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The concepts that case-referent studies provide for the estimation of “relative
risk” only if the illness is “rare,” and that the rates and risks themselves are
inestimable, are overly superficial and restrictive. The ratio of incidence
densities (forces of morbidity}—and thereby the instantaneous risk-ratio—is
estimable without any rarity-assumption. Long-term risk-ratio can be computed
through the .coupling of case-referent data on exposure rates for various
age-categories with estimates, possibly from the study itself, of the correspond-
ing age-specific incidence-densities for the exposed and nonexposed combined
—but again, no rarity-assumption is involved. Such data also provide for the
assessment of exposure-specific absolute incidence-rates and risks. Point
estimation of the various parameters can be based on simple relationships
among them, and in interval estimation it is sufficient simply to couple the point

estimate with the value of the chi square statistic used in significance testing.

biometry; statistics

The principles that currently govern epi-
demiologic thinking as to the fundamen-
tals of case-referent (case-“control”) stud-
ies do not apply to the most common type
of such study in chronic-disease epidemiol-
ogy. Here the principles are extended to
encompass this kind of study. A simple,
general-purpose statistical approach is also
proposed. The results presented are gener-
ally self-evident, but some explanations
are offered in appendix 1.

1. The classical principles

1.1. Essence. The prevailing principles
concerning the estimability of parameters
in case-referent studies derive from a clas-
sical paper by Cornfield (1). The principles
might be expressed as follows (1, 2): First,
the ratio of the odds of developing the
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illness for the exposed as compared to the
non-exposed equals the ratio of the odds of
having been exposed, contrasting cases of
the illness to a reference series, and there-
fore the illness-odds ratio contrasting the
exposed to the non-exposed is estimable
from case-referent studies; and second, this
parameter is approximately equal to the
risk ratio when the illness is rare. The
rationale is as follows (1, 2): Given risks of
illness R, = A/(A + C) and R, = B/(B + D)
for exposed and non-exposed people, re-
spectively, the odds ratio for the illness is
[Rl/(l - Rl)]/[RO/(l - Ro)] = AD/BC =
(A/B)/(C/D). The last formulation for the
odds ratio for illness between the exposed
and the non-exposed reveals the identity of
this parameter with the odds ratio for past
exposure between cases and non-cases. Ob-
viously, the ratio A/B is estimable from a
series of cases, and C/D can be estimated
from a reference (comparison, ‘‘control”)
series. Finally, the odds ratio parameter
can be seen to equal the risk ratio (R,/Ro)
itself on the condition that (1 — Ry)/(1 -
R,) = 1, and this condition obtains with
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good approximation if the illness is rare.

1.2. Applicability. Upon careful appre-
ciation of that rationale it is apparent that
the classical principles of estimability ap-
ply, as such, to a particular type of case-
referent study only. This special type is the
one in which the subjects are ascertained at
or after the end of the entire risk-period of
interest. Such studies, though common-
place in acute-disease epidemiology, are
rare in the chronic-disease field. (A con-
spicuous example is, however, the study of
teratogenesis by means of ascertaining
malformed and healthy newborns and
comparing their exposure-histories in refer-
ence to the period of organogenesis.)

If formulated in terms of prevalence
rather than risk, the classical rationale for
estimability in case-referent studies also
implies that studies based on prevalent
cases provide for the estimation of
prevalence-odds ratio; and when the preva-
lences are low, this parameter is practically
interchangeable with the prevalence ratio
itself. _

The classical rationale does not, how-
ever, bear on the ordinary tvpe of case-
referent study in chronic-disease

epidemiology—the type of study in which-

ascertainment occurs before the individual
risk-periods are over, and in which incident
rather than prevalent cases are enrolled.

2. The nature of the study

For a given exposure and illness, the
objectives of a case-referent study are basi-
cally no different from those of a follow-up
(“cohort”) study. Thus, with reference to
populations it is desired to learn about
rates of occurrence of the illness in relation
to the exposure (possibly in causal terms),
within categories of age and other charac-
teristics; and for individuals the concern is
with risks (for various time periods) of the
development of the illness in relation to the
exposure, conditional on age and other
characteristics.

