Add-insfor M&M §8and §9 [ updated Jan 3 2004 ] dratified data

Combining measures from several strata [cf. M&M 382.6, A&B3 §16.2, Rothman2002, Chapter 8]

Why not just add (sum, ) the 'a' frequencies across tables e.g. 2 Numbers of Applicants (n), and Admission rates (%) to
(strata), the 'b' frequencies across tables, ... the 'd" Berkeley Graduate School
frequencies across tables, to make a single 2 x 2 table with
entries Men Women
Faculty n % admitted n % admitted
2 g 2 g A 825 62 108 82
2 2 B 560 63 25 68
and use these 4 cell counts to perform the analyses? C 325 37 593 34
D 417 33 375 35
e.g. 1 Batting Averages of Gehrig and Ruth E 191 28 393 57
(see book "Innumeracy" by Paulos) F 373 6 341 7
Combined 2691 44 1835 30
Gehrig Ruth (see early Chapter in text "Statistics" by Freedman et al)
1st half of season .290 < . 300 .. ..
2nd hal f of season 390 < . 400 Paradox: p(admission | male) > p(admission | mae) overal,
i 11
o sonson 7 5 o33 111 but, by an large, faculty by faculty, its the other way!!!
Explanation: Women are more likely than men to apply to
Explanation: the faculties that admit lower proportions of applicants.
Gehrig Ruth Remedy: aggregate the within-strata comparisons [like vs.
tst hal - of season 29 60 like], rather than make comparisons with aggregated raw
AT BAT 100 200 data -- see next for classical ways of doing this, MH stands
for "Mantel-Haenszel".
2nd hal f of season
hits 78 40 For other examples:-
AT BAT 200 100
) 1. See Moore and McCabe(3rd Ed) 2.6 (The Perils of Aggregation, including
Entire Seasf?int . 107 100 Simpson's paradox) They speak of 'lurking' variables; in epidemiology we
AT BAT 300 300 speak of ‘confounding' variables.

2. See Rothman2002, p1 (death rates Panama vs. Sweden) and p2 (20-year

, , ) ) mortality in female smokers and non-smokers in Whickham England)
Two features, involving time, created this 'paradox’

Simpson's paradox isanextreme form of confounding. Some
-1- batting averages increased from 1st to 2nd half of season textbooks give made-up examples See web site for course 626 for several

real examples.
-2- Ruth had greater proportion of his AT BAT's in 1st half than Gehrig
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Add-ins for M&M &8 and §9 stratified data

Story 4: Does Smoking Improve Survival? in the EESEE Expansion Modules
in the website for the text (link from course description) [also in Rothman2002,
with finer age-categories] Table 2: Twenty-year survival statusfor 1314 women categorized

by age and smoking habits at the time of the original survey.
ht t p: / / WWW WHFREEMAN. OCM STATI STI CS/ | PS/ EESEE4/ EESEES4. HTM

A survey concerned with thyroid and heart disease was conducted in 1972-74 ina Gpr‘gue Smoking Status
district near Newcastle, United Kingdom by Tunbridge et al (1977). A follow-up P
study of the same subjects was conducted twenty years later by Vanderpump et a Years .
(1996). Here we explore data from the survey on the smoking habits of 1314 women Surviva Non-
who were classified as being a current smoker or as never having smoked at the time Status Smoker Smoker
of the original survey. Of interest iswhether or not they survived until the second
survey.
18-44  Dead 19 13
Results Alive 269 327
The following tables summarize the results of the experiment: [ note
from JH.. We would not call it "an experiment"; mathematical (or =1.78)
statisticians call any process for generating data "an experiment”]
Table 1. Relationship between smoking habits and 20-year
survival in 1314 women (582 Smokers, 732 Non-Smoker s) 44-64  Dead 78 52
Smoking Status Alive 167 147
survival Status Smoker Non-Smoker Compared... (or =1.32)
Dead 139 230
Alive 443 502
_ #dead 139 230 Diff: —7.5% >64 Dead 42 165
Risk = £an = 23.9% =55 = 31.4% : 7 28
#T 2 732 . Alive
o 58 3 Ratio: 0.76
_ #dead 139 _ ) 230 _ ) - " (or =1.02)
a” d 139" 502 _ 69778 Theoddsratiois> 1in each age group!

