# Elementary Methods of Cohort Analysis* <br> HANG 

NEBRESLOW


#### Abstract

Breslow NE (Department of Biostatistics, SC-32, University of Washington, Seattle, WA 98195, USA). Elementary methods of cohort analysis. International Journal of Epidemiology 1984, 13: 112-115. The Mantel-Haenszel procedure offers a simple and efficient means of estimating a common rate ratio from incidence density data in cohort studies. A new formula is provided for the variance of its logarithm, comparisons are made with the method of maximum likelihood, and associated tests for heterogeneity and trend in the component rate ratios are described.


A common problem in cohort analysis is the estimaion of a summary incidence or mortality rate ratio for exposed versus unexposed persons while adjusting for the effects of confounding variables by stratification of the sample. Observations are typically arranged in $2 \times 2$ tables showing numbers of cases or deaths and person-years denominators in each stratum (Table 1). As an example, the left hand columns of Table 2 present data for coronary deaths among smokers and nonsmokers from the British doctors' study. ${ }^{1}$ Rothman and Boise, ${ }^{2}$ subsequently denoted R\&B, use these same data to illustrate statistical techniques that they have programmed for hand held calculators. The present article reviews their methods and suggests some additions so as to provide a coherent and comprehensive set of tools for cohort analysis.

## THE STATISTICAL MODEL

An accurate approximation to the sampling distributimon of the data in Table 1 is to assume that the numbers of deaths $d_{1 i}$ and $d_{2 i}$ in the th of I strata follow independent Poisson distributions with means $\lambda_{1 i} n_{1 i}$ and $\lambda_{2 i} n_{2 i}$, where $\lambda_{1 i}$ and $\lambda_{2 \mathrm{i}}$ are the unknown disease incidence or death rates. The key parameters are the rate ratios $\psi_{i}=\lambda_{1 i} / \lambda_{2 \mathrm{i}}$ for exposed versus unexposed. Several hypotheses of interest are:
$\mathrm{H}_{0}: \psi_{\mathrm{i}}=1$, the global null hypothesis;
$\mathrm{H}_{1}: \psi_{\mathrm{i}}=\psi$, the hypothesis of a common rate ratio;
$\mathrm{H}_{2}: \psi_{\mathrm{i}}=\psi \cdot \mathrm{f}\left(\theta \mathrm{x}_{\mathrm{i}}\right)$, the alternative of trend;
$\mathrm{H}_{3}: \psi_{\mathrm{i}}$ unrestricted, the general alternative.

[^0]In $\mathrm{H}_{2} \mathrm{f}$ denotes any smooth increasing function such that both f and its first derivative take the value 1 at $\theta x=0$, e.g., $f(\theta x)=1+\theta x$ for a linear relationship or $f(\theta x)=\exp (\theta x)$ for a log-linear one. This hypothesis assumes that there are quantitative variables $X_{i}$ assciated with each of the I ordered strata, and it may not be appropriate in all applications. When it is, one often simply sets $x_{i}=i$ to test for a trend in the rate ratios with age or other ordered variables.

The usual goal of the statistical analysis is to test the null hypothesis, estimate the rate ratio assuming it is common to all strata, and evaluate this latter hypothesis relative to alternatives of trend or heterogeneity. General principles of inference ${ }^{3}$ suggest that one consider a distribution for the data that depends only on the parameters of interest. This is easily accomplished here since the $\mathrm{d}_{1 \mathrm{i}}$, conditional on the total deaths $D_{i}=d_{1 i}+d_{2 i}$ in each stratum, are binomial with denominators $D_{i}$ and probabilities $p_{i}=$ $\psi_{\mathrm{i}} \mathrm{n}_{\mathrm{ii}} /\left(\psi_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}+\mathrm{n}_{2 \mathrm{j}}\right)$.