The defining features of case-referent
studies are that a series of people with and

another without the illness are enrolled,
and that their profiles with respect to the
exposure, past or present, are ascertained
and compared.

The internal validity of the study in-
volves the following components: a) valid-
ity of selection: the probability of ascer-
tainment is uninfluenced by the exposure
history or status itself; b) validity of obser-
vation: lack of misclassification between
cases and non-cases ({referents, com-
parends, “controls”) and between exposed
and nonexposed; and c¢) validity of compar-
ison: the use of a reference entity (usually
diagnostic category) unrelated to the expo-
sure, and the control of confounding.

3. Incidence density

3.1. The parameters. Incidence density
(“force of morbidity” or “force of mor-
tality”’)—perhaps the most fundamental
measure of the occurrence of illness—is the
number of new cases divided by the popu-
lation-time (person-years of observation)
in which they occur. For scientific purposes
this measure is more meaningful if the
experience of only actual candidates for the
illness are considered in defining the popu-
lation-time, i.e., if prevalent cases are not
counted as contributing to the follow-up
experience. For example, the incidence
density of death is more meaningfully—
and routinely—expressed in reference to
follow-up experience with the living rather
than with the living and the dead com-
bined. In these terms, then, for the exposed
described in figure 1 the incidence density
(ID,) in the time interval from ¢’ to t'’ is
defined as

ID, = a"/C(t" - ') (1)
instead of ID, = a''/(A + C) (t"" — t'). For
the nonexposed, similarly,

ID, = b"/D(t" ~ t'). (2)
It follows that the incidence density ratio

(IDR) relating the exposed to the nonex-
posed is

IDR = (a"/b")/(C/D), (3)



t' TIME t”
. -
STUDY PERIOD
£
] EXPOSED
23
31 {0
. NONEXPOSED‘b
5%
(8]
Poputation component  |Size I fncid. density
Exposed prevalence pool | A [¥ E: 0
Exposed candidate pool Io) a*/ Cit”-t")
Nonexp. prevalence pool | B [}
Nonexposed candid. pool | D 1 ‘ | I b/ Dt - t)
Total N (a"+ 0"/ (CHOIE"- 1)

Ficure 1. Static population (e.g. a particular age-
group) over the time-span of a case-referent study
based on incident cases. The sizes of the different
component populations remain static, but there is
turnover of membership in each compartment. The
arrows indicate occurrences of new cases, i.e., transi-
tions from the candidate pools to the prevalence
pools. Note that the incidence-densities are zero in
each of the prevalence pools, and that the incident
cases are referred to the follow-up experiences in the
candidate pools only. Also note that the incidence-
density ratio is (a’'/b'VAC/D), with a''/b'" and C/D
estimable from the (incident) cases and referents,
respectively, regardless of the levels of incidence or
prevalence.

while the other relative measure, inci-
dence density difference (IDD), is
IDD = (a"/C = b"'/D)/(t" — t'). (4)

3.2. Estimability of ratio. In a case-refer-
ent study involving incident rather than
prevalent cases, the cases (a exposed and b
non-exposed) provide for the estimation of
a'/b" (as a/b), and C/D is estimable from
the reference series (as c¢/d, the ratio of the
sample numbers of exposed and non-
exposed referents from the total pool of
candidates for the illness). Consequently,
the incidence density ratio is estimable
from such studies; and in particular, no
rarity-assumption is required for this. If
the study is based on prevalent rather than
incident cases, then it is necessary to
assume that the duration of the illness is
unrelated to the exposure.

3.3. Estimability of absolute parameters
and difference. If the overall incidence
density, for the exposed and the non-
exposed combined, is known, then case-
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referent data provide for the estimation of -
the exposure-specific values and, thereby,
for the estimation of the difference meé_
sure of relative occurrence (IDD). Evep
though this is well known, the prevailing
principles of this estimation (1, 2) require
added specificity as well as extension.