* shortcut: or = b’ ¢ -230° 443 ~ 101890 - 0.68

' ?
A message the tobacco companies would love usto believe! Why the contradictory results”
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Add-ins for M&M §8 and §9 stratified data

Adjustment (compare like with like, Ratio** Estimators ("M-H") [implicit precision weighting]
i.e. S within-category estimates**)

Weighted averages [explicit weights (w's) ] Risk Ratio S #caseSindex  DENOMet / DENOMgtal

Precision-based Investigator-chosen S#casesret DENOMingex / DENOMotal
(inverse variance) ("Standardized")

M Diff Sw’ v Sw’ v Rate Ratio same, except that denominators are

ean itterence W Yindex = S W Yref amounts of person-time, not persons.
= SW’™ (Vindex — Yref)
Risk Difference SW’ riskindex — S W" riskref Odds Ratio S #casesingex "denom”rer / "siz€"ioral

= Sw’ (riskindex — riskref)
Odds Ratio ("Woolf" method, precision based)
exp[ Sw’ logoddsingex — S W’ logoddsyes ]
= exp[Sw ™ (log [odds ratio] )
where w = 1/ var[log [odds ratio] ] =1/ (1/a + 1/b + 1/c + 1/d)

all logs to base e

Note: Computational formulae often constructed to minimize
number of steps, and avoid division, and so may hide real
structure of the estimator.

e.g. 8.1 in Rothman p147, for risk diff. (precision weighting)

Var[risk diff] proportional to 1/Ng + 1/N1 = (Ng+N1)/(Ng N1)
So that the denominator contribution, i.e., the weight, is
w = 1/Var = (Ng N1)/(Ng+N1) = (Ng N1)/T
and numerator contribution is
( riskindex — riskref)~ W
= ( a/N]_ - b/No ) Tw o= ( a/Nl - b/No), (No Nl)/T
=(aNg/T-bNy) /T (after some algebra)
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S#casesret  "denom”ingex !/ "Siz€"otal
[case control study]

same as risk and rate ratio above except
that "denominators" are partial (pseudo)
ones estimated from a denominator
series*("controls"); "size"iq refers to the
size of (stratum-specific) case series and
denominator series combined. *MODERN
way to view case-control studies.

S #caseSingex #'rest"ies / total
S#cases et #'rest"ingex / total

[cohort/prevalence study]

Not that common to use this measure,
since odds ratio more cumbersome to
explain, and less 'natural’. Might use it to
maintain comparability with results of a
log-odds (logistic) regression. If #case a
small fraction

Odds Ratio



Add-ins for M&M &8 and §9

stratified data

*NOTE ON RATIO ESTIMATORS: Even though one could (if all
denominators were obligingly non-zero) rewrite the ratio
estimator as a weighted average of ratios, this would run
counter to Mantel's express wishes.. to calculate just one ratio
at the end, i.e. a ratio of two sums, rather than a sum of ratios.
The main reason is statistical stability: imagine a (simpler,
non-comparative) situation where one wished to estimate the
overall sex ratio in small day-care facilities: would you average
the ratios from each facility, or take a single ratio of the total
number of males to the total number of females? The caveat
does not apply to absolute differences, where the difference of
two weighted averages (same set of weights for both) is the
same as the weighed average of the differences.

Matched-pairs: the limiting case of finely stratified data

Examples: pair-matched case-control studies; Mother -> infant transmission of
HIV in twins in relation to order of delivery; & others...

[see 607 notes for Ch 9]

ALSO: Case-crossover studies (self-matched case-control studies)

eg" Redelmeier: auto accidents, while on/off cell phone when driving

e.g. Response of same subject in each of 2 conditions (self-paired)
Responses of matched pair, one in 1 condition, 1 in other

A's in paired responses on interval scale, reduced to sign of A

The 4 possibilities for 2 pair-members are:
(using generic 2 x 2 table: 2nd row might be a ‘denominator series' of 1 per case)

Category of Determinant

Outcome Index Reference Tota
Yes a=1lor0O b=1or0 1
No c=0orl d=0or1l 1

1 1 T=2

The contributions to oryy from the 4 possibilities are ...
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Determinant No. Pairs
a'd b’ ¢
Outcome* Index Ref Tot
EEE— T T
Yes | 1 1 | 1
No | o 0 | 1
1 1 2 0 0 "A"
Yes | O 0o | 1
No | 1 1 | 1
1 1 2 0 0 "D"
Yes | 1 0o | 1
No | o 1 | 1
1 1 2 1/2 0 "B"
Yes | 0 1 | 1
No | 1 0 | 1
1 1 2 0 1/2 "c"

Ax0 +Bx12 + Cx0+Dx0 _B

Ax0 +Bx0+Cx1/2 + Dx0 C

Odds Ratio estimator =

Tabular format for displaying matched pair-data
Result in Other PAIR Member

COHORT Total #
STUDY +ve -ve PAIRS
+vel| A B |
Result in One | |
PAIR Member
—vel| C D |
| n
Exposure in "Control”
CASE-CTL Total
STUDY +ve —ve PAIRS
+vel| A B |
Exposure in | |
"Case"
—vel| C D |

| n

* In matched (self- or other) case-control study, the "denominator series"”
is not limited to 1 "probe-for-exposure" per case... could ask about
"usual" exposure (e.g. % time usually exposed) or sample several "person
-moments" ['controls'] per case. i.e. the 2nd row total could be > 2.



Add-ins for M&M &8 and §9 stratified data

Standardization of Rates [proportion-type and incidence-type]
[explicit, investigator-selected weights]

» Usual to first calculate standardized rate for index category
(of the determinant) and standardized rate for reference
category (of the determinant) separately, then compare the
standardized rates.

* If one uses the confounder distribution in one of the two
compared determinant categories as the common set of
weights, then the standardized rate in this category remains
unchanged from the crude rate in this category.

See the worked example comparing death rates in Quebec
males in 1971 and 1991 in the document "Direct" and
"Indirect” Standardization:2 sides of same coin?(.pdf) under
"Material from previous years" in the c626 web page. this is
an interesting local case of natural confounding: relative to
that 20 years earlier, the crude mortality rate in 1991 was
1.00. yet, in every age category, the rate in 1991 was at least
10% lower, and in many age-groups, more than 20% lower

than in 1971 (in the table, the rate ratios in bold are 71/91, so

take their reciprocals to see the rate ratios 91/71)

* Read Rothman's comment (p159) about the uniformity of
effect (eg a constant rate ratio across age groups in the Que
example). Why in his last sentence in that paragraph does
he seem to "allow" a weighted average of very different rate
ratios, if they were derived from standardization, but NOT if
they were derived from (precision-weighted) pooling?

* Rothman (p161) emphasizes how "silly" the term "indirect"

standardization used with standardized mortality ratio, is. He

correctly points out that "the calculations for any rate

standardization, "direct” or "indirect", are basically the same".

He leaves it as an exercise (Q4 page 166) to work out what
the weights are in the so-called "indirect" standardization
used to compute an SMR (or SIR).

Hint: write the SMR (with S denoting sum over strata) as

_ Total # cases observed

SMR = Total # cases expected
_ S# observed .
~ S# expected )

_ S observed #
~ Sref. rate ” exposed PT

_ Sobserved rate © exposed PT
~ Sref. rate " exposed PT

_ Sobserved rate © w
- Srefrate’w

If one starts again from (*), one can show that the SMR can

also be represented as a weighted average of rate ratios [as
was mentioned in footnote to Quebec table*]

with w = exposed PT

_ S # observed

SMR S # expected

S obs. rate © exposed PT
S # expected

obs. rate . ref. rate © exposed PT
ref. rate

= S# expected (divide & mult. by ref rate)

obs. rate , # expected
ref. rate

= S # expected = weighted ave. of rate ratios

*cf. Liddell FD. The measurement of occupational mortality.
Br J Ind Med. 1960 Jul;17:228-33.
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Add-ins for M&M &8 and §9 stratified data

Table 2: Twenty-year survival statusfor 1314 women categorized by age and smoking habits at the time of the original survey.

Worked out calculations (see same cal culations on spreadshest) for... (* rlr2arerow totals; cl c2 are columntotals)  See Rothman Ch 8
Mantel-Haenszel summary odds ratio, or,,, and Woolf: exp[ weighted average of Inor 's ]
Mantel Haenszel (Chi-Square) Test of OR; =OR2 =OR3 = 1 Var[ weighted ave ] = 1/ {Sum of Weights}

Age Smoking Status Calculations for Calculationsfor Test Calculations for Woolf's M ethod

Group Summary oddsratio Statistic*

Years
Surv Non- ad bc E[ a|Ho] Var[ a| Ho] Inor  Var[Inor] Weight W’ Inor
Status  Smoker Smoker n n n (1) 2

1/a+ b 1

flecl rler2ecle C2 ,
‘ e

n n2e{n-1} +1c+1d Vallnor]
18-44 Dead 19 13
Alive 269 327
(or=1.78) 628 9.89 559 14.7 7.6 | 0.575 0.1363 7.335 4.218
44-64 Dead /8 52
(or=132) 444 25.82 19.56 717 22.8 | 0.278 0.0448 22.30 6.199
>64  Dead 42 165
Alive 7 28 |
(or=1.02) 242 486 477 41.9 49 | 0.018 0.2084 4,798 0.086
139 Sum 1314 40.57 29.92 128.3 35.2 | 34.433 10.503
MH Odds Ratio l 1_36| | weighted ave. of Inor's 10.503/ 34.433 = 0.305
(40.57/29.92) | exp[weighted ave. of Inor '] exp[0.305] =| 1.36
_aad/n _4057 _ . 2 _{da-aFEa|Hg]}2 _ {139-128.3}2 _ _
Ofvn = gbem ~2002 =136 Xwnam = "3 vala|He] -~ 3B2 o4 Xww=180

(Miettinen) Test-based 100(1 - )% ClI for OR:  oryy L ¥ Za/2/ Xmi = 1 361+ 1.96/1.80 - 9715189 (95%ClI)
(Woolf) 100(1 - a)% CI for OR: exp[{ weighted ave. of In or's} * z,, Sqrt[1/34.433] = exp[0.305 £ 1.96" 0.170] = 0.97 to 1.89
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Vi a SAS

dat a sasuser. si npson
input age $ i _snoke i_dead
nunber ;

i nes;

18-44 1 1 19
18-44 1 0 269
18-44 0 1 13
18-44 0 0 327
44-64 1 1 78
44-64 1 0 167
44-64 0 1 52
44-64 0 0 147
64- 1 1 42
64- 1 0 7
64- 0O 1 165
64- 0O O 28
run,;

options I's = 75 ps = 50; run;
proc freq data=sasuser. si nmpson;

tables age * i _snoke * i _dead /
nocol norow nopercent cnh expected,;

wei ght nunber ;
/* weight indicates multiples */

run;

See for SAS 'trick' to produce Tables
in an orientation that gives the

rati os of interest (use PROC FORMAT to
associ ate anot her val ues with each
actual value; then use the

ORDER=FORMATTED option in PROC FREQ )

stratified data

TABLE 1 OF | _SMXXE BY | _DEAD
CONTROLLI NG FOR AGE=18- 44

| SMOKE

Frequency|
Expected |

| _DEAD

327 |

269 |

628

TABLE 2 OF | _SMOKE BY | _DEAD
CONTROLLI NG FOR AGE=44- 64

| _SMOKE

Frequency|
Expect ed |

| _DEAD

147 |
140. 73 |

167 |
173.27 |

52 |

58. 266 |

78 |

71.734 |

444

TABLE 3 OF | _SMXKE BY | _DEAD
CONTRCLLI NG FOR AGE=64-

| _SMOKE

Frequency|
Expect ed |

| _DEAD

28 |
27.913 |

7|
7.0868 |
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165 |

165. 09 |

42 |

41.913 |

Tot al

193

49

SUMMARY STATI STI CS FOR

| _SMOKE BY | _DEAD
CONTROLLI NG FOR AGE

Cochr an- Mant el - Haenszel
(Based on Tabl e Scores)

Al't. Hypothesis DF Value Prob
Nonzero Correl ation 1 3.239 0.072
Row Mean Scores Differ 1 3.239 0.072
General Associ ation 1 3.239 0.072

Statistics

Esti mates of Common Rel ative Risk
(Rowl/ Row2)

95%
Type of Study Method Esti mat e Conf Bounds
Case- Control Mantel - Haenszel 1.357 0.973 1.892
(Qdds Ratio) Logit 1.357 0.971 1.894

Cohor t
(Gl 1 R sk)

Mant el - Haenszel 1.047 0.996 1.101
Logit 1.034 0.998 1.072

Cohor t
(Gl 2 R sk)

Mant el - Haenszel 0.864 0.738 1.013
Logit 0.953 0.849 1.071

Confi dence bounds for MH estinnates

are test-based.

