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Abstract
This article is the second of a pair of articles about randomness in physics.
In the preceding article we have shown how simple random walk arguments
can give the mean and standard deviation of a number of random counts.
In this article we go a little deeper, and offer a simple and novel teaching
approach to the idea of random events. Taking the Poisson sequence as
fundamental, very simple arguments show that the time intervals between
random events are distributed exponentially. The mathematics needed is
merely the familiar mathematics of exponential change, making a good
opportunity for revision. Further arguments give the form of the Poisson
distribution, on the basis of very elementary assumptions. Several
interesting experiments are suggested.

A random sequence of events
It is of the essence of quantum phenomena that
quantum events occur at random. Only their
probability can be predicted. It would be nice to
be able to show that real quantum events, such as
radioactive decay, really do arrive at random. But
what is it to be random? How would one tell that
a given behaviour is really random?

Poisson events represent a very fundamental
kind of random behaviour. An example is the
distribution of stars in the sky. Are they distributed
randomly, with equal probability per unit area?
Nineteenth-century astronomers found that they
are not. For one thing, close pairs of stars
(binaries) are far too common. So it can be very
important to know how to detect random or non-
random behaviour.

A Poisson sequence describes the arrival of
events randomly in time. Let’s spell out carefully
the fundamental assumptions behind saying that
the arrivals are random:

(1) the probability p that an event occurs in a short

time interval �t is proportional to �t . That
is, p = λ�t . This is the linearity condition.

(2) the constant of proportionality λ is indepen-
dent of time. This is the no memory condi-
tion1. The arrival of one event (or not) has
no influence whatever on the arrival of a later
one. λ is called the rate of the sequence.

(3) there is essentially no chance that two events
occur at the same time. Thus in time �t

there are only two possibilities: arrival of an
event or non-arrival. The probability of one
or the other is therefore 1, that is, a certainty.
So the probability of no event in time �t is
(1 − λ�t). This is the instantaneous event
condition: the events happen ‘in a flash’, in a
time much less than any time interval involved
in measurement.

1 This is the reason we prefer the term ‘Poisson sequence’ to
the common alternative ‘Poisson process’. The word ‘process’
suggests a dependence of what happens next on what happens
now, which is exactly what the ‘no memory’ condition denies.
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From just these principles we can obtain many
useful and indeed surprising consequences.

How long between counts, and how many
to expect?
Switch on your Geiger counter. It ‘clicks’
irregularly. How many counts can you expect in
a given time t? And how long a time should you
expect between counts? The number of counts to
be expected in time t is easy to write down. It is
just:

expected number of counts N = λt.

What about the expected time interval τ between
counts? It is just the total time t divided by the
expected number of counts:

expected time interval between counts,

τ = t

N
= 1

λ
.

For example, if 50 counts are on average seen in a
time of 100 s, the rate λ = 0.5 s−1, and the average
interval between counts is τ = 2 s.

Next question: by how much can the time
between counts, or the total number of counts,
be expected to vary, just by random statistical
fluctuations? Figure 1 shows what a typical set of
randomly arriving counts looks like. They were
obtained using a counter connected to a fast data-
logger. You may notice that quite closely spaced
counts occur, but that there are also some quite
large intervals.

ev
en

ts

time to 0.2 s

these data are the first 0.2 s of a 0.8 s interval
containing 263 random counts

count rate λ = 263 = 329 Bq

mean waiting time 〈 τ 〉 =    =         = 0.00304 = 3.0 ms1
329λ
1

0.8

0

1

2

Figure 1. Counts from a radioactive source arriving
randomly.

Figure 1 is in stark contrast to the appearance
of a deterministic time variation, such as a
harmonic oscillation2. For this reason, random
counts per second are given the unit Bq,
whereas frequencies are given the unit Hz, even
though both have the dimension time−1. The
choice of names is very appropriate: Becquerel
discovered radioactivity, and Hertz showed that
electromagnetic oscillations could propagate as
waves.

How long might you wait between counts?
Let’s ask how long you may have to wait between
counts. The answer is quite surprising and is easily
testable experimentally.