Sometimes a case-referent study in.
volves complete ascertainment of new
cases (over a particular time period) in a
well-defined population of known size (N =
A + B + C + D; cf. figure 1) (3, 4). If the
reference series (of size n) is drawn from
the total source populations, i.e., without
excluding prevalent cases in the ascertain-
ment, then it is always feasible to estimate
C (as ¢N/n) and D (as dN/n) and therefore
ID, and ID, themselves (cf. formulas 1 and
2) as well as their difference. No rarity-
assumption is involved in this. In (the
usual) instances in which the reference
series is (unnecessarily) confined to non-
cases, this type of estimation of ID, and ID,
is feasible if it is realistic to assume low
prevalence ((C + D)/N = 1).

When those conditions do not obtain, it
still is commonplace to have a priori
knowledge about the overall incidence den-
sity (ID) for the exposed and non-exposed
combined (for various categories of age and
sex). Ordinarily, however, the overall inci-
dence density is not known in the proper
terms, with prevalent cases excluded in the
computation of the population-time of ex-
perience. When this is the case, the refer-
ence series should again be drawn without
excluding prevalent cases, and the proper
incidence density (ID) may then be esti-
mated from the available, improper value
(ID*) as

D — (ID*)n/(c + d), (5)

where n is the size of the reference series
from the age category at issue, and ¢ + d Is
the size of the unaffected subgroup of it.
Given an estimate of the overall inci-
dence density, whether from the study
itself or from an outside source, the sepa-
rate estimates for the exposed and nonex-
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posed can usually be determined from the
relations

ID, = (IDR) (ID) (1 — EF) (6)
and
ID, - (ID) (1 - EF), (7)

respectively, where EF is the etiologic frac-
tion (proportion of all cases) related (or
perhaps even attributable) to the exposure.
The IDR is estimable as already discussed,
and the EF has (5) the structure of

EF - [(IDR - )/(IDR)] (ER,), (8)

where ER, is the exposure rate among
incident cases (i.e., ER, = a''/(a” + b")).
This approach is applicable when the asso-
ciation between the exposure angihe ill-
ness is non-negative in the data (/DR > 1).
Otherwise one may use the relationships

ID, = (IDR) (ID)/(1 — PF) (9)
and
ID, = (ID)/(1 — PF), (10)

where PF is the preventive fraction related
to the exposure. It may be estimated (5)
through the expression

PF = (1 - IDR) (ER))/|(1 — ER,) IDR)
+ ER,]. (11)

4. Cumulative incidence-rate and risk

4.1. The parameters. Even though the
source population of subjects tends to con-
stitute a (dynamically) static group in
each category of age (figure 1), with new
people continually entering it at the lower
bound (and within the range) of age and
others exiting it (within the range and) at
the upper bound, the data from successive
age categories may be used to make infer-
ences about an aging cohort of fixed mem-
bership and homogeneous, though continu-
ally increasing, age.

With regard to such an age-cohort, the
interest is, firstly in the cumulative inci-
dence of the group as it passes from one age
to another, and, secondly, in the corre-
sponding risks of its individual members.
The cumulative incidence-rate for a span

of age is the proportion of the group devel!
oping the illness in that period, while the
risk for an individual is the probability of
his developing the illness in the particular
span of age.

As a function of incidence density (ID) of
first episodes of the illness (among those
who never had it), the cumulative inci-
dence-rate (CIR) for the age span a’ toa'’ is
(6), given survival from other illnesses,

CIRy o = 1 — exp [~ [2., (ID,) da]. (12)

If age is discretized, then the cumulative
incidence-rate (conditional on survival)
over successive categories j' through j'’ has
the approximate expression of

i
CIR;. ;.- =1 - exp [—E(IDj)wj] , (13)
j=J’
where w; is the width of the j** category.
When the cumulative incidence-rate is
small, say less than 10 per cent, it may be
reasonably approximated as

CIR,. ... = Ja. (IDy)da (14)

or as

o

CIR; ;. =y (ID)w,. (15)
= :

Risk (R, for an individual) is the ex-

pected value of the cumulative incidence-

rate (for a group):

S
Reo = E(CIR,. ,.) (16)

4.2. Estimability of ratio. The estamabil-
ity of cumulative incidence and risk from
case-referent data is dependent, through
the above relationships, on the estimability
of incidence density.

The ratio of instantaneous risks is identi-
cal to the ratio of the corresponding inci-
dence densities (cf. formula 15), so that the
instantaneous risk ratio is estimable
(through the exposure-odds ratio of inci-
dent cases) without any rarity-assumption
in reference to either incidence density or
prevalence.

For a longer span of age, from the begin-
ning of category j' to the end of category j",
the risk ratio (assuming survival from other
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illnesses) is somewhat complicated: Even if
the risk over that age span for both the
exposed and the non-exposed is low enough
to justify the use of formula 15, the corre-
sponding risk ratio (RR) approximation is

j' I
RRy.y = 3 (IDyw)/ 2 (Do) w,

J i
= YW, (IDR)/>, W, , (17
i=i' j=J
where W, = (ID,)w;, and where the sub-
scripts 1 and O refer to the exposed and the
non-exposed, respectively, as before. Thus,
the (point) estimation of the risk ratio over
several categories of age, even when the
risks themselves over that age span are
small, involves the computation of a
weighted average of the age-specific den-
sity ratios; and what is more, the weights
involve the actual incidence densities of
the non-exposed or at least numbers pro-
portional to these. The determination of
the weights can pose a serious problem,
although the relationships in equations 7
and 10 tend to be very helpful. If the risks
are not “low,” then it is necessary to
compute the ratio directly from the expo-
sure-specific estimates of absolute risk.
4.3. Estimability of absolute parameters
and difference. The exposure-specific risks
over several age-categories, together with
the corresponding risk differences, are in
principle estimable through the applica-
tion of formula 13. This requires that the
overall age-specific incidence densities, for
the exposed and non-exposed combined,
are estimable from the data or known a
priori, so that exposure-specific incidence
densities are estimable within the cate-
gories of age (see section 3).

5. Prevalence rate

As was already noted, a case-referent
study based on prevalent cases provides for
the estimation of prevalence-odds ratio;
and if the prevalence rate is low among
both the exposed and the non-exposed,
then the prevalence-odds ratio is approxi-
mately equal to the prevalence ratio itself.

This principle allows the estimation of
(age-specific) ratio measures of relative
prevalence with great ease, both concep-
tual and procedural.

But when a case-referent study is based
on incident cases, as it usually is, inference
about the relative prevalence among the
exposed and the non-exposed involves
some subtlety. Consider first a closed pop-
ulation with a static profile over time as to
age-distribution etc. People make transi-
tions from the candidate pool to the preva-
lence pool, and from the prevalence pool
either back to the candidate pool or out of
the population through death (figure 1),
The static state is characterized by an
equilibrium between the inceptions of new
cases and the terminations of prevalent
ones. Specifically, in a population of size
N, the equilibrium prevalence rate PR, a
fraction, satisfies the relationship N1 -
PR) (ID) = N(PR) (TD) or

(1 - PR) (ID) = (PR) (TD),  (18)
where TD stands for the termination den-
sity in the prevalence pool, l.e., for the
number of case terminations (by cure or
death) divided by the case-time of experi-
ence in which they occurred. In the equilib-
rium state TD = 1/D, the inverse of the
mean duration of the illness. Substitution
of this into equation 18 yields, as the
static-state relationship of prevalence to
incidence density,

PR - (ID)D/{1 + (ID)D]. (19)

As a deduction, then, the prevalence-odds
are simply

(PR)/(1 -~ PR) = ID)D; (20)

and furthermore, for a comparison of the
exposed (subscript 1) to the non-exposed
(subscript 0), the prevalence-odds ratio
(POR) is

POR = [(PR,)/(1-PR)1/[(PR,)/1 - PR,)]
- (IDYD,/UD)D, (21)
- IDRitD, = D,.

Thus, in a static population, the preva-
lence-odds ratio is estimable in the same
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terms as the incidence density ratio—
through the exposure-odds ratio between
the cases and the referents, without any
rarity-assumption (cf. section 3). And
again, if both of the exposure-specific pre-
valences are low, the prevalence-odds ratio
is approximately equal to the prevalence
ratio itself.