## TEST OF THE NULL HYPOTHESIS

The efficient score test ${ }^{3,4}$ of $\mathrm{H}_{0}$ versus $\mathrm{H}_{1}$ based on the model simply compares the total number of deaths among the exposed to that expected if the rates for exposed and unexposed were equal within each stratum. It is a variant of the classical Cochran-Mantel-Haenszel ${ }^{5,6}$ test whose initial use for cohort

TABLE 1 Data layout for rate ratio estimation in a cohort study.

| Stratum |  | Exposed | Unexposed |  |
| :---: | :--- | :---: | :---: | :---: |
| i | Deaths | $\mathrm{d}_{1 \mathrm{i}}$ | $\mathrm{d}_{2 \mathrm{i}}$ | $\mathrm{D}_{\mathrm{i}}$ |
|  | Person-years | $\mathbf{n}_{1 \mathrm{i}}$ | $\mathrm{n}_{2 \mathrm{i}}$ | $\mathrm{N}_{\mathrm{i}}$ |

TAaLE 2 Deaths from coronary disease amons British male doctors."

| $A$ | Permon-years |  | Observed deaths |  | Expected deathe ${ }^{\text {t }}$ |  | Rate ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Smokers $\mathrm{n}_{1}$ | Non-amokers $n_{21}$ | Smokers $d_{11}$ | $\begin{gathered} \text { Non-mmokers } \\ \mathrm{d}_{2 j} \end{gathered}$ | $\begin{aligned} & \text { Smoker } \\ & \text { DiAt } \end{aligned}$ | Non-smokers $\mathrm{D}_{1} \mathrm{Cl}_{1}$ |  |
|  | 52407 | 18790 | 32 | 2 | 27.17 | 6.83 | 5.73 |
| 35-44 | 52407 43248 | 10673 | 104 | 12 | 98.88 | 17.12 | 2.14 |
| 45-54 | 43248 28612 | 106710 | 206 | 28 | 205.26 | 28.74 | 1.47 |
| 55-64 | 28612 12663 | 2585 | 186 | 28 | 187.19 | 26.81 | 1.36 |
| 65-74 75-84 | 12663 5317 | 1462 | 102 | 31 | 111.49 | 21.51 | 0.90 |
| Torals | 142247 | 39220 | 630 | 101 | 630.00 | 101.00 | 1.72 |

- Data from Doll and Hill ${ }^{1}$ as quoted by Rothman and Boice. ${ }^{2}$
+ Estimated by maximum likelihood under the hypothesis of a common rate ratio.
analysis is ascribed by R\&B to Shore et al. ${ }^{\text {² }}$ The formula is

$$
\begin{equation*}
T=\frac{\sum\left(d_{1 i}-D_{i} n_{1 i} / N_{i}\right)}{\left\{\Sigma d_{i} n_{i i} n_{2 i} / N_{i}{ }^{2}\right\} 1 / 2} \tag{1}
\end{equation*}
$$

where here as elsewhere $\Sigma$ denotes summation over $\mathrm{i}=1,2, \ldots, \mathrm{I}$. For the data in Table 2 we find $\mathrm{T}=3.32$ and, referring T to tables of the normal distribution, a two-sided p-value of 0.001 .

## MAXIMUM LIKELIHOOD ESTIMATE AND

VARIANCE
The maximum likelihood estimate of the common rate ratio, ${ }^{8}$ which we denote $\hat{\psi}_{\mathrm{ML}}$, is obtained by equating the observed number of deaths among the exposed to that expected under $\mathrm{H}_{1}$ :

$$
\begin{equation*}
\Sigma d_{1 i}=\Sigma D_{i} \psi n_{1 i} /\left(\psi n_{1 i}+n_{2 i}\right) \tag{2}
\end{equation*}
$$

Solution of this equation requires iteration but is programmed by R\&B or available with GLIM ${ }^{9}$ or other standard programs. For a GLIM analysis, we note that the probability $p_{i}$ that a death in the ith stratum was exposed may be written

$$
\operatorname{logit}\left(p_{i}\right)=\log \left\{p_{i} /\left(1-p_{i}\right)\right\}=\log \left(n_{1 i} / n_{2 \mathfrak{i}}\right)+\log (\psi)
$$

$\mathrm{H}_{1}$ thus defines a linear logistic model in which the known quantities $\log \left(\mathrm{n}_{1 \mathrm{i}} / \mathrm{n}_{2}\right)$ 'offset' the model equation; $\log (\psi)$ plays the role of the grand mean.
Since $\hat{\psi}_{\mathrm{ML}}$ is constrained to be positive and has a rather skew distribution, it is more appropriate to develop the normal approximation on the log scale. The asymptotic standard error of $\hat{\beta}_{\mathrm{ML}}=\log \left(\hat{\psi}_{\mathrm{ML}}\right)$ is

$$
\begin{equation*}
\text { S.E. }\left(\beta_{M L}\right)=1 /\left\{\Sigma d_{i} \hat{p}_{i} \hat{q}_{i},\right\}_{1 / 2} \tag{3}
\end{equation*}
$$

where $\hat{\beta}_{i}=1-\hat{q}_{i}=\hat{\psi}_{M L} n_{1 i} /\left(\hat{\psi}_{M L} n_{1 i}+n_{2 i}\right)$ are the fitted binomial probabilities under $\mathrm{H}_{1}$. For the data in Table 2 we find $\hat{\psi} \mathrm{ML}=1.4255, \beta_{\mathrm{ML}}=0.3545$ and S.E. $\left(\beta_{\mathrm{ML}}\right)=0.1073$. Ninety per cent confidence limits for the common rate ratio are thus $\hat{\psi}_{\text {ML }} \exp \mid \pm 1.645$ $\times$ S.E. $\left.\left(\beta_{\text {ML }}\right)\right\}=(1.195,1.701)$, which may be contrasted with the test based ${ }^{10}$ limits of ( $1.196,1.699$ ) found by R\&B. Although they give virtually identical results for these data, the test based limits are known to be incorrect in some settings ${ }^{11,12}$ and are perhaps best reserved for situations where no valid elementary limits are available.

## MANTEL-HAENSZEL ESTIMATE AND variance

The major disadvantage of the maximum likelihood estimate is that it is only implicitly defined as the solution to an equation. Fortunately, as noted by R\&B, the robust Mantel-Haenszel estimate is available as an elementary alternative. This is

$$
\begin{equation*}
\psi_{\mathrm{MH}}=\frac{\sum R_{\mathrm{i}}}{\sum \mathrm{~S}_{\mathrm{i}}}=\frac{\sum \mathrm{d}_{1 \mathrm{i}} \mathrm{n}_{2 \mathrm{i}} / \mathrm{N}_{\mathrm{i}}}{\sum \mathrm{~d}_{2 \mathrm{i}} \mathrm{n}_{\mathrm{i}} / \mathrm{N}_{\mathrm{i}}}, \tag{4}
\end{equation*}
$$

where $\mathrm{R}_{\mathrm{i}}$ and $\mathrm{S}_{\mathrm{i}}$ are defined by the numerator and denominator expressions, respectively. For the data in Table 2 we find $\hat{\psi}_{\mathrm{MH}}=1.4247$, which is almost the same as the iterative estimate. In fact, $\hat{\psi}_{\text {MH }}$ arises as an approximation to the maximum likelihood estimate that is especially good for rate ratios near unity. ${ }^{13.14}$

A robust variance for the Mantel-Haenszel estimate for cohort studies is easily derived. ${ }^{15}$ Writing $\hat{\psi}_{\mathrm{MH}}-\psi=\Sigma\left(\mathrm{R}_{\mathrm{i}}-\psi \mathrm{S}_{\mathrm{i}}\right) / \Sigma \mathrm{S}_{\mathrm{i}}$ and noting that $\mathrm{E}\left(\mathrm{R}_{\mathrm{i}}\right)=\psi \mathrm{E}\left(\mathrm{S}_{\mathrm{i}}\right)$ under $\mathrm{H}_{1}$, the asymptotic variance is $\operatorname{Var}_{\mathrm{A}}\left(\hat{\psi}_{\mathrm{MH}}\right)=\sum \mathrm{E}\left(\mathrm{R}_{\mathrm{i}}-\psi \mathrm{S}_{\mathrm{i}}\right)^{2} /\left\{\sum \mathrm{E}\left(\mathrm{S}_{\mathrm{i}}\right)\right\} .^{2}$ It follows that

$$
\begin{equation*}
\text { S.E. }\left(\hat{\beta}_{M H}\right)=\dot{\psi}_{M H}^{-1} S . E .\left(\hat{\psi}_{M H}\right)=\frac{\left\{\sum n_{11} n_{21} D_{i} / N_{i}^{2}\right) \not / 2}{\left\{\psi_{M H}\right\} / / 2 \Sigma \frac{n_{11} n_{i 2} D_{i}}{N_{j}\left(\psi_{M H} n_{11}+n_{2 i}\right)}} \tag{5}
\end{equation*}
$$

This gives S.E. $\left(\beta_{M H}\right)=0.1074$ for the data in Table 2. Formula (5) has an advantage over other variance estimates ${ }^{13}$ in that it depends on $\mathrm{d}_{1 i}$ and $\mathrm{d}_{2 \mathrm{i}}$ only through $\psi_{\mathrm{MH}}$. However, the analogous formula for sets of $2 \times 2$ tables as arise in case-control studies is considerably more complicated. The exact variances $E\left(R_{i}-\psi S_{i}\right)^{2}$ are not so easily obtained in that case and therefore have either been approximated ${ }^{16,17}$ or replaced with the empirical quantities $\left(\mathrm{R}_{\mathrm{i}}-\hat{\boldsymbol{\psi}}_{\mathrm{MH}} \mathrm{S}_{\mathrm{i}}\right)^{2}{ }^{\text {is }}$

Our experience with these and other cohort data is that the Mantel-Haenszel and maximum likelihood estimates are extremely close even when $\psi$ departs from one. This is easy to check, moreover, by substituting $\hat{\psi}_{\mathrm{MH}}$ into the estimating equation (2). If the two sides differ by more than a per cent, say, a onestep correction to $\hat{\beta}_{\mathbf{M H}}$ is available as

$$
\begin{equation*}
\hat{\beta}_{\mathrm{C}}=\hat{\beta}_{\mathrm{MH}}+\frac{\sum \mathrm{d}_{\mathrm{ii}}-\sum D_{\mathrm{i}} \hat{\psi}_{M H} \mathrm{n}_{1 \mathrm{i}} /\left(\hat{\psi}_{M H} \mathrm{n}_{1 \mathrm{i}}+n_{2 \mathrm{i}}\right)}{\sum D_{i} \tilde{\hat{\phi}}_{\mathrm{i}} \hat{q}_{\mathrm{i}}} \tag{6}
\end{equation*}
$$

The correction is unnecessary in the present example since $\sum \mathrm{d}_{1 \mathrm{i}}=630$ and $\sum \hat{\psi}_{\mathrm{MH}^{2}} \mathrm{D}_{\mathrm{i}} \mathrm{n}_{1 \mathrm{i}} /\left(\hat{\psi}_{\mathrm{MH}^{n_{1 i}}}+\mathrm{n}_{2 \mathrm{i}}\right)=$ 629.9487 are so close. Nevertheless, in order to illustrate its application, we use $\hat{\psi}_{\mathrm{MH}}$ to calculate the fitted probabilities and then $\sum D_{i} \hat{p}_{i} \hat{q}_{i}=86.7729$ and find

$$
\hat{\beta}_{C}=0.35395+\frac{630-629.9487}{88.7729}=0.35454,
$$

which agrees with $\hat{\beta}_{\text {ML }}$ to the number of decimal places shown.

In large samples the ratio of (3) to (5) tends to a quantity which is less than one unless $\psi=1$. Thus there is some loss of efficiency with the Mantel-Haenszel estimate under the alternative hypothesis. ${ }^{19,20}$ However, our experience is that the two standard errors are usually close, though not always so close as for the example here. Thus the loss of efficiency appears to be rather slight, as is already known for case-control studies. ${ }^{15}$

## TESTING FOR HETEROGENEITY AND TREND IN THE RATE RATIOS

The right hand column of Table 2 indicates a steady decline in the coronary death rate ratios for smokers versus non-smokers with advancing age, and there is substantial question as to whether the data are adequately represented by a single summary ratio.

Fitted values $D_{i} p_{i}$ and $D_{i} Q_{i}$ calculated under the hypothesis of a common ratio deviate markedly from the observed values in the youngest and oldest age groups (Table 2). These deviations may be inserted in the usual chi-square formula

$$
\begin{gather*}
\chi_{1-i}^{2}=\sum \frac{\left(d_{1 i}-D_{i} \beta_{i}\right)^{2}}{D_{i} \beta_{i} q_{i}}= \\
\sum \frac{\left(d_{i j}-D_{i} \hat{p}_{i}\right)^{2}}{D_{i} \beta_{i}}+\frac{\left(d_{2 i}-D_{i} q_{i}\right)^{2}}{D_{i} q_{i}} \tag{7}
\end{gather*}
$$

to test $\mathrm{H}_{1}$ against the alternative of general heterogeneity. For the data in Table 2, we find $\chi_{4}^{2}=11.15$ on $1-1=4$ degrees of freedom ( $p=0.026$ ) which may be compared to the likelihood ratio test value 12.13 found by R\&B.

When there is a natural ordering of the strata, as for age in this example, a more powerful test of $\mathrm{H}_{1}$ is given by the following modification of the usual test for a trend in proportions ${ }^{21}$ which arises as the score test of $\mathrm{H}_{2}$ vs $\mathrm{H}_{1}$ :

$$
\begin{equation*}
\chi_{1}^{2}=\frac{\left\{\sum x_{i}\left(d_{i i}-D_{i} \hat{p}_{i}\right)\right\}^{2}}{\sum x_{i}^{2} D_{i} \hat{p}_{i} \hat{q}_{i}-\left(\sum x_{i} D_{i} \hat{p}_{i} \hat{q}_{i}\right)^{2 / \sum D_{i} \hat{p}_{i} \hat{q}_{i}}} \tag{8}
\end{equation*}
$$

This statistic, which takes advantage of any systematic change in the deviations $d_{1 i}-D_{i} \hat{p}_{i}$ with the stratification variable, is referred to tables of chi-square with only one degree of freedom. Setting $x_{i}=i$ for $i=1,2$, $\ldots, 5$ for use with the Table 2 data, we find $\chi_{1}^{2}=$ $(-34.965)^{2} / 118.7=10.30 \quad(p=0.001)$ and conclude that most of the heterogeneity in the observed agespecific ratios is due to a linear trend with age. In fact, the goodness-of-fit chi-square for the model $\mathrm{H}_{2}$ with $\mathrm{f}(\theta \mathrm{x})=\exp (\theta \mathrm{x})$, as obtained from a GLIM analysis, is $\chi_{2}^{2}=1.44$ (NS). R\&B show that the data are also consistent with an additive effect of smoking on the age-specific rates.

## DISCUSSION

The preceding has demonstrated that simple and efficient statistical methods are available for the comprehensive analysis of incidence density data in cohort studies. The fitted frequencies used in the tests for heterogeneity and trend should be found by maximum likelihood. Fortunately, the maximum likelihood estimate $\hat{\beta}_{\mathrm{ML}}$ may be obtained in one or two
iterations using (6) and $\beta_{\mathrm{MH}}$ as a starting value.
Extensions of these basic techniques may be made to accommodate an exposure variable that has several ordered levels. For example, Hakulinen ${ }^{23}$ provides the appropriate generalization of (1) for testing the null hypothesis against the alternative of increasing incidence with increasing exposure. Indeed, all the methods presented in Section 4.5 of Breslow and Day ${ }^{24}$ for analysis of case-control data in a series of $2 \times \mathrm{K}$ tables may be adapted for use with incidence density data in a similar fashion to that shown here.