You are waiting for a count. In the coming
short interval �t the probability of a count is
p = λ�t , so the probability of not getting a count
is (1 − λ�t).

Suppose that λ = 0.01 s−1, and that you wait
100 s, so that λt = 1. The probability of no count
in each second is 0.99 = 1 − 0.01. It’s the same
for the next time-slice, and the next, and so on.
Probabilities of independent events that all happen
jointly must be multiplied. Thus the probability of
getting no count in each and every second out of
100 s is:

0.99×0.99×0.99×0.99×0.99×. . . (100 times).

The ‘no memory’ condition is present as the fact
that the multiplying factor is constant, the same
for every time interval. If you calculate the value
of the product (0.99100) you get 0.37. You may
recognize3 this as 1/e.

In fact, the probability of getting no count in
time t is just

p0(t) = exp(−λt).

The probability decays exponentially with time
simply because at each successive interval it is
multiplied by a constant factor. That’s how
exponential change arises.

2 The difference runs very deep. For regular deterministic
variations, the whole panoply of Fourier analysis can be
deployed. But this is useless for random variation, for which
quite different (statistical) tools are needed. Indeed, this basic
difference is one of our reasons for writing this pair of articles.
3 The limit of (1 − 1/N)N as N tends to infinity is e−1.

September 2003 P H Y S I C S E D U C A T I O N 399



J Ogborn et al

��
��

��
���

�	

��
��
�
�
�

�

���

���

���

���

���

���

� � � � � � � � � �� �� �� �� �� �� �� �� �� �� ��

����������	��������������������
���� �!��"��#λ� 
λ�!����$���!������

�"����
������%���������������������������
��
�%��������
����%������%������&���������
��
&��'���
�������
����

�"���
(������

Figure 2. Fraction of time intervals greater than t varies exponentially with t .
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Figure 3. Time intervals between counts are distributed exponentially, too.

Testing waiting time statistics
This result is quite easy to test experimentally.
You use a data-logger to record counts over a long
period, and extract the time intervals τ between
counts. If no event has occurred in time t then the
time interval τ between counts is certainly greater
than t . Thus the probability that the interval τ

between counts is greater than t is the same as the
probability that no count has occurred in time t :

pτ>t (t) = p0(t) = exp(−λt).

The test is then to find the fraction of intervals τ

between counts that are greater than a succession
of times t . All intervals are greater than t = 0,

so the graph starts at unity, as the equation says
it should. You can find the rate λ from the total
number of counts in a long time, and test the fit of
the equation. Figure 2 shows some sample results.

You will also find experimentally that
the waiting times themselves are exponentially
distributed, with mean time 1/λ as discussed
above. The probability that the waiting time τ

will lie in the range τ to τ + dτ is given by

p(τ) = λ exp(−λτ) dτ.

This expression is easy to understand. It is just
the probability λ dτ that there is a count in the
short interval dτ , multiplied by the probability
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exp(−λτ) that it did not happen in the previous
time interval τ . Figure 3 shows some results from
an experimental test.

The equation p(τ) = λ exp(−λτ) dτ can be
regarded as the fundamental equation describing
Poisson sequences in one dimension. Indeed the
Poisson distribution can be derived from it (see
below). It is not very difficult to show that the
equation correctly sums to 1 over all times from
zero to infinity, and has mean 1/λ.

It could well be that people arrive randomly at
supermarket checkout queues. If so, these waiting
time equations give you some handle on working
out whether queues will grow or not, and on how
their length may vary. Another application is the
occurrence in time of faults in communication
systems. Perhaps the real surprise is that the
distribution of waiting times is exponential, with
no peak. Shorter times are always more frequent
than longer times.

Proving that p0(t) = exp(−λt)
Above, we gave only a faint sketch of an argument.
A proof is quite simple, and unexpectedly revises
a piece of mathematics that is very familiar in A-
level physics. So here goes.

Suppose that the probability that no events
have arrived after time t is p0(t). What is the
probability p0(t + dt) that there will still be no
event after waiting a further time dt? It is the
probability of two things happening together: no
event up to time t and no event in the further time
dt . The probability of the joint occurrence is the
product of the two probabilities. Thus

p0(t + dt)

= p0(t) × probability of no arrival in time dt .

The probability of no arrival in time dt follows
from the basic assumptions we made previously
about a Poisson sequence. It is (1 − λ dt). So
now we can write down how the probability of no
arrival changes with time:

p0(t + dt) = p0(t) × (1 − λ dt).

You can think of this as the equation of suspense:
‘Nothing yet; how long can this go on?’ It
gives a simple and rather familiar equation for
the rate of change of the probability of having no
event. Multiplying out the right-hand side, and

subtracting p0(t) from both sides gives the change
of the probability in time dt :

dp0(t) = p0(t + dt) − p0(t) = −λp0(t) dt

or
dp0(t)

dt
= −λp0(t).

This is the well-known equation for exponential
decay. The probability of having had no arrivals
obviously starts at 1 (certainty) when the clock
starts (t = 0). Then it decreases exponentially
with time, with rate λ. That is,

p0(t) = exp(−λt).

The calculation is familiar because it is very like
that for the decay of numbers of particles of a
radioactive species. But of course it is also very
different. It is the change in time of a probability,
not the change in time of a number of particles.

Probability of different numbers of counts
in time t: Poisson distribution
If you count radioactive emissions for a time t the
average number will be near N = λt . But how
may the number vary? How often will you see 0,
1, 2, 3, etc counts? The answer to this question is
the Poisson distribution.

Probability of just 1 count in time t

We already know the probability of getting zero
counts. It is

p0(t) = exp(−λt).

From this, we can obtain the probability of getting
just one count in time t . Imagine the time line
divided into a very large number of tiny intervals
dt , as in figure 4. In every interval there is the
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Figure 4. One count arrives at a random moment
during time t .
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small probability λ dt that one count will occur.
So the probability of getting one count in (say) the
first interval dt during time t is equal to:

probability of no count in rest of the time × λ dt.

The first part of this expression is very nearly
equal to exp(−λt), since nothing arrives in all
but one interval dt . But the single count can
come in any of the intervals dt . So you must
add these probabilities over the total time t . Thus
the probability of a single count in just one of the
intervals dt is

p1(t) = λt exp(−λt).

Notice the simple relation p1(t) = λtp0(t). We
will show below that there is a similar simple
general relationship between the probabilities of
adjacent numbers of occurrences, which describes
the Poisson distribution in a very clear way.

Probability of just 2 counts in time t

The argument for getting to the probability for two
counts from the probability for one count is almost
the same as above. Just one further count in any
one of the intervals dt is needed. Adding up the
probabilities for individual time slices gives, as
above, another multiplying factor of λt (we again
neglect the small reduction in available intervals).
But now there is a subtlety. We have double
counted4 in figure 5. The ‘extra’ count could
have been either the first or the second. So the
probability for just two counts in time t is equal
to the probability for just one count, multiplied by
λt/2. Thus

p2(t) = λt

2
p1(t)

4 We here gloss over some subtle combinatorial arguments.
n−1 counts can be permuted in (n−1)! ways without changing
the pattern. Adding one extra count multiplies this by n.
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Figure 5. Two counts arrive at random moments
during time t .

and

p2(t) = (λt)2

2
p0(t) = (λt)2

2
exp(−λt).

Probability of n counts in time t

The argument generalizes straightforwardly. To
get a third count multiplies the probability for two
counts by λt/3 (the factor 3 coming from triple
counting). So

p3(t) = λt

3
p2(t)

and

p3(t) = (λt)3

3 × 2
exp(−λt).

In general, to go from the probability for n − 1
counts to that for n counts you multiply by the
simple factor λt/n. Thus the general relationships
are

pn(t) = λt

n
pn−1(t)

and

pn(t) = (λt)n

n!
exp(−λt)

where n! = n(n−1)(n−2) . . . 1 is called ‘factorial
n’.