Now consider a limited category of age.
Even if the population of interest in such a
category can be thought of as static (with
turnover) over time, and usually this is the
case, the prevalence for it is not repre-
sented by formula 19 with the ordinary
meaning for incidence density and dura-
tion. Instead, if that formula were to be
used, the tally of incident cases in any
given period of time would have to include
the ones that enter the age-specific preva-
lence pool as carryover cases from the
previous category of age; also, the mean
duration of the illness should be adjusted
downward to reflect those terminations
within the category which result from cases
reaching the upper bound of the category.
The implementation of these considera-
tions, in terms of formula 19 or otherwise,
does not lead to any simple expression of
wide applicability.

6. Example

Cole et al. identified all newly-diagnosed
cases of bladder cancer in a (static) popula-
tion (eastern Massachusetts) of known size
over an 18-month period, drew a reference
series from the source-population of the
cases, and Inquired (inter alia) into the
subjects’ histories with respect to cigarette-
smoking (4). Some of the data (7) are
presented in table 1.

The data allow the computation of age-
specific overall incidence densities. For
example, for the 50- to 54-years category
the value is 35/(77,400) (1.5 years) = 30/10°
years (cf. formulas 1 and 2). Actually this
result ought to be corrected by allowing for
prevalent cases {(formula 5), but such a
correction, which would be negligible in
magnitude, is not feasible, because preva-
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lent cases were excluded without tally in
the selection of the reference series. The
age-specific values obtained within the
study are in close conformity with those
derived (without prevalence correction)
from the cancer registry of a neighboring
region (Connecticut) a few years earlier (8).
The latter data, too, are shown in table 1.

The samples of cases and noncases in
each category of age allow the estimation of
the corresponding incidence density ratio
(without any rarity-assumption). For ex-
ample, for the 50- to 54-years age category,
the incidence density ratio (IDR)—i.e., the
incidence density for smokers (ID,) divided
by that for nonsmokers (ID,)—is estimated
to be IDR = (24/1)/(22/4) = 4.36 (formula
3).

In order to provide for the estimation of
absolute incidence density separately for
smokers and nonsmokers, and as a matter
of interest in its own right, the age-specific
estimates for the etiologic fraction (wi/t\h_
IDR > 1) or the preventive fraction (IDR
< 1) are computed next. Thus, for the/5Q—
to H4-years category age, for which IDR
(= 4.36) > 1, the etiologic fraction is
estimated as follows: EF - [(4.36 — 1)/
4.36]24/25 = 0.74 (fog&ula 8). For the 60-
to 64-years category IDR (= 0.49) < 1, and
therefore the preventive fraction is cgl\cu-
lated (without inferring prevention): PF =
(1 — 0.49) (31/36)/[(1 — 31/36) (0.49) +
31/36] = 0.47 (formula 11).

The incidence density estimates specific
for the exposed and the non-exposed are
then computed by the use of either for-
mulas 6 arﬁi\7 (if IDR > 1) or formulas 9
and 10 (if IDE < 1). For the 50- to 54-years
category the estimate for smokers is (4.36)
(30/10° years) (1 — 0.74) = 34/10° years
(formula 6), while the corresponding result
for nonsmokers is (30/10° years) (1 — 0.74)
= 8/10° years (formula 7). In the 60- to
64-years category the estimate for smokers
is 0.49 (56/10° years)/(1 — 0.47) = 52/10°
years (formula 9), while for nonsmokers it
is (56/10° years)/(1 — 0.47) = 110/10° years.

Turning to the assessment of risk, con-



TaBLE 1
Case-referent data by Cole et al. (4) and Cole (7) relating the incidence of bladder cancer to cigarette-smoking in men of various ages. The study involved
complete ascertainment of newly-diagnosed cases in a population (eastern Massachusetts) of known size by age. Interviews were confined to a sample of
cases as well as of non-cases. See section 6.

Overall incidence No. of study subjects S . Fxpos specific incid
density* in Bow_:m.qﬁm"ma xcomc.nm.%mo;_% incidence
A No. of neW  gSjze of source (10% years) ! Cases Referents Incidence fraction of cases density in (10° years)
ge (years)  cases within opulati densