ Poisson[ µ1 + µ2 ] see pages 8/9
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The Poisson Distribution

Excerpt from  RA Fisher's
"Statistical Methods for Research Workers"

 Bortkewitch's data, cited by Fisher

# Deaths in
corps-year

Frequency (# of "corps-years"
with this many deaths)Whereas the normal curve has two unknown parameters, µ

and σ, the Poisson series has only one.  This value may be

estimated from a series of observations, by taking their

mean*, the mean being a statistic as appropriate to the

Poisson series as it is to the normal curve.  It may be shown

theoretically that if the probability of an event is exceedingly

small, but a sufficiently large number of independent

cases** are taken to obtain a number of occurrences, then

this number will be distributed in the Poisson series.  For

example, the chance of a man being killed by horsekick

on any one day is exceedingly small, but if an army corps

of men are exposed to this risk for a year, often one or

more of them will be killed in this way.  The following data

(Bortkewitch's data) were obtained from the records of ten

army corps for twenty years, supplying 200 such

observations, 1 per "corps-year". [See elsewhere on 626

website for even more detailed data]

(y) Observed Expected † y  × freq.

0 109 108.67 0
1 65 66.29 65
2 22 20.22 44
3  3 4.11 9
4 1 0.63 4
5 - 0.08 0
6 - 0.01 0

(Total)  Σ # CorpsYears:   200 200 # deaths: 122

y : number of 
deaths0     1     2     3     4     5     6

freq (no. of corps-years with y deaths)
100

50

0

†Expected number =  prob(# Deaths=y)
††

 ×  200

µ̂  =  
Total No. of deaths

Total No. of corps-years  =  
0×109 + 1×65 + ..

200

=  
122
200 = 0.61  deaths

corps-year

* [jh] We will see later (p 25) that -- if the Poisson moel is

indeed appropriate) one can estimate the mean (and more

inportantly, the variability of the estimate) from a single

observation

var(y) = 0.61 = mean(y) in line with a Poisson distribution !!!

SD(y) = 0.61 = 0.78. Poisson distrn. ==> SD  = mean

(reverse not necessarily true!)

  
††

p(# Deaths=y)  = expected proportion of "corps-years"  with y deaths

** [jh] choice of word "case" is unfortunate here; he means a

large number of independent "bits of experience" that

make up a substantial denominator

* prob(# Deaths=0) = exp{–0.61} = 0.54
   prob(# Deaths=1) = p(0) x 0.61 /  1 = 0.33
   prob(# Deaths=2) = p(1) x 0.61 /  2 = 0.10
   etc.
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Behind the Poisson distribution    - and when is it appropriate?

Colton (p 78,79) defines the Poisson distribution as The binomial distribution  is characterized by a sample size
n and the probability π that any one sampled member will
be 'positive'. There are also the requirements that the n
sample members be chosen randomly and independently
of each other and that the probability π  be the same from
one "trial" to the next. Thus the average number of
positives in n should be nπ ; we can call this quantity the
'expected' number and refer to it by the single parameter µ
(note that for the binomial the definition of µ requires that
one specify n and π first).  Then it is easy to show that
    Binomial Prob(y "positives" | n, π) = nCy π y(1 - π )n-y

 "that probability distribution on the integers 0 to ∞ with
the probability of observing y events given by the
formula

prob(y) = exp(- µ)  µy / y!         "

He gives one example

y = bacteria counts in samples of one unit volume each
from a thoroughly mixed large volume of bacterial
suspension with an average of λ bacteria per unit
volume  [Colton's  λ = our µ] Now, if n is large and π is small, then n is almost equal to n-1

or n-2 or n-3.  Also, in this case, the binomial probability of

observing 0 (zero) positives in n, i.e.
and one "non-example" (see discussion below)

how accidents are distributed among (708) bus drivers;
y i = number of accidents for driver i  ; Σ y i = 1623

Binomial prob(0) =  π 0 (1 - π ) n

He doesn't  derive the formula but says that "it can be
deduced mathematically from the assumption that the
bacteria are randomly distributed in the suspension". The
derivation is not difficult and in fact it is instructive to derive
the formula to show what the assumptions are and to help
one recognize when the Poisson distribution might apply.

is very well approximated by exp(-nπ) or, in our notation,
exp(-µ) ...
Indeed, a definition of exp[-x] is the limit, as n->infinity, of  (1 - x/n)n ...
try it out on your calculator or spreadsheet for say n=100 and π =
0.01, where you will see that  the approximation is good to 2 decimal
places.

Derivation of formula for Poisson Probabilities [ * ]

Rather than tackle the derivation in the context of Colton's

specific examples, it is easier to derive the Poisson

distribution in the abstract as the limiting case of the Binomial

distribution. and to then see how these and other examples

fit the requirements.

Thus
Binomial Prob( 0 | n =100, π =0.01)

= 0.010 0.99100

= (1)(0.366) = 0.366.

Poisson   Prob( 0 | µ )  

= exp(-1) = 0.368.
[ * ] Armitage et al. [section 3.7, in 4th edition] give a similar

derivation
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Behind the Poisson distribution    - and when is it appropriate?

So we can write

Binomial prob(0)  ≈  exp (-µ)

The binomial probability of observing 1 positive in n is

Binomial prob(1) = [ n / 1! ]  π  (1 - π )n-1

and since we assume that n-1 is practically the same as n,
so that  (1 - π )n-1 is approximately equal to (1 - π )n,
which is approximately equal to exp(-nπ), the probability
can be approximated by

Binomial prob(1)

≈ [ nπ / 1! ]  exp (-nπ)

= [ µ 1  / 1! ]  exp(-µ)

By now the pattern is clear i.e. when n is large and 
small, the Binomial probabilities can be
approximated by a simpler Poisson formula

prob(y)=[ µ y / y! ]  exp(- µ)

involving the single parameter  µ= nπ. Also, because π is
small, the binomial probabilities go to practically zero long
before the largest possible outcome i.e. there is no need to
calculate Binomial prob(n). This is what gives the Poisson
the open-ended look, unlike the usual binomial which, with a
smaller n and larger π, could stretch for quite a way over the
0/n to n/n range of possibilities. Note also that if we use the
fact that the variance of a binomial count is nπ(1-π), and that
(1-π) is practically unity, we can infer that the variance of the
Poisson is equal to nπ, i.e. its variance is equal to its mean.

So far, you might say "so what!" since you already have a
perfectly good formula for the binomial. One benefit is
convenience:  some calculators cannot handle the large nCy
's that appear in the binomial formula, whereas the only
difficult part in the Poisson formula is obtaining exp(- µ)
needed in Poisson prob(0); the successive probabilities for
prob (1), (2), (3)... can be obtained [manually* via a
calculator, or by a spreadsheet] by multiplying each
immediately preceding probability by factors of µ, µ/2, µ/3,
etc. The fact that n is large doesn't come into the formulae
explicitly, but only implicitly through the use of the
"composite" parameter µ = nπ.

Likewise, the probability of 2 positives in n is

Binomial prob(2) = [ n (n-1) / 2! ]  π 2  (1 - π ) n-2

and by the same arguments about n-1 and n-2 being

approximately the same as n, the approximation is

Binomial prob(2)

≈ [ ( nπ )2 / 2! ]  exp (-nπ)

= [ µ 2 / 2! ] • exp(- µ )
[ * ] The Poisson probabilities can also be obtained directly in Excel
using the inbuilt  POISSON(count, µ, Cumulative?) function.

 - Use POISSON(count, µ, FALSE) to obtain the probability of
obtaining the indicated count  [probability mass  function] .

 - Use POISSON(count, µ, TRUE) to sum the probabilities for
0, 1, up to the indicated count.   [cumulative probability function]
See worked e.g.'s  later.
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Behind the Poisson distribution    - and when is it appropriate?

But how does this derivation relate to Colton's
examples, or to count data in epidemiology?

(from Feller p 163)  Figure I reproduces a photograph of a Petri plate
with bacterial colonies, which are visible under the microscope as
dark spots. The plate is divided into small squares. Table 7
reproduces the observed numbers of squares with exactly k dark
spots in five experiments with as many different kinds of bacteria.l7
We have here a representative of an important practical application of
the Poisson distribution to spatial distributions of random points.

[ Note that the fact that an observed distribution is NOT Poisson may
be an important finding .. indeed one simple definition of
epidemiology  is "disease is not distributed at random"]

(i) Bacterial suspension [same e.g. as ABM p73] : Imagine
that samples have an average of µ bacteria per unit
volume, and that each unit volume is divided up into a very
large number (n) of very small equal-sized sub volumes
(each large enough for a single bacterium to fit in); then the
small chance of finding a bacterium within any one selected
sub volume is µ/n ; for good reasons, which we will see
later, we will denote this small probability by π. If the
suspension is well mixed,  the chances of finding y bacteria
in a randomly selected unit volume (or equivalently in the n
sub volumes) should be given by the binomial probability
prob(y) i.e.

Binomial prob(y) = nCy   π y  (1 - π ) n-y

But as we have seen,  for large n and small π, this

probability can be approximated by y:        0      1       2       3      4       5      6

#cells    5     19      26      26     21      13      8
pred. #   6.1  18.0     26.7   26.4   19.6   11.7      9.5

Poisson prob(y) = [ (nπ)y / y! ] • exp (-nπ).
o        26     40      38     17       7
e        27.5  42.2     32.5   16.7     9.1

Since in our case π = µ / n , then nπ =  µ, and so o        59     86      49     30      20
e        55.6  82.2     60.8   30.0    15.4

Poisson prob(y)  = [ µy / y! ]  exp(- µ). o        83    134     135    101      40     16     7
e       75.0  144.5    139.4  89.7     43.3   16.7   7.4

The same formulation can be used for example when

counting asbestos fibres or white blood cells (randomly

distributed in space) or emissions from a radioactive source

(randomly distributed in time)

o         8     16      18     15       9      7
e        6.8   16.2     19.2   15.1     9.0    6.7

The last entry in each row includes the figures for higher classes and should
be labeled "y or more".
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Behind the Poisson distribution    - and when is it appropriate?

(ii) "Accidents": To test if accidents are truly distributed

"randomly" over drivers, consider one specific (but generic)

bus driver. If accidents are really that (i.e. if accidents

shouldn't be more likely to happen to any driver rather than
any other), then each time one occurs, there is a small  π =

1/708 chance that it happens to the one driver we are

considering. There are n=1623 such accidents to be

'distributed' so our driver has n "opportunities" to be dealt

an accident [we ignore practical details such as whether the driver is still

off work from the last one!].

# accidents in 3-
year period

Number of drivers with this
many accidents

(y) Observed Expected † O × y

0 117 71.5 0
1 157 164.0 157
2 158 187.9 316
3 115 143.6 345
4 78 82.3 312
5 44 37.7 220
6 21 14.4 126
7 7 49

We could therefore work out the binomial probability that

the driver has 0, 1, 2, .. accidents. Now n is large enough
and π small enough that  using the Poisson formula with µ =

nπ = 1623 / 708 will be quite accurate and save a lot of

calculation. We then use the probability that any one driver

will have y accidents as a synonym for the proportion of all

drivers that will have y accidents

8 6 48
9 1 (7-11 combined) 6.6 9
10 3 30
11 1 11

Σ 708 708 1623

µ̂  = 
#accidents
#drivers   =  

0×117 + 1×157 + ..
708   =  

1623
  708  = 2.29.

var(y) = 3.45 >>  mean(y).

 †Expected number =  Poisson Prob(# accidents=y  | µ̂  )   ×  708

(e.g.  prob(0) = exp[-2.29]= 0.101 ; expected # of 0's = 708 ×  0.101 = 71.5 )

We can now compare the observed distribution of

accidents and see how well it agrees with this theoretical

Poisson distribution. Colton (pages 16-17) examines the

fit of the Poisson model to the actual data...
"Comparison of observed and expected tabulations
reveals more than the expected number of drivers with no
accidents and with five or more accidents . These data
suggest that the accidents did not occur completely at
random; in fact it appears that there is some indication of
accident proneness. From this example, what conclusions
are justified concerning the random or nonrandom
distribution of bus accidents?"

Colton Table 2.5  Observed and "expected" numbers of

accidents during a 3-year period among 708 Ulster

(Northern Ireland Transport Authority) bus drivers.
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Behind the Poisson distribution    - and when is it appropriate?

(iii) clustering in general: This second use of  the

Poisson probability distribution allows epidemiologists to

calculate the probability of observing a certain size (or

bigger) "cluster" of events if the only force operating were

the play of chance. For example, the probability can be

used to calculate the expected number, out of say 10000

communities of a certain size, that would, even with a

homogeneous intensity of the event of interest, would have

"clusters" of various sizes.

(v) EVENT DATA IN EPIDEMIOLOGY: The distribution of

bacteria in a large volume has a close analogy with the rate

of disease events in a certain amount of person time.

One key assumption for the Poisson distribution to hold is

that the events be "well mixed" and that there be no

"lumpiness" or dependency between neighbouring counts.

For example, if we were looking at variations in the

numbers of lightning deaths (or worse still persons killed in

airline crashes) from year to year, we would see "extra-

Poisson variation. This can result from a number of factors,

such as multiple fatalities to a related group or from a

common source.

(iv) [more complex] Non-random choices of lottery

combinations: The Lotto 6/49 draw does not produce a winning number in

as many of the draws as one would predict. There are n = 14 million possible

combinations. If N combinations are purchased, the average number of

holders per combination is  N/n [= µ say] . For many of the draws,  N >> n, so

that  µ >> 1.  If combinations were selected at random by their purchasers,

then  the chance that nobody holds the combination drawn is the Poisson

probability P(0) calculated with parameter µY. [Y = # of winning combinations

purchased]  If N = n, so that there are as many tickets sold as there are

combinations, then  µY = 1.0 and P(0) = exp(-1) = 0.368 or 37%; if N = 4n or

55 million tickets sold, as it was in the mid 1980's for the draw with an

accumulated prize of approx. $10million, then  µ = 4 and P(0) = exp(-4) =

0.018 or only about 2% -- yet there was no winner! We can infer that either (i)

the combinations were purchased at random and one of those "unexpected"

2% events did in fact occur or (ii) -- more plausibly -- that the combinations

were not purchased at random -- they were not spread out at random over

the 14 million possibilities. some numbers, and thus some ticket

combinations, are oversubscribed and many are under subscribed).

What, for example, if the person time is made up of

contributions from different say age categories and

what if the event intensities differ by age? Can we

expect the TOTAL number of events in the

amalgamated person time to be Poisson?

Provided again there is no other "lumpiness", the total

number of events can still have a Poisson distribution -- ,

albeit governed by a more complex parameter. Think of

the contribution from each sub-category separately, so that

the number of events yj in person-time category j can be

regarded as a realization of a Poisson variable with its own

number nj of person-time and its parameter  j .

Then the sum (TOTAL)  Σy j of Poisson counts is a
Poisson count with parameter Σ j .
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Behind the Poisson distribution    - and when is it appropriate?

An example of our (triple) use of this law is in dealing with

the total numbers of cancers -- male and female -- in the

Alberta study. We treat

Examples of "lumpy" counts--  that show

"extra-Poisson" variation

Omale ~ Poisson(µmale)

Ofemale ~ Poisson(µfemale)

Yearly variations in numbers of persons killed in

plane crashes

Ototal ~ Poisson(µmale + µfemale) Yearly variations in numbers of plane crashes may
be closer to Poisson [apart from some extra
variation over time due to improvements in safety,
fluctuations in numbers of flights etc.]

Daily variations in numbers of births
{see e.g. Number of weekday and weekend births
in New York in August 1966  on 626 web page}
[closer to Poisson if use weekly count]

Daily variations in numbers of deaths
[variation over the seasons]

Daily variations in numbers of traffic accidents
[variation over the seasons, and days of week, and
with weather etc.]

Daily variations in numbers of deaths in France in
summers of 2002 and 2003

[we use the rule "The Sum of Poisson Random Variables is

itself a Poisson Random Variable" 3 times -- first to sum

across ages within males, second to sum across ages within

females and third to sum the overall count for males and the

overall count for females.

Of course, if there is wide variation in the event rates across

categories, it may not make a lot of sense to speak of a
single estimated rate of events (i.e. estimated as Σy j / Σnj )

without specifying the category composition of the Σnj . An

overall count or rate may only make sense, if it is clear what

mix of person-time "strata" it applies to.

The overall count is often compared with the overall number

one would expect in a similar person-time structure which

experience the event rates of a comparison population.

Impact sanitaire de la vague de chaleur en France
survenue en août 2003. Rapport d'étape 29 août 2003
[on course 626 webpage ]

Vanhems P et al. Number of in-hospital deaths at
Edouard Herriot Hospital ,and Daily Maximal
Temperatures during summers of 2002 and 2003, Lyon,
France. New Eng J Med Nov 20, 2003, pp2077-2078.
[ibid]
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Examples (some may not be Poisson; ,  counts may
show "extra-" or "larger-than- " Poisson variation):

A summary of Features of Poisson Distribution (1) "Cluster" (6 twin pairs in a school of 375 children)

Is it unusual to have 6 sets of twins in a school of 375

students? If expect 1 set of twins per  270 births, then
µ = 375/270 = average of 1.3 twins pairs per school of

size 375.

See Poisson Probability table for µ =1.3 [Table on p

16 doesn't have µ = 1.3, but can look at µ =1.0 or  µ
=1.5 and interpolate]. A count of 6 (or more) not that

common, but if screen enough schools of that same

size, will find a few schools per 1000 that will have 6 or

more, even when the mean is 1.3. [See Hanley JA

"Jumping to coincidences: defying odds in the realm of

the preposterous". American Statistician, 1992, 46(3)

197-202.]

Can use the "Poisson counts as Cell-Occupancy

counts" using 1300 visits(twin pairs)  to 1000 cells
(schools) since µ = 1.3 -- these were generated by the

Excel macro. [see page 14]

• Like Binomial, describes variation in counts

• Open-ended (unlike Binomial) :       0,  1,  2,  3, ...

• Never goes to full range ( because π so small)

• If one thinks of it as limiting case of Binomial(n; π ), then n and π
appear only through their product µ = nπ

(so same distribution for  n=1000, π=0.0021 as for
 n=10000, π=0.00021; mean = n•π = 2.1 in both )

• All the details of distribution (e.g. variance, 95% limits of variation,
...) are derived from its 1 parameter :  µ

• "Denominator " can be person-years or other  measure of "amount
of experience"

• Poisson data often referred to as "numerator only" data, in sense
that (unlike Binomial) one does not "see" or  count "non-events";
instead, the denominator is a measure of  amount of experience
(what IS the "denominator "behind" the number of incoming
"wrong numbers" on the phone?   see e.g.  on www page)

• To make inferences about ratios of event-rates, need only know the
relative sizes of the "denominators"

• If counts follow  a Poisson distribution with mean µ,

Variance(counts) = µ

SD(counts) = average count =   µ 

[ via Binomial:    If µ = nπ and π is small, then 1-π is close to 1, and so
Variance(count) = n  π(1-π) ≈ n π = µ ] (2) Radioactive disintegrations. (more details on

separate file -- material from Feller -- on www page) A

radioactive substance emits alpha-particles; the number

of particles reaching a given portion of space during time

t is the best-known example of random events obeying

• CI / Test  for µ : use Poisson tails  if distrn. is not approximately

Gaussian at the limit; Gaussian approxn. otherwise (see later)
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Examples (some may not be Poisson; ,  counts may
show "extra-" or "larger-than- " Poisson variation):

the Poisson law. Of course, the substance continues to

decay, and in the long run the density of alpha-particles

will decline. However, with radium it takes years before

a decrease of matter can be detected; for relatively short

periods the conditions may be considered constant, and

we have an ideal realization of the hypotheses which led

to the Poisson distribution.

conditions some 88 per cent of comparable

observations should show a worse agreement. It is

interesting to note that most people believed in a

tendency of the points of impact to cluster. If this were

true, there would be a higher frequency of areas with

either many hits or no hit and a deficiency in the

intermediate classes. Table 4 [again, see Feller]

indicates perfect randomness and homogeneity of the

area; we have here an instructive illustration of the

established fact that to the untrained eye randomness

appears as regularity or tendency to cluster.

In a famous experiment (Rutherford, Chadwick, and Ellis

Radiations from radioactive substances, Cambridge

1920, p.172.) a radioactive substance was observed

during different time intervals of 7.5 seconds each; the

number of particles reaching a counter was obtained for

each period. Table 3 [Feller: see web page] records the

number of periods with exactly y particles. The average

number of particles per period is 3.87. The theoretical

values for the number of periods with exactly y particles

are seen to be rather close to the observed numbers.

(4) Connections to wrong telephone number. Table 6

(see Feller on www page) shows statistics -- from a

1926 publication! -- of telephone connections to a

wrong number. A total of 267 numbers was observed;

Nk  indicates how many numbers had exactly k wrong
connections. The Poisson distribution Poisson(  = 8.74)

shows again an excellent fit. (As judged by the

X2-criterion the deviations are near the median value.).

Sometimes (as with party lines, calls from groups of coin

boxes, etc.) there is an obvious interdependence

among the events, and the Poisson distribution no

longer fits.

(3) Flying-bomb hits on London. As an example of a

spatial distribution of random points consider the

statistics of flying-bomb hits in the south of London

during World War II. The entire area is divided into  576

small areas of 1/4 square kilometers each, and table 4

records the number of areas with exactly y  hits. The

total number of hits is 537, an average 0.93 per small

area. The fit of the Poisson distribution is surprisingly

good; as judged by the X2-criterion, under ideal
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Examples (some may not be Poisson; ,  counts may
show "extra-" or "larger-than- " Poisson variation):

(5) Chromosome interchanges in cells. Irradiation by

X-rays produces certain processes in organic cells which

we call chromosome interchanges. As long as radiation

continues, the probability of such interchanges remains

constant, and, according to theory, the numbers Nk of

cells with exactly k interchanges should follow a Poisson

distribution. The theory is also able to predict the

dependence of the parameter A on the intensity of

radiation, the temperature, etc., but we shall not enter

into these details. Table 5 [Feller] records the result of

eleven different series of experiments.l5 These are

arranged according to goodness of fit. The last column

indicates the approximate percentage of ideal cases in

which chance fluctuations would produce a worse

agreement (as judged by the x2- standard). The

agreement between theory and observation is striking.

(7) An estimate of WBC concentration can be made

by manually counting enough fields (n) until say

y=200 have been observed. This is not quite a

Poisson distribution since y=200 is fixed ahead of time

and n is the random variable  -- but the variability in the

estimate 200/n  is close to Poisson-based, so as a first

approximation we will treat the y as the variable and the

denominator n as fixed. The estimate has a margin of

error (ME) of up to 13% high to 15% low   -- since a

single count of 200 (marked by * below) could be a low

reading from a concentration which should produce an

average of  230 for the same n, or a high reading from a

concentration which should produce an average of 170

in the same n,  i.e.

it could be that y=200(*) is an overestimate

(6) cancers in area in Alberta exposed to sour gas:

based on provincial rates, areas with the same

population had an average of 85.9 cancers in the same

time period. How much variation should there be from

area to area?

See separate "alberta.pdf" file on 626 www page

 per n  160 170 180 190 200 210 220 230 240
         |   |   |   |   |   |   |   |   |
     ----------µ----------*

200 ≈ 1 7 3  (Lower limit) + 2√1 7 3

(ignoring asymmetry; & using z = +/-  2 SD for 95%)

or it could be that y is an underestimate

 per n  160 170 180 190 200 210 220 230 240
         |   |   |   |   |   |   |   |   |

                          *-----------µ----------

200 ≈ 230 (Upper limit)  - 2√2 3 0
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Examples (some may not be Poisson; ,  counts may
show "extra-" or "larger-than- " Poisson variation):

   General Note on Correct Method of Constructing a CI
Note: A number of students, used to thinking of a CI as

(point estimate - ME, point estimate + ME),
asked me if I made a mistake in the previous example. No!. It is only
when the sampling distribution is symmetric and  it's shape does not
depend on the level that the CI is symmetric; otherwise, one starts at
say the lower  limit and works out,  by trial and error  if necessary,
where to put this limit so that the observed y is at the (1-a/2)%ile with
respect to that limit. When one moves to establish the upper limit, so
that the observed y is now at the a/2(100)%ile with respect to this
upper limit, the variation in y applies at this upper limit may be
different than it is at the lower limit. See "Method of Constructing CI's
(in general) in my notes on Chapter 6 in course 607.

(10) deaths in U.S.A. after Chernobyl accident.

see separate "accident.pdf" file on 626 www page

(11) Chocolate chips in cookies, olives on pizzas

A useful exercise to illustrate how to think about whether

a Poisson distribution might apply is to imagine that the
task was to estimate, on average, how many  a

manufacturer puts in a chocolate chip cookie, or
on average, how many olives  a pizza maker puts

on a pizza, by observing a single randomly selected

cookie or pizza.
Examples that may not fit the Poisson
distribution (or, at least not without some further aggregation) A count obtained in one randomly sampled unit is a

valid but uncertain estimate of µ  Can one use the

Poisson distribution to estimate its uncertainty?(8) Daily numbers of births in New York city 9 months

after the blackout of 1965.

see separate "blackout.pdf" file on 626 www page

More than Poisson variation in daily numbers of birth

(check the weekends!!)

Might be closer to Poisson if combine births for 7 days;

Over the year, one would still expect some non-

homogeneity  in the number per week

In the chocolate chips case, if the cookie dough was

mixed and divided by a machine,  we should be able to

think of the count as a Poisson variable with expected
value µ . If µ is large, we can use  µ̂. with √µ -based

margins of error to form a "large µ" confidence interval for

µ . If µ is small, we can use Tabulated CI's (see below)

In the olives example, it is not evident how much

variability to expect. If one knew that a pizza maker is

obliged by his company to always use the same

number of olives per pizza, then a single pizza

provides an error-free estimate. This would result in

considerable "less-than-Poisson" variation from slice to

slice or pizza to pizza.

(9) deaths before & after religious & ethnic holidays.

see  separate "holidays.pdf" file on 626 www page

More than Poisson variation in weekly numbers of

deaths (seasonal cycles!!)
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Poisson counts as Cell-Occupancy counts (see Excel macro to the right of "W 8 Discrete Random Variables" on 323 webpage)

Poisson Distributions:  = 1.0, 1.3 & 2.0 Larger N, smaller    Does it make a difference?

1000 Random Visits   to  1000 Cells = 1.0 100 Random Visits  to  100 Cells
For each visit, the target cell was chosen randomly from the
numbers 1 to 100. The entries in the 100 cells are the number of
times these cells were visited. For example, cell # 1 was
visited 1 time, cell # 2 was visited 0 times, etc.

  1  -  1  -  1  -  1  1  1  -  -  -  1  -  2  4   ....
  -  -  3  -  -  -  1  1  -  -  -  1  1  -  2  2   ....
  1  -  3  1  3  1  1  1  -  1  -  -  -  1  1  -   ....
  1  -  -  -  1  -  1  1  -  1  -  -  1  2  2  2   ....
  -  -  3  1  2  1  -  -  -  1  1  -  3  1  -  -   ....

  1  -  -  2  -  -  1  3  -  5  1  2  -  2  2  1  1  -  -  2
  .  .  .  .  .  .(remainder not shown)  .  .  .   ....

  -  3  -  -  3  -  -  -  -  2  1  1  -  1  -  1  4  -  1  1
  -  1  1  3  1  -  2  -  3  2  -  4  2  -  2  -  2  2  -  1

           y :   0   1   2   3   4   5   6   7
  -  1  -  1  1  1  -  -  -  -  2  -  1  3  3  -  1  2  2  -

-------------   --  --  --  --  --  --  --  --
  -  1  -  -  -  1  2  1  1  1  -  -  2  -  1  1  -  2  1  1

observed f(y): 370 367 178  66  16   3   0   0  sd 1.0
  100 visits   to   100 cells      mean µ =  1.000/cell

expected f(y): 368 368 184  61  15   3   1   0  µ =1.0

FREQUENCIES  f(y) = number of cells that were visited y times
 1300 Random Visits   to  1000 Cells

           y :  0  1  2  3  4  5  6
 EG 1300 TWIN PAIRS in 1000 SCHOOLS

-------------  -- -- -- -- -- -- --
observed f(y): 42 30 18  7  2  1  0 sd(y)= 1.1   -  2  -  1  1  1  -  2  -  1  2  2  2  1  2  4   ....
expected f(y): 37 37 18  6  2  0  0   1  3  -  -  2  1  -  -  -  3  2  -  3  -  -  1   ....

  -  2  1  1  -  -  -  3  1  -  -  1  -  -  -  -   ....
 = 1.3 130 Random Visits   to   100 Cells   -  1  -  1  2  3  4  2  1  3  1  2  2  -  -  1   ....

  .  .  .  .  .  . (remainder not shown) .  .  .   ....  -  2  1  1  1  -  3  2  1  1  2  -  2  1  1  1  1  1  -  1
  -  1  4  -  2  -  -  -  1  -  3  4  2  -  1  -  -  3  1  3

           y :   0   1   2   3   4  5   6  7  8  2  -  2  -  2  1  1  -  2  3  2  1  1  2  1  -  -  1  2  1
-------------   --  --  --  --  -- --  -- --  --  -  -  1  2  2  1  2  1  3  1  1  3  3  -  1  3  3  2  2  3
observed f(y): 279 357 217  97  38  7   4  1  0  sd= 1.2  2  1  4  -  -  -  1  1  3  -  2  1  1  -  1  1  2  1  4  -
expected f(y): 273 354 230 100  32  8   2  0  0  µ = 1.3  130 visits   to   100 cells      mean µ = 1.300/cell

 2000 Random Visits   to  1000 Cells           y :  0  1  2  3  4  5  6  7
-------------  -- -- -- -- -- -- -- --

  1  1  1  1  2  1  1  2  1  1  2  2  3  1  4  8   ....observed f(y): 27 36 21 12  4  0  0  0 sd(y)= 1.1
  1  3  3  -  2  1  1  1  -  3  2  1  3  -  2  3   ....expected f(y): 27 35 23 10  3  1  0  0
  1  2  2  1  -  1  1  1  2  1  -  2  1  -  -  -   ....

 = 2.0 200 Random Visits   to   100 Cells   -  2  3  2  3  1  2  2  -  3  2  -  3  1  2  3   ....
  .  .  .  .  .  . (remainder not shown) .  .  .   ....

  1  2  3  3  2  1  1  3  3  -  4  1  3  3  2  1  5  3  3  -
   y :  0   1   2   3   4   5   6   7  8  9 10  3  2  2  4  1  6  3  -  1  2  2  1  2  1  2  -  1  1  6  -
   -    -   -   -   -   -   -   -  -- -  --  --  1  3  4  2  2  -  5  2  1  2  2  2  2  4  1  3  3  1  -  3

obs f(y): 128 287 258 191  81  39  9   5  2  0  0  sd=1.4  1  -  2  1  1  2  -  2  -  -  -  4  2  2  4  4  5  2  2  2
exp f(y): 135 271 271 180  90  36 12   3  1  0  0  µ =2.0  3  -  -  2  3  1  2  3  3  5  -  -  1  1  3  2  2  2  3  1

  200 visits   to   100 cells      mean µ = 2.000/cell
           y :  0  1  2  3  4  5  6  7  8  9 Distributions are characterized by  , not by whether

 is a produced by N   or 10N  ( /10).-------------  -- -- -- -- -- -- -- -- -- --
observed f(y): 16 22 29 20  7  4  2  0  0  0 sd(y)= 1.4
expected f(y): 14 27 27 18  9  4  1  0  0  0
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Cell Occupancy, Lotto 6/49, the Extremal Quotient, and Geographical Variation in Surgery Rates:
What do these have in common?  {easier to understand after seeing a few runs of the Excel Macro for visits to cells }

(This material is more complex and can be skipped on 1st reading) The Extremal Quotient (EQ)

Want a tip on winning the 6/49 lottery jackpot?
It's pure luck. In studies of geographical variation in rates, it is common to

summarize the variation as the "Extremal Quotient" i.e.

highest rate
lowest rate  .

excerpt from article by JENNIFER JACKSON,  OTTAWA CITIZEN
 in Montreal Gazette March 1992

OTTAWA--Wouldn't you like to know which numbers win

most often in Lotto 6/49?

OK, here they are: 31, 43, 44, 47, 7, 49, 27.
One needs to be able to judge whether the observed

variation is more than one would expect if all that was

operating was chance, i.e. if the rates exhibit "extra-Poisson

or extra-Binomial" variation [remember that the Binomial

distribution assumes equal size denominators (n's) and

equal probabilities of a "positive"].

From the time the lottery started June 12, 1982, to Dec. 28,

1991, No. 31 has come up 141 times, No. 43 was drawn

139 times, Nos. 44 and 47 both 134 times, No. 7 popped

up 132 times, No. 49 rolled down the chute 131 times and

No. 27 followed at 128 times.

Conversely, the numbers to stay away from over those

years were No. 12 (pulled only 96 times), 15 (99 times), 6

and 48 (103 times each), No. 13 (104 times); No. 14 (105

times), 2 (106 times) and 24 ( 109 times).

The article on the lottery is a very good example of the

Extremal Quotient ( 
141 times
96 times  .) and how, if the n's or the

numerators are small, the variation can be substantial even

when there is no underlying variation in the rates or

probabilities. We are not given the total number of winning

numbers drawn but one can deduce that they must be of

the order of 5733 (=117 x 49: the average number of

times numbers have been drawn seems to be about 117).

Imagine recording them all on the 49-cell grid that players

use to record their choices. How would one expect

these 5733 winning numbers to distribute over the

49 cells?

Too bad that these figures are absolutely no indication of

which numbers will prevail in the next draw-- never mind

over the next 10 years. The only way to guarantee a win is

to buy one of each possible combination, and in the 6/49 at

least, that's a practical impossibility.

JH: What is the point of this Lottery example? It
illustrates a common tendency to pick out extremes and
ignore the fact that at least a part of the extremeness of
these particular ones must be random variation ...
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Cell Occupancy, Lotto 6/49, the Extremal Quotient, and Geographical Variation in Surgery Rates:
What do these have in common?  {easier to understand after seeing a few runs of the Excel Macro for visits to cells }

They are drawn in blocks of 6 without replacement, but we

will take some small poetic licence for now and assume that

all 5733 are drawn with replacement -- this way we can use

the Poisson distribution as an approximation to the cell

occupancy distribution. (and even use the Excel macro)

For one particular procedure, there were more than 5600
operations in the time period studied, so the average µ per

DSC [assuming all DSC's of equal size to make life simple]

is  approximately 5600/32=175. Thus, by chance alone,

we would expect an EQ of  approximately

175 + 2√175
175 – 2√175  =  1.3

We are told that  #31 had 141 "hits", and that #12 had only
96, so the extremal quotient is

141
96  =  1.46

This variation could be predicted from the Poisson
distribution  (close enough here) as follows:

(it would in fact be somewhat more since the DSC's are not

all of equal size --  smaller DSC's would have greater

variability in their rates)

For procedures with 12,800 operations, that's 400 per

(average sized) DSC on  average.  Going through the

same calculation as above gives a range of 360<-->440 or

an extremal quotient of 1.22.

   Average number of 'hits' per #: = 117

   SD[Poisson count]   ~ √mean = √117 = 11 (approx.)

117 ± 2SD = 95 to 139

One could use the Excel spread sheet with 5733 visits to

49 cells to look at the extremal quotient in the 6/49 case
Observed range = 96 to 141 (!!!)

[ Using sampling with replacement, rather than sampling without

replacement for each block of 6, in the Excel macro (and the Poisson

model) slightly overestimates the variation:- the hyper-geometric

distribution has less variation than the corresponding Binomial]

Variation in surgery rates: This can help us to quickly

measure if variation in surgery rates is "more than chance

alone". For example, the Conseil d'évaluation des

technologies de la santé du Québec recently analysed the

variation in surgical rates across the 32 Québec DSC's (the

average population size per DSC is thus approximately

250,000).

For further references on this topic, and an application to

rates of admission of pediatric patients to Québec

hospitals, see PhD thesis by M. Hodge.
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(Poisson) probabilities of observing y events if "expected" or average number is 

Probabilities are expressed  "per 1000"  i.e. 905 is 905/1000 or 0.905 or 90.5%  The formula is Prob(y) = [ exp(-µ) ] • [ µ to power y ] / y!

E.g.: if µ = 1.5, then Prob(y=3) is exp(-1.5)•1.5 cubed / [1x2x3] = 126/1000 or .126 or 12.6%         ... Reminder: 3! = 1x2x3=6 ]

 = .10 .20 .30 .40 .50 .60 .70 .80 .90 1.0 1.5 2 3 4 5 7 10 16 20 25 30 36

y
0 905 819 741 670 607 549 497 449 407 368 223 135 50 18 7 1 0 0 0 0 0 0
1 90 164 222 268 303 329 348 359 366 368 335 271 149 73 34 6 0 0 0 0 0 0
2 5 16 33 54 76 99 122 144 165 184 251 271 224 147 84 22 2 0 0 0 0 0
3 0 1 3 7 13 20 28 38 49 61 126 180 224 195 140 52 8 0 0 0 0 0
4 0 0 0 1 2 3 5 8 11 15 47 90 168 195 175 91 19 0 0 0 0 0
5 0 0 0 0 0 0 1 1 2 3 14 36 101 156 175 128 38 1 0 0 0 0
6 0 0 0 0 0 0 0 0 0 1 4 12 50 104 146 149 63 3 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 1 3 22 60 104 149 90 6 1 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 1 8 30 65 130 113 12 1 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 3 13 36 101 125 21 3 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 1 5 18 71 125 34 6 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 2 8 45 114 50 11 1 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 26 95 66 18 2 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 14 73 81 27 3 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 52 93 39 6 1 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 35 99 52 10 1 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 22 99 65 15 2 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13 93 76 23 3 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 83 84 32 6 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 70 89 42 9 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 56 89 52 13 1
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 43 85 62 19 2
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 77 70 26 4
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 67 76 34 6
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 56 80 43 8
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 45 80 51 12
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 34 76 59 17
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 25 71 66 22
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 18 63 70 29
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13 54 73 36
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 45 73 43
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 37 70 50
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 29 66 56
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 22 60 61
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16 53 64
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 11 45 66
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 38 66
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 31 65
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 24 61
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 19 56
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(Poisson) probabilities of observing y events if "expected" or average number is 

Using   and mean interchangeably.      is not usually an integer: it can be any  non-negative  real number , such as 1.3)

0 5 10 15 20 25 30
y

0.02

0.04

0.06

0.08

0.1

prob

0 10 20 30 40
y

0.02

0.04

0.06

0.08

prob

0 10 20 30 40 50 60
y

0.01

0.02

0.03

0.04

0.05

0.06

prob

0 1 2 3 4 5
y

0.05

0.1

0.15

0.2

0.25

0.3

0.35

prob

0 2 4 6 8 10 12
y

0.05

0.1

0.15

0.2

prob

0 5 10 15 20
y

0.02

0.04

0.06

0.08

0.1

0.12

prob

E.G. Prob(Y=9 | Mean = 16.0) = 0.021

Message: Gaussian approxn. to Poisson distrn. reasonably accurate when  is in the double digits' [cf also Armitage & Berry]
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GAUSSIAN APPROXIMATION TO POISSON DISTRIBUTION  (from pp 71-72 of 3rd edition of Armitage & Berry)

Table 2.7:
[See frequency distributions on previous page]

Examples of approximation with continuity correction
The normal distribution is often useful as an approximation

to the Poisson distribution. The Poisson distribution with
mean µ approaches normality as µ increases indefinitely

(see diagram of Poisson distributions as a function of µ).

For sufficiently large µ, A Poisson variable y may, therefore,

be regarded as "approximately normal" with mean µ and

standard deviation µ

Mean SD Values Exact Approx z

(µ) (µ1/2) of y Prob. Prob*

5 2.236 0 0.0067 0.0221 2.013

≤2 0.1246 0.1318 1.118

≥8 0.1334 0.1318 1.118
If tables of the normal distribution are to be used to provide

approximations to the Poisson distribution, account must be

taken of the fact that this distribution is discrete whereas the

normal distribution is continuous.  It is useful to introduce

what is known as a continuity correction,  whereby the exact

probability for, say, the Poisson variable y (taking integral

values) is approximated by the probability of a normal

variable between y - 0.5 and y + 0.5 [jh: round the

continuous values between y-0.5 and y+0.5  to the nearest integer --

imagine the "spikes" in the distribution on the previous page

converted to rectangles with no gaps]. Thus, the probability that

a Poisson variable took values greater than or equal to y
when y > µ (or less than or equal to y when y < µ) would

be approximated by the normal tail area beyond a

standardized normal deviate   z = 
| y – µ | – 0.5

µ
  (1)

≥10 0.0318 0.0221 2.013

20 4.472 ≤10 0.0108 0.0168 2.124

≤15 0.1565 0.1572 1.006

≥25 0.1568 0.1572 1.006

≥30 0.0218 0.0168 2.124

100 10.000 ≤80 0.0226 0.0256 1.950

≤90 0.1714 0.1711 0.950

≥110 0.1706 0.1711 0.950

≥120 0.0282 0.0256 1.950

* Normal approximation with continuity correction, with z
as in (1)
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(1- 2 ) Confidence limits for the expectation [i.e. the 'mean' parameter] of a Poisson random variable
E.g. if observe 6 events in a certain amount of experience, then 95% CI for the µ count for this same amount of experience is (2.20, 13.06)

1−2α 0.998 0.99 0.98 1−2α 0.95 0.9 0.8

α 0.001 0.005 0.01 α 0.025 0.05 0.1

count Lower Upper Lower Upper Lower Upper count Lower Upper Lower Upper Lower Upper

0 0.00 6.91 0.00 5.30 0.00 4.61 0 0.00 3.69 0.00 3.00 0.00 2.30
1 0.00 9.23 0.01 7.43 0.01 6.64 1 0.03 5.57 0.05 4.74 0.11 3.89
2 0.05 11.23 0.10 9.27 0.15 8.41 2 0.24 7.22 0.36 6.30 0.53 5.32
3 0.19 13.06 0.34 10.98 0.44 10.05 3 0.62 8.77 0.82 7.75 1.10 6.68
4 0.43 14.79 0.67 12.59 0.82 11.60 4 1.09 10.24 1.37 9.15 1.74 7.99

5 0.74 16.45 1.08 14.15 1.28 13.11 5 1.62 11.67 1.97 10.51 2.43 9.27
6 1.11 18.06 1.54 15.66 1.79 14.57 6 2.20 13.06 2.61 11.84 3.15 10.53
7 1.52 19.63 2.04 17.13 2.33 16.00 7 2.81 14.42 3.29 13.15 3.89 11.77
8 1.97 21.16 2.57 18.58 2.91 17.40 8 3.45 15.76 3.98 14.43 4.66 12.99
9 2.45 22.66 3.13 20.00 3.51 18.78 9 4.12 17.08 4.70 15.71 5.43 14.21

10 2.96 24.13 3.72 21.40 4.13 20.14 10 4.80 18.39 5.43 16.96 6.22 15.41
11 3.49 25.59 4.32 22.78 4.77 21.49 11 5.49 19.68 6.17 18.21 7.02 16.60
12 4.04 27.03 4.94 24.14 5.43 22.82 12 6.20 20.96 6.92 19.44 7.83 17.78
13 4.61 28.45 5.58 25.50 6.10 24.14 13 6.92 22.23 7.69 20.67 8.65 18.96
14 5.20 29.85 6.23 26.84 6.78 25.45 14 7.65 23.49 8.46 21.89 9.47 20.13
15 5.79 31.24 6.89 28.16 7.48 26.74 15 8.40 24.74 9.25 23.10 10.30 21.29
16 6.41 32.62 7.57 29.48 8.18 28.03 16 9.15 25.98 10.04 24.30 11.14 22.45
17 7.03 33.99 8.25 30.79 8.89 29.31 17 9.90 27.22 10.83 25.50 11.98 23.61
18 7.66 35.35 8.94 32.09 9.62 30.58 18 10.67 28.45 11.63 26.69 12.82 24.76
19 8.31 36.70 9.64 33.38 10.35 31.85 19 11.44 29.67 12.44 27.88 13.67 25.90
20 8.96 38.04 10.35 34.67 11.08 33.10 20 12.22 30.89 13.25 29.06 14.53 27.05
21 9.62 39.37 11.07 35.95 11.83 34.35 21 13.00 32.10 14.07 30.24 15.38 28.18
22 10.29 40.70 11.79 37.22 12.57 35.60 22 13.79 33.31 14.89 31.41 16.24 29.32
23 10.96 42.02 12.52 38.48 13.33 36.84 23 14.58 34.51 15.72 32.59 17.11 30.45
24 11.65 43.33 13.26 39.74 14.09 38.08 24 15.38 35.71 16.55 33.75 17.97 31.58
25 12.34 44.64 14.00 41.00 14.85 39.31 25 16.18 36.90 17.38 34.92 18.84 32.71
26 13.03 45.94 14.74 42.25 15.62 40.53 26 16.98 38.10 18.22 36.08 19.72 33.84
27 13.73 47.23 15.49 43.50 16.40 41.76 27 17.79 39.28 19.06 37.23 20.59 34.96
28 14.44 48.52 16.25 44.74 17.17 42.98 28 18.61 40.47 19.90 38.39 21.47 36.08
29 15.15 49.80 17.00 45.98 17.96 44.19 29 19.42 41.65 20.75 39.54 22.35 37.20
30 15.87 51.08 17.77 47.21 18.74 45.40 30 20.24 42.83 21.59 40.69 23.23 38.32

• Computed from (exact) Poisson tail areas i.e. Prob(COUNT >= count | µLower) = Prob(<= count | µUpper) = α.  See also the spreadsheet "Exact confidence
limits on a Poisson parameter" on 626 website • Limits in above Table computed using exact relationship b/w Poisson and Chi-square tail areas (later).
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Basis for "First Principles" Poisson Confidence Interval :  not your usual " point estimate +/-  some multiple of the standarderror"

To form a (1-2α) CI for µ, based on # events c, need to

find:

Note that unless c is large, the Poisson distribution

corresponding to the lower limit will be skewed and not

always amenable to a Gaussian approximation; the

Poisson distribution at upper limit is less troublesome.
µLOWER such that Prob (c or more | µLOWER ) = α

µUPPER such that Prob (c or fewer | µUPPER ) = α

0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17...   
count (y)

 y prob(y|2.2)

 4  0.0182
 5  0.0476
 6  0.0174
 7  0.0055
 8  0.0015
 9  0.0004
10  0.0001
..  ..

Prob (y >= 6) 

= 0.0250

if mean = 2.2

 y prob(y|13.06)

 0  0.0000
 1  0.0000
 2  0.0002
 3  0.0008
 4  0.0026
 5  0.0067
 6  0.0147
 7  0.0274
..  .. observed count6

...

Prob (y <= 6) 

= 0.0250

if mean = 13.06

LOWER

UPPER

Example: 95% CI based on c = 6.

Need to find the µLOWER that makes the probability of 6 or

more equal to  α = 0.025.

Need to find the µUPPER that makes the probability of 6 or

fewer equal to  α = 0.025.

Finding lower and upper limits involves "trial and error" to
find the appropriate  µLOWER and µUPPER that yield the

target α 's.

See below for a way to get there directly using Link

between the tail areas of the Poisson and tail areas of Chi-

Square distributions. Note that the above "First Principle" is

a general and important one; it "just so happens" that in this

particular discrete distribution, if one has access to the

percentiles of the Chi-Square distribution, the link helps

avoid the "trial and error" process involved in the actual

calculation.
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"Exact" CI for mean,  µ , of a Poisson distribution using Link between Poisson and Chi-Square tail areas.

This is a surprising link, considering that the Poisson is a

distribution on the discrete integers 0, 1, 2, ... and the Chi-

square distribution is on the non-negative real numbers.

It has been known since early in 20th century, but has

remained largely hidden. (the proof requires integration by

parts!)

It used to be an important exact alternative to summing tail

areas until the Poisson (and several other) tail areas

became available from built-in functions in the statistical and

spreadsheet packages. Even now, with a spreadsheet

formula for Poisson tail areas, one has to find the limits by

trial and error.

The exact limits on , for any specified count c and

confidence coefficient (1-2α), can -- without trial and error --

be found  directly from the χ2 distribution.

µLOWER =(1/2) χ2
α, df = 2c .

µUPPER =(1/2) χ2 1−α , df = 2(c+1) .

Values of χ2 for any α and df are readily available from

many statistical packages or spreadsheets, or can be found

from an adequately extensive tabulation of the χ2

distribution.

In our example...   c = 6 ; (1-2α) = 0.95,

so α = 0.025, 1- α = 0.975.
To form a (1-2α) CI for µ, based on a count c, we need to

find
µLOWER such that Prob (c or more | µLOWER ) = α

µUPPER such that Prob (c or fewer | µUPPER ) = α

µLOWER = (1/2) χ2
0.025, 12df = (1/2)4.40 = 2.20,

µUPPER = (1/2) χ2
0.975, 14df = (1/2)26.12 = 13.06.

If you use Excel, reverse α and, 1- α .

Clever way to obtain exact limits, using Stata

use 2-sample comparison, with 'infinite' comparison group:-
Example:  Based on c = 6, find   95% CI for µ

Need to find the µLOWER that makes the probability of 6 or

more equal to  α = 0.025. and the µLOWER that makes the

probability of 6 or fewer equal to  α = 0.975.

(answer:  µLOWER  =2.20 and µUPPER  =13.06 )

epitab  syntax  is  iri #a #b #N1 #N2 [, level(#)]

so set #b and N2 to be very large (a (our c)=6 events in 1 person-

year, versus b=1000000 events in 1000000 person years:

    c very_large#  PT very_large_PT
iri 6    1000000    1    1000000
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Approximate CI's for mean,  µ , of a Poisson distribution, based on 5 different approximations to Poisson tail areas

(3) 1st Principles CI from c ~ Gaussian(  , SD =  )(1)  Wilson/Hilferty approxn. to Chi-square quantiles.
[helpful when appropriate Chi-square quantiles not readily available]

Obtained by solving the two equations:

c = µLOWER + z  µLOWER  ;  c = µUPPER  -  z   µUPPER

to give

µLOWER,UPPER =  ( c + z2/4  -/+  z/2  )2

This approximation , which has high accuracy for c > 10,

uses z , the normal standardized variate corresponding
to α, e.g.. z = 1.645 for α = 0.05,1.96 for α = 0.025,

etc.

    µLOWER = (c) { 1 - (9c)-1 -  z  (9c)-1/2 }3 "First Principles" : it recognizes that Poisson variance is
different (smaller) at µ = µLOWER than at µ = µ

UPPER
.

   µUPPER = (c+1) { 1 - (9[c+1] )-1 +  z  (9[c+1])-1/2 }3

(4) (Naive) CI based on c ~ Gaussian(  , SD̂ =  c ).

If really lazy, or don't care about principles or accuracy, or if c

is large (3 digits) might solve

Note1: Rothman[2002], page 134, provides an adaptation from "D.
Byar, unpublished" in which he makes a further approximation, using
the average (c+0.5) for both the lower an upper limits, rather than the
more accurate c for the lower and c+1 for the upper limit. This is called
method 1' below. JH is surprised at Rothman's eagerness to save a
few keystrokes on his calculator, and at his reference to an
unpublished source, rather than the 1931 publication of Wilson &
Hilferty. Full W-H citation, and evaluation of the above equation, in
Liddell's "Simple exact analysis of the standardized mortality ratio" in J
Epi and Comm. Health 37 85-88, 1984 available on 626 website.

c = µLOWER + z  c ;  c = µUPPER  -  z   c

to  give

µLOWER,UPPER  = c  -/+  z √c
Note2: Rothman uses the CI for the expected numerator of a Rate.
{e.g.s below focus on number in same sized study, not rate per se. Accuracy of 5 approximations (95% CI's) in 5 eg's

Method c = 3* c = 6 c = 33** c=78*** c=100

(2) Square-root transformation of Poisson variable.
Exact (2.48,35.1) (2.20,13.1) (22.7,46.3) (61.7,97.3) (81,122)

With    large enough, √c is approximately Gaussian

with mean √   and variance 1/4 or SD 1/2 (the variance

and SD are thus independent of √ ) .

This  leads to (see ref. (3)):

(1) (2.41,35.1) (2.19,13.1) (22.7,46.3) (61.7,97.3) (81,121)

(1') (3.32,32.0) (2.49,13.4) (23.1,45.8) (62.1,96.8) (82,121)

(2) (2.26,29.4) (2.16,11.8) (22.7,45.2) (61.7,96.3) (81,121)

(3) (4.08,35.3) (2.75,13.1) (23.5,46.3) (62.5,97.3) (82,122)

(4) (–1.6,25.6) (1.20,10.8) (21.7,44.3) (60.7,95.3) (80,120)

* Rothman2002 p134 "3 cases in 2500 PY; pt. est. of Rate:12 per 10 000PY
  Focus:  No.  per 10000PY (Rate)   rather than on ave. No.  in 2500PY
  Focus  for c=6, 33, 78 & 100: ave. No in same-size study (no den. given)

     µLOWER,UPPER  =  c  -/+  z (c)1/2  +  1/4(z )2

This simpler formula is accurate when c > 100 or so. ** No. of cancers among females and ***overall in Alberta SourGas study
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CI for mean,  µ , of a Poisson distribution  EXAMPLE  "LEUKEMIA RATE TRIPLES NEAR NUKE PLANT:  STUDY"

near nuclear processing plants were nine times higher than was
normal. The Ontario study was based on 795 children who died
of leukemia between 1950 and 1986 and 951 children who were
diagnosed with cancer between 1964 and 1985.

Montreal Gazette, Friday May 12, 1989.

OTTAWA (CP) - Children born near a nuclear power station on
Lake Huron have 3.5 times the normal rate of leukemia,
according to figures made public yesterday. The study
conducted for the Atomic Energy Control Board, found the
higher rate among children born near the Bruce generating
station at Douglas Point. But the scientist who headed the
research team cautioned that the sample size was so small that
that actual result could be much lower - or nearly four times
higher.

It showed a lower-than-normal rate among children born near
the Chalk River research station and only slightly higher than
expected rates at Elliot Lake and Port Hope, uranium mining and
conversion facilities.

At the Pickering generating station, the ratio was slightly higher

still, at 1.4 - meaning there were 1.4 cases for every expected

case. But the confidence interval - the range of reliability - for

that figure set the possible range between 0.8 cases and 2.2

cases. jh - footnote 3]

Dr. Aileen Clarke said that while the Douglas Point results

showed 3.5 cases of leukemia where one would have been

normal  [jh - footnote 1] , a larger sample size could place the

true figure somewhere in the range from 0.4 cases to 12.6

cases. [jh - footnote 2]
--foot notes by JH ------------------------------------------------

[1] SIR = 3.5   =   
 Observed 

Expected
       It is not O=3.5, E=1, since one

cannot observe a fractional number of cases): SIR = 3.5; she simply
scaled the O and the E so that E (reference "rate") is 1.

Clarke will do a second study to look at leukemia rates among
children aged five to 14.  The first study was on children under
age 5.

[2]  CI   =   
CI derived from O 

Expected
   = 0.4 to 12.6 (a 31-fold range)

Clarke was asked whether parents should worry about the
possibility that childhood leukemia rates could be over 12 times
higher than normal around Douglas point.  "My personal opinion
is, not at this time," she said. She suggested that parents
worried by the results should put them in context with other
causes of death in children.

O is an integer . By trial and error, starting with O=1, and "trying all the
CI's on for size" until one gets a 31-fold range, one comes to  O=2
(CI 0.242 to 7.22, range 31 fold). Dividing 2 by 3.5 gives an E of 0.57.
Check: 95% CI for SIR   (0.242 to 7.22) / 0.57 = 0.4 to 12.6.

[3] SIR = 1.4  =  O/E       CI  = (CI derived from O) /E has 0.8 to 2.2

This 2./0.8= 2.75-fold uncertainty comes from uncertainty generated
by O. Examine range of 95% CI associated with each possible value
of O, until come to 10.67 to 28.45 when O=18 . Divide 18 by 1.4 to
get E = 12.8. Check  95% CI  10.67 to 28.45)/12.8 = 0.8 to 2.2 .

"Accidents are by far and away the chief cause of death in
children, and what we're talking about is a very much smaller
risk than that of death due to accidents," she said.

Comment: It is interesting that it is the  more extreme, but
much less precise, SIR of 3.5, based on O=2, E =0.57 that
made the headline, while the less extreme, but much more
precise, SIR of 1.4, based on O=18, E =12.8 was
relegated to the last paragraph.

The results were detailed in a report on a year-long study into
leukemia rates among children born within a 25-kilometre radius
of five Ontario nuclear facilities. The study was ordered after
British scientists reported leukemia rates among children born
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[More advanced] Uncertainty of an estimate based on a single Poisson count (see "CI for " earlier in this material)

It may seem strange that one can form a CI for µ from a
single Poisson count c, whereas one would  feel very
uncomfortable doing so from a single measured
(continuous) y. While it seems logical to use the single count
c in a sample of one unit volume as the best point estimate
of the average count per unit volume in the entire volume,
that single number y does not seem to give an explicit
measure of the uncertainty of the point estimate. In contrast,
when "measuring" rather than counting, one uses an
average y

_
 of the n sample quantities y1 to yn to  estimate

the µ per unit in the bigger universe; ] one uses the
empirical sd (s) of the n different y's to plug into the
theoretical σ/√n and thereby calculate a standard error s/√n
to accompany the point estimate;  if n=1, so that one only
has y

_
 = y1, one has to get an "outside" estimate of s.

A count of c=9, see as a single count

9
The same 9, seen as a total of n=4 sub counts y1 =5,  . .  y4 =1
and as a sum of n=100 sub counts y1 . . .  y100   (each 0/1)

 1 1
1  1

 1

 1

 1  1

With some assumptions, a solution is possible without
going "outside": split up the overall sample or slice of
experience into (n) small enough sub samples so that the
subcount yi in each sub sample will be either a 0 or a 1
The variance of the observed sub counts should be p(1-p)
where p is the proportion of sub counts that are 1. Thus the
estimated variance of the total count c should be n times
this, or np(1-p). But if p is small, so that 1-p is near unity,
then the variance of the sub count is approximately np,
which is simply the observed overall count c. i.e. the
variance of a Poisson variable is equal to its mean.

 1

  ̂= yi = n y
_

 = 9 = c.   Var[  ̂] = Var n y
_

 ] =  n2 var[ y
_

 ]

Sub_

units

size of

each

sub_

counts

Vâr(y) * Vâr[y
_
] Vâr[n y

_
]

n 1/n y1 ... yn

1 entire 9 ???

4 1/4 ' s 5  1  2  1 4.6 1.16 18.3

100 1/100 's 1(9) 0(99) 8.3 10-2 8.3 10-4 8.3

1000 1/1000 1(9) 0(999) 8.9 10-3 8.9 10-6 8.9

10m 1/10m 1(9) 0(10m-9) 9.0 10m 9.0 102m 9.0Of course, when the count is small, it is not safe to use a Gaussian

approximation, with a mean of  µ and a sd of √µ to make inferences --

we should use the Poisson distribution itself to provide an idea of the

uncertainty in a count or in any rate derived from it.

* the variance of the 4 sub counts 5, 1, 2, 1;  the variance of the 91
zeroes and 9 ones, the 991 zeroes and 9 ones,  etc......

 Vâr[ y
_
 ] =var[ y ] / n   (familiar variance formula) ;   Vâr[n y

_
 ] = n2 Vâr[ y

_
 ] .

page  25



Inferences regarding a single event rate parameter:  i.e. rate of  events per N [ =10x  ] units of experience

data: c  "events" counted in sample of n units of "experience"; or Binomial(c,n) if c << n.

[can use c to calculate a rate i.e. empirical rate = 
c
n × N events per N units of experience; N usually 103 or 104 or the like]

See "Modern Epidemiology"(Rothman 1986) ; Observation & Inference (Walker)   or Epidemiology: An introduction  (Rothman, 2002, 133-134).

                        Small no. of events               Large no. of events

CI for  = E[c]

E[c] is a parameter:  the
theoretical  (unobservable)
average number of events
per  n units; c refers to the
realization in the observed
sample

Example: If observe  y=2
cases of leukemia in a
certain amount of
experience ('n'=P-Y) in a
single "exposed"
community , what is the
95% CI for the average
number of cases (   scaled
to  the same amount of
experience) that (would)
occur in (all such) exposed
communities ?

•  Use tabulated CI's  e.g. p 20  in this material,

   the CRC handbook,

   Documenta Geigy scientific tables,

   Biometrika Tables for Statisticians, ...

    ( Most end at c=30 or c=50)

• If have to, can use

   (a)  trial and error on spreadsheet, or ..

   (b)  the link between the Poisson tail areas

           and the tail area of the chi-square distribution.

• Same as for small numbers, or...

• One of 4 approximations on p 23

   (1)  Wilson/Hilferty approxn.
          to Chi-square quantiles (X2<-->Poisson).

   (2) Square-root transformation
          of Poisson variable.

   (3) 1st Principles CI from
          c ~ Gaussian(µ , SD = √µ )

    (4) (Naive) CI based on

          c ~ Gaussian(µ , SD
^

 = √ c ).

•  X2 and Likelihood Ratio (LR) methods

     (Miettinen Ch 10, pp 137-9)

CI for rate: 
E[c]
n  × N CI for µ

n   × N CI for µ
n   × N

See Liddell, FDK. Simple exact analysis of the standardized mortality ratio. Journal of Epidemiology and Community Health, March 1984, Vol 38, No. 1, pages
85-88.... on 626 website. This paper deals with SMR's but since the numerator of an SMR is treated as arising from a Poisson distribution, and the denominator
as a constant, the results dealing with CI's for an SMR are also relevant just for the CI for a single Poisson parameter.
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Inferences regarding a single event rate parameter:  i.e. rate of  events per N [ =10x  ] units of experience

data: c  "events" counted in sample of n units of "experience"; or Binomial(c,n) if c << n. (See  again "Rothman and  Walker).

                    Small no. of events             Large no. of events

Test E[c] = E0

Example: Is the O=2
cases of leukemia at
Douglas Point statistically
significantly higher than the
E=0.57 cases "expected"
under the null for this many
person years of
observation?

Example  What is the
probability of getting 6 or
more sets of twins in one
school when the expected
number, for schools of this
size, is µ = 1.3?

Example  Where does
the O=78 cases of cancer
in the "Sour Gas"
community of Alberta fall
relative to E= 85.9
"expected" for "non-sour
-gas" communities with the
same person years of
experience and at Alberta
cancer rates?

P-Value obtained by adding the individual Poisson
probabilities to obtain a tail area

(as done for Binomial and hypergeometric probabilities).

These individual  probabilities are tabulated, for various 'round'
values of E0, on page 17 and in the sources listed above.

E or µ = 0.57 is not tabulated but µ=0.5 and µ=0.6 are.

P[2 or more events |  µ=0.5   ] = (76+13+2)/1000 = 0 . 0 9 1 .
P[2 or more events |  µ=0.6   ] = (99+20+3)/1000 = 0 . 1 2 2 . So,

P[2 or more events |  µ=0.57 ]  ≈ 0. 11  (upper tail p-value only)

Instead of interpolation for non-round values of E0,  use a
calculator/ spreadsheet / statistical package. Excel and SAS
have Poisson probability and cumulative probability functions
built in.

E.g.,  the Excel Poisson(x, mean, cumulative) function returns
a value of 0.89 when ones puts x=1, mean=0.57, cumulative =
TRUE). This is the sum of the 2 tail probabilities P(0|E=0.57)=
0.57 andP(1|E=0.57) =0.32. The complement, 0.11, of the
0.89 is the upper tail p-value P(2) + P(3) + P(4) + ... .

So the interpolation above is quite accurate.

Same procedure for c=6 vs. E=1.3 in twins data.

If one sets cumulative=FALSE, the Excel function calculates
the probability at the integer x only, and does not sum all of the
probabilities from 0 to x. For example, setting x=9, mean=16.0
and cumulative = FALSE (or 0) yields the P(9 | µ = 16.0) = 0.21
shown in the Figure on page 18 and in row 9 of the µ=16.0
column on p 17.

- nomogram by Bailar & Ederer 1964*

- 2 Gaussian approximations (from page 23)

       (2) square root transformation of
         Poisson distribution  i.e.

                 z = (√c - √E0 )/(0.5).

                    = (√78 - √85.9 )/(0.5)  = -  0 .87

        (4)  asymptotic normality of c :

               z = (c - E0 ) / √E0

                  = (78 - 85.9 ) / √85.9  =   -  0.85

                Squaring (4) gives  X2 form (1 df)

                   X2  = (c - E0 )2 / E0

                         = (78 - 85.9)2 / 85.9 =   0 .72

- Miettinen Chapter 10

* Bailar, J.C. & Ederer, F. Significance factors for the ratio of a Poisson variable to its expectation. Biometrics, Vol 20, pages 639-643, 1964.
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Inference concerning comparative parameters: Rate Difference (RD) and Rate Ratio (RR)

Rate Parameters R1 and R0  ;   Rate Difference Parameter RD = R1 – R0

data: c1 and c0 "events" (total c = c1 + c0) in n1 and n0 (total=n) units of experience"; empirical rates r1 = 
c1
n1

   and  r0 = 
c0
n0

  ;

[ e.g.Rothman & Boice compare c1=41 in n1 =28,010 person years (PY) with c0=15 in n0 =19,017 person years (PY)]

       Small no. of events                         Large no. of events

CI

for

RD

"Exact" methods are difficult, since t he presence of a

nuisance parameter complicates matters.

See papers by Suissa and by Nurminen and

Miettinen.

Note however that even if numerators (c1 and c0) are

small (or even zero!) one may still have considerable

precision for a rate difference: if statistical uncertainty

about each rate is small, the uncertainty concerning

their difference must also be small. Contrast this with

situation for RR, where small numerators make RR

estimates unstable. (see report by J Caro on

mortality following use of low and high osmolar

contrast media in radiology)

r1 - r0  ±  z {SE[r1]}2 + {SE[r0]}2

in our example...

  41
28010    -   

15
19017

        ±  1.96 

41
28010

 (1  - -  
41

28010
 )

28010
 + 

15
19017

 (1  - -  
15

19017
 )

19017

Can dispense with the "1 minus small rate" term in each

(binomial) variance, so the standard error of the rd simplifies to

          c1
n12 +  c0

n02

(see Walker   ; or Rothman 2002, pp 137-138 )
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Inference concerning comparative parameters: Rate Difference (RD) and Rate Ratio (RR)

Rate Parameters R1 and R2  Rate Ratio Parameter RR = R1 / R0       See  Rothman 2002, pp 137-138 )

data: c1 and c0 "events" (total c = c1 + c0) in n1 and n0 (total=n) units of experience"; empirical rates r1 = c1/n1  &  r0 = c0/n0;

                          Small no. of events                                 Large no. of events

CI

for

RR

Use distribution of c1 conditional on c = c1 + c0  [56 in e.g.  -- not that small !  ]

Conditioning on the total no. of cases, c, gets rid of one (nuisance) parameter, and lets us focus
on the observed "proportion of exposed  cases " (c1/ c) and its theoretical (parameter) counterpart.

In e.g., proportion of "exposed"  PY  = 
28010

28010 +19017
  = 0.596 = 59.6%

There is a 1:1 correspondence between the expected proportion of exposed cases (call it π for
short) and the RR parameter, and correspondingly between the observed proportion (p) of
exposed cases and the point estimate,  rr,of the rate ratio.

Under the null (RR=1),  π  clearly equals the proportion 0.596;

If RR > 1, this expected proportion π  is higher;  for example if RR=2, so that each exposed PY
generates 2 times as many cases as an unexposed PY,

    π  =  
28010 × 2

28010 × 2    +   1 9 0 1 7
   = 74.7% = 0.747.

Thus,  in our example...   (and in general,  π  =  
n1 × RR

n1 × R R   +   n o
  )

RR                               0.25  0.50  1.00  2.00  4.00  8.00

π (proportion of  exposed cases)     0.269 0.424 0.596 0.747 0.855 0.922
The observed proportion of exposed cases is p = 41/56 = 0.732;  in our table, the 0.732
corresponds to an RR point estimate just below 2.

We can reverse the general formula to get RR =  {π/(1-π)}  /  {n1/n0}   =   {π/(1-π)} {n0/n1}

So, in our e.g.,  the point estimate of RR is rr = (0.732/0.268)   /   (28010/19017)   = 1.86 .

To obtain a CI, we treat the proportion of exposed cases, 0.732,  as a binomial proportion, based
on 41 "positives" out of a total of 56 cases  (obviously, if the proportion were based on 8 exposed
cases out of 11 cases, or 410 out of 560, the precision would be very different!)

From  table/other source of CI's for proportions (see e.g. table on 607 web page), can determine
that 95% CI for π is πL=0.596 to πU=0.842. Substitute these for the point estimate to get

RRL  =  (0.596 / 0.404)  /  (28010/19017)  = 1.00      RRU =  (0.842/0.158)  /  (28010/19017)  = 3.61

Rothman & Walker emphasize formula RRL,U  =  {π
L/U 

/ (1-π
L/U

) }  /  {n1 / n0}  over basis for it.

SEE EXAMPLE IN 626 EXAM IN 2002 (0 and 41 seroconversions following vaccination vs HPV)

• Use same conditional (binomial-
based) formula as for small no. of
events, but use Gaussian approxn. to
get Binomial CI for π
• Test-based  CI (Miettinen)

Uses fact that in vicinity of RR=1, can
obtain SE for ln(rr) indirectly from null
X2 test statistic

X2 statistic = square of Zstatistic
 = 4.33 = 2.082 in e.g.

Xstatistic = Zstatistic = 
ln(rr) - 0

SE[ ln(rr) ]

so SE[ ln(rr) ] = 
ln(rr)

Xstatistic

CI for ln(RR) = ln(rr) ± z 
ln(rr)

Xstatistic

CI for RR: rr to power [1±  
z

Xstatistic ]

  = 1.86 to power  of [1 ± 1.96/2.08]
    = 1.04 to 3.32 in e.g.

• Var [ ln(rr) ] =  1
c

1

 + 
1
c

0

 + 
1
∞ + 

1
∞  (Woolf)

CI  for RR  = rr exp[  ±  z 1
c

1

 +  
1
c

0

   ]

1.96 (1/41+1/15)1/2 =0.59  in e.g. ;

so exp[0.59]=1.81; So CI for RR

=.86 / 1.81 to 1.86*1.81 = (1.02,3.35)

Precision for ln(RR) estimate depends
on numbers of events c1 and c0.
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Inference concerning comparative parameters: Rate Difference (RD) and Rate Ratio (RR)

Rate Parameters R1 and R2  Rate Difference Parameter RD = R1 – R0      Rate Ratio Parameter RR = R1 / R0

data: c1 and c0 "events" (total c = c1 + c0) in n1 and n0 (total=n) units of experience"; empirical rates r1 = c1/n1  &  r0 = c0/n0;

                          Small no. of events            Large no. of events

test of

RD=0

or

RR=1

• Null distribution of c1 conditional on c

c1| c  ~ Binomial, with c "trials", (see above)

  each with null probability  π = 
RR × n1

RR × n1  + n0
 .

e.g.

If RR =1 (RD=0) would expect the 56 cases to
split into "exposed" and "unexposed" in the
proportions  27010/(27010+19017) = 0.596
and 1-0.596=0.404 respectively.

Can test if the observed proportion 41/56 =
0.732  is significantly different from this null
expectation using a Binomial distribution with
"n"=56 and π =0.596.

Can use the Excel Binomial function with
x=40,mean=0.596,cumulative=TRUE,  to get
the sum of all the probabilities up to and
including 40.  Subtract this quantity 0.976 from
1 to get the probability 0.024 of 41 or more
(upper tail area). Double this for a 2-sided test.

• Unconditional test for proportions /
rates (Suissa)

• Use same "c1 conditional on c" test but use
Gaussian approxn to Binomial (c,  π)

e.g. z = 
[41/56 = ]0.732  -  0.596

 0.596 x 0.404/56
 = 2.08

   P(Z > z) = 0.019 (upper tail area). Double for 2-sided test.

• z = 
[ r1 - r2 ] - RD0

{SE[r1|H0}2+ {SE[r2|H0}2

                    {*SE's use r = Σc/Σn [pooled data]}

• X2 = 
{c1-E[ c1| H0]}2

E[ c1 | H0]  +  {c0-E[ c0 | H0]}2
E[ c0 | H0]

        = {c1-E[c1| H0]}2
Var[ c1 | H0]   (Mantel-Haenszel version)

See my notes on Chi-square tests in on chapter 8 in 607 course
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SAMPLE SIZE REQUIREMENTS FOR COMPARISON OF RATES

Numbers in body of table are expected number of
events required in Group 1 to give specified power if
relative rate in Group 2 is R.

Formulae for calculating study size requirements for
comparison of rates using two groups of equal size

from Table 3.4 of Morrow and Smith, with role of groups 1 & 2
reversed.                                    Expected events in Group 1 to give: *

Relative
Rate**                 80% Power        90% Power       95% Power

Formula   Section
   in text

           Notation        ______                               

 0.1          10.6        14.3       17.6
 0.2          14.7        19.7       24.3
 0.3          20.8        27.9       34.4
 0.4          30.5        40.8       50.4

• Choosing study size to achieve adequate precision 0.5          47.0        63.0       77.8
 0.6          78.4       105.0      129.6
 0.7         148.1       198.3      244.8
 0.8         352.8       472.4      583.2

e1= (1.96/logef)2(R + 1)/R

e1 = Expected no. of events in group 1 3.2

 0.9        1489.6      1994.5     2462.4

 1.1        1646.4      2204.5     2721.6
 1.2         431.2       577.4      712.8

R = Rate in group 2/Rate in group 1 1.4         117.6       157.5      194.4
Gives 95 per cent CI from R/f to Rf 1.6          56.6        75.8       93.6

 1.8          34.3        45.9       56.7
 2.0          23.5        31.5       38.9
 2.5          12.2        16.3       20.2

• Choosing study size to achieve adequate power 3.0           7.8        10.5       13.0
 5.0           2.9         3.9        4.9
10.0           1.1         1.4        1.8 P-T = (z  + z )2(r2 + r1)/(r2—r1)2

** Ratio of incidence rate in Group 2 to incidence rate in Group 1.
P-T = Person-time in each group 4.2

* Using a two-sided significance test with p<0.05. ri = Rate in group iThe two groups are assumed to be of equal size  (B&D more general)

Taken from Table 3.2 in Chapter 3 "Study Size" in "Methods for Field
Trials of Interventions against Tropical Diseases: A Toolbox" Edited by
P.G. Smith and Richard H. Morrow. Oxford University Press Oxford 1991.
(on behalf of the UNDP/World Bank/WHO Special Programme for Research
and Training in Tropical Diseases)

Note that roles of Group 1 and 2 above are reversed from in Smith &
Morrow text;  See also Breslow NE and Day NE Vol II, Section 7.3

z  = 1.96 for significance at p < 0.05

Power      80%    90%    95%
z 0.84 1.28 1.64
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