## ACKNOWLEDGEMENT

Research supported in part by grants from the US National Cancer Institute and the Alexander von Humboldt Foundation.

## REFERENCES

${ }^{1}$ Doll R and Hill A B. Mortality of British doctors in relation to smoking: observations on coronary thrombosis. Nat Cancer Inst Monogr 1966; 19: 205-68.
${ }^{2}$ Rothman K J and Boice J D. Epidemiologic Analysis with a Programmable Calculator. NIH Publication 79-1649. Washington, US Government Printing Office, 1979.
${ }^{3}$ Cox D R and Hinkley D V. Theoretical Statistics. London, Chapman and Hall, 1974.
${ }^{4}$ Day N E and Byar D. Testing hypothesis in case-control studjesequivalence of Mantei-Haenszel statistic and logit score tests. Biometrics 1979; 35: 623-30.
${ }^{5}$ Cochran W G. Some methods of strengthening the common $x^{2}$ tests. Biometrics 1954; 10: 417-51.
6 Mantel N and Haensze! W. Statistical aspects of the analysis of data from retrospective studies of disease. J Nat Cancer Inst 1959; 22: 719-48.
${ }^{7}$ Shore R E, Pasternack B S and Curnen M G. Relating influenza epidemics to childhood leukemia in tumor registries without a defined population base: a critique with suggestions for improved methods. Am J Epidem 1976; 103: 527-35.

- Gar JJ. The analysis of ration and croseprodeer ration of Poiscon variates with applications to incidence rates. Commun Stat Theory Meth 1978: A7: 917-37.
9 Baker R J and Nelder J A. The OLIM System. Release 3. Oxford, Numerical Algorithms Group, 1978.
10 Miettinen O S. Estimability and estimation in case-referrent mudies. Am J Epidem 1976; 103: 226-35.
${ }^{11}$ Halperin M. Letter to the Editor. Am J Epidem 1977; 105: 496-8.
12 Brown C C. The validity of approximate methods for interval estimation of the odds ratio. Am J Epidem 1981; 113: 474-80.
${ }^{13}$ Tarone R E. On summary estimators of reiative risk. J Chron Dis 1981; 34: 463-8.
14 Clayton D G. The analysis of prospective studies of disease aetiology. Commun Stat Theory Meth 1982: 11: 2129-55.
15 Breslow N. Odds ratio estimators when the data are sparse. Biometrika 1981: 68: 73-84.
16 Hauck W W. The large sample variance of the Mantel-Haenszel estimator of a common odds ratio. Biometrics 1979; 35: 817-20.
${ }^{17}$ Ury H. Hauck's approximate large-sample variance of the Mante!Haenszel estimator. Biometrics 1982; 38: 1094-5.
${ }^{18}$ Breslow N E and Liang K Y. The variance of the Mantel-Haenszel estimator. Biometrics 1982; 38: 943-52.
19 Nurminen M Efficient estimators of common relative risk. Biometrika 1981; 68: 525-30.
20 Tarone R E, Gart J J and Hauck W W. On the asymptotic inefficiency of certain noniterative estimators of a common relative risk or odds ratio. Biometrika 1983; 70: 519-22.
${ }^{21}$ Armitage $P$. Tests for linear trends in proportions and frequencies. Biometrics 1955; 11: 375-86.
22 Tarone R E and Gart J J. On the robustness of combined tests for trends in proportions. J Am Stat Aso 1980; 75: 110-16.
23 Hakulinen T. A Mantel-Haenszel statistic for testing the association between a polychotomous exposure and a rare outcome. Am J Epidem 1981; 113: 192-7.
24 Breslow N E and Day N E. Statistical Methods in Cancer Research I: The Analysis of Case Control Studies. LARC Scientific Publications No. 32. Lyon, IARC, 1980.
(Revised version received September 1983)


[^0]:    Department of Biostatistics, University of Washington, Seattle, WA 98195 , USA and German Cancer Research Center, Heidelberg, West Germany.