This is the Poisson distribution. One of the
earliest tests of it was nothing to do with physics:
it was the distribution of the number of deaths per
year by the rare event of a lethal kick from a horse,
in cavalry regiments of the 19th century Prussian
army (see Appendix).

It is easy to construct a theoretical Poisson
distribution on a spreadsheet. Choose a constant
rate λ and a time t . Calculate the product λt .
Calculate the probability for getting zero counts,
p0(t) = exp(−λt). Then find the probabilities
for, successively, one, two, three etc counts by
multiplying the previous value by λt/n.

You can see where the ‘hump’ comes from.
For small n, λt > n and the probabilities increase.
But once past the peak, where λt = n, the
probabilities start to decrease. Figure 6 shows
some samples, illustrating how the distribution
shifts as time t increases. The peak moves
to higher values as t increases, and the spread
broadens. Notice that the spread is such that the
height of the distribution roughly halves in height
at distances ±√

N from the peak.
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Figure 6. Sample Poisson distributions with λt from 0.5 to 6.

Experimental check on Poisson
distribution

It is simple to test whether the numbers of counts in
a fixed time t from repeated observations of (say)
a radioactive source fit the Poisson distribution.
Estimate the rate λ from the total number of counts
in all observations, and calculate the expected
distribution as above. Superpose experimental and
theoretical plots. Figures 7(a) and 7(b) show data

taken at two different count rates.
The width of the distribution, showing how

much the number of counts in time t typically
varies, is of interest. You can approach this
experimentally or by numerical simulation. You
will find that when the distribution centres on a
mean number of counts N = λt , the distribution
gives appreciable numbers of counts either side of
the mean, out to around N ± √

N . Proving this
is rather heavy work, so we will not attempt it
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Figure 7. (a) Distribution of varying numbers of counts, compared with a Poisson distribution (600 repeated 10 s
readings of background count). (b) Distribution of varying numbers of counts, compared with a Poisson
distribution (600 repeated 1 s readings of counts from a source).

here5. Instead, in the preceding article we offered
a simpler random walk argument.

Conclusion
We have shown how the Poisson distribution, the
most fundamental distribution of random events
in continuous time or space, can be approached
rather simply through waiting times, with almost
no use of difficult combinatorial arguments. This
opens up the possibility of testing whether counts
from a radioactive source are really random, and

5 A proof can be obtained by e-mail from j.ogborn@
physics.org

so of getting to grips experimentally with the
fundamentals of quantum behaviour.

Appendix. Two historic examples of
Poisson sequences
Deaths by horse kicks in the Prussian cavalry

Von Bortkiewicz reported the rare event of death
by horse kicks in the Prussian army in the late 19th
century. Table A1 shows the number of cavalry
corps-years in which different numbers of such
deaths occurred.

Figure A1 shows that the numbers of cases fits
well with the number expected from the Poisson
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Table A1. The number of cavalry corps-years in which
different numbers of deaths by horse kicks occurred.

Number of deaths Number of cases

0 144
1 91
2 32
3 11
4 2
5 or more 0
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Figure A1. Deaths by horse kick.

distribution, at a rate of 0.7 deaths per corps per
year.

Rutherford tests whether alpha emission is
random

In 1910, Rutherford published results of a study of
the randomness of the emission of alpha particles.
The numbers of particles emitted by a source in a
sequence of 2608 time intervals each 1/8 minute
long were counted. Table A2 shows the number
of intervals for each different number of particles
emitted.

Figure A2 shows a good fit between the
observed values and the numbers expected from a
Poisson distribution with a rate of 3.87 emissions
per interval.

Received 13 May 2003
PII: S0031-9120(03)63339-3

Table A2. The numbers of intervals for different
number of particles emitted.

Number of alpha Number of 1/8 minute
particles emitted intervals

0 57
1 203
2 383
3 525
4 532
5 408
6 273
7 139
8 45
9 27

10 10
11 4
12 0
13 1
14 1
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Figure A2. Random emission of alpha particles.
Reference: Rutherford, Geiger and Bateman 1910
Phil. Mag. 20 698–707.
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