Bresl ow Day Test for
the Odds Rati os

Honogeneity of

Chi -Square = 0.950 DF = 2 Prob = 0.622

Total Sanple Size = 1314



Via Stata
cl ear
i nput str5 age i _snoke i _dead nunber
18 44 1 1 19
18 44 1 0 269
18 44 O 1 13
18 44 O 0 327
44 64 1 1 78
44 64 1 0 167
44 64 O 1 52
44 64 O 0 147
64_ 1 1 42
64_ 1 0 7
64_ 0 1 165
64_ 0 0 28
end
cc i _dead i _snoke [freg=nunber], by(age)
age | R [95% A ] M H Wi ght
______ e mme e e e e eeeemmeememmeee e em e m e ————— e, ——————
1844 | 1.78 .87 3.61 5.57  (Cornfield)
44 64 | 1.32 .87 1.99 19.56  (Cornfiel d)
4| 1.02 .42 2.43 4. 77 (Cornfield)
______ o e e e e e e e e e e e e e e e e e e e e e e e e e e mm—— i —— =
O ude | .68 .53 .88 (Gornfield)
M H conbi ned | 1.36 .97 1.90

_________________ o e e e e e e e e e e e e e e e e e e e e e e m e m—— e — =
Test of honogeneity (MH chi2(2) = 0.95 Pr>chi2 = 0.6234

Test that conbined OR = 1:

Mant el - Haenszel chi2(1) = 3.24
Pr>chi2 =  0.0719
Also available...
cc i _dead i_snoke [freg=nunber], by(age) wool f

cc i _dead i_snoke [freq=nunber], by(age) tb

*tb = "test-based"

stratified data

Aggregating Odds Ratio (OR)'s ...Woolf's Method

Recall: datafrom single 2x2 table: or = ad

bc
SE[ In (or) ] =V;+%+g+é
data from several (K) 2x2 tables:

(S: summation over strata)

a wy In (or)
é Wk
with wy = 1
K= Var[ In[ory] ]

(note: Var = SE?)

SE[In (Orwooif)] =\ ,éi\/k =\ /V}?r [see drivation #]

(Var* : harmonic mean of K Var's)

In (OI‘W00| f) = (weighted average)

(weight p 1/ variance)

CI[OR] =exp{ CI[ In(OR)]}

# Derivation: Va[S{w " In} /Sw] = (1/Sw])2~ S{w?2 " Varln]}

= (USW])2” S{1w} =1USw  [sincew = Livarin] ]

See worked example in Spreadsheet (under Resources Ch 9)

[Robins-Breslow-Greenland SE for In oryy not programmed]

References; A&B Ch 4.8 and 16, Schlesselman, KKM, Rothman...

Summary Risk Ratio and Summary Rate Ratio

See Rothman pp 147- (Risk Ratio) and ppl153- (Rate Ratio)
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stratified data

Berkeley Data: M:F Comparative parameters Odds Ratio (OR), Risk Ratio (RR) and Risk Difference (RA)

E E (Wsing KKMtabl e 17.16 notati on)

D a b | m
D c d | m

ni no | n for RA for OR for RR for

ad  ad bec asng asng beny .

Facul ty a/ng b/ng RD bec n n beny n n var ( RD)
Admitted? Men Vnen Al

A Y 512 89 | 601 0.62 0.82 -0.20| 0.35 10.4 29.9 0.75 59.3 78.7 1.63E-3
N 313 19 | 332
Al 825 108 | 933

B Y 353 17 | 370 0.63 0.68 -0.05| 0.80 4.8 6.0 0.93 15.1 16.3 9.12E-3
N 207 8 | 215
Al 560 25 | 585

C Y 120 202 | 322 0.37 0.34 +0.03| 1.13 51.1 45.1 1.08 77.5 71.5 1. 10E-3
N 205 391 | 596
Al 325 593 | 918

D Y 138 131 | 269 0.33 0.35 -0.02| 0.92 42.5 46.1 0.95 65.3 69.0 1. 14E-3
N 279 244 | 523
Al 417 375 | 792

E Y 53 94 | 147 0.28 0.24 +0.04 | 1.22 27.1 22.2 1.16 35.7 30.7 1.51E-3
N 138 299 | 437
Al 191 393 | 584

F Y 22 24 | 101 0.06 0.07 -0.01] 0.83 9.8 11.8 0.84 10.5 12.5 3.41E-4
N 351 317 | 668
Al 373 341 | 769

All Y 1198 557 | 1755 0.44 0.30 +0.14 1.84 1.47
N 1493 1278 | 2771
All 373 341 | 4526
a: 145.8 161.1 263.4 278.7
_145.8 _ _263.4 _
OR'V'H_ilGl.l =0.91 RRMH—7278.7—0.94

RA

w = 1/var

614

110

913

879

661

2935

6113

aw RD

RD,, =

aw

* var(RD) = Sum of 2 binomial variances
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w RD

-125

-5

26

25

-33

-129

_-129 _
T 6113 T

-0.02



Test of equal M:F admission rates; Confidence Intervals for ORyy (Berkel ey data, KKMand A& notation; cf.

stratified data

TEST JTM = JTF

Facul ty E a| H] Var[aH)]
Adm tted? Men VWnen Al
A Y 512 89 | 601 531.4 21.9
N 313 19 | 332
Al 825 108 | 933
B Y 353 17 | 370 354.2 5.6
N 207 8| 215
Al 560 25 | 585
C Y 120 202 | 322 114.0 47.9
N 205 391 | 596
Al 325 593 | 918
D Y 138 131 | 269 141.6 44.3
N 279 244 | 523
Al 417 375 | 792
E Y 53 94 | 147 48.1 24.3
N 138 299 | 437
Al 191 393 | 584
F Y 22 24 | 101 24.0 10.8
N 351 317 | 668
Al 373 341 | 769
All Y 1198 557 | 1755
N 1493 1278 | 2771
All 373 341 | 4526

a: 1213.4 154.7

{ &a — &dalH] }? _ {1198 — 1213.4}2
avar[ al Hy) B 154. 7

ThisMH X2 of 1.52 is"NS" in the c2 1df distribution

=1.52 [#

[#] see Rothnan2002, pl62

Cl for ORw
(Met hod of Robi ns,
atd  btc  ad
n
(Q

n
(R
0.57 0.43 10.4

bec

n n
(P) (S PR

29.9 5.9

0.62 0.38 4.8 6.0 3.0

0.56 0.44 51.1 45.1 28.5

0.48 0.52 42.5 46.1 20.5

0.60 0.40 27.1 22.2 16.4

0.47 0.53 9.8 11.8 4.6

[notation from AB p461]
Bresl ow & G eenl and 1986 *)

PS QR QS
17.0 4.5 12.9
3.7 1.8 2.3

25.1 22.7 20.0

22.3 22

13.4 10

56 5

.0 23.9

.8 8.8

.1 6.2

Rot hnan2002, p152 uses different notation

AB {RS, P,Q -> Rothman{GH P, Q

145.8 161.1 78.9 87.1 66.9 74.1

(R) (S)
aP-R  4[P-S + aQs
Varl In ORuw] = 55 + LF0 T @R + 523
_ _78.9 87.1 + 66.9] 74.1 _
T 2e145.82  2014.5.8+161.1 ' 2+161.12 ~ 0. 0066

continued at top of next colum ...
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Rot hman' 02, Tabl e 8.4, p152)

Cl ORyy conti nued. . .

INnCRyy = 1n 0.91 = -0.10
Var[ I nCRy 1 = 0. 0066
SEH I n(Ry] =Ovar = 0. 08
Al nCRy = -0.10 + z+0.08
= —0.26 to 0.06 (95%
al Rwl =
exp[—0.26] to exp[ 0. 06]

=0.77 to 1. 06

Cl [ORMH] "test-based" (Mettinen 1976)
Chi-MH = |Inoryy| / SE[lnoryy] ===>
SE[In orpyp]=|In orpmy| / Chi-MH {0.10/¢1. 52= 0.08}
CI[InORmy] =Inor £ zSE[ Inorypy ]
CI[ORMH] =CI [exp[In ormH]]

= exp[CI for In] = oryyl!  Z/Chi-MH]

[1+ 1.96/1.52]

= OrvH inour example

Cl [RA] ... (continued fromlast column, previous page)
SE[RA] =v/1/>w = 0.013
Cl [RA] =-0.02+z" 0.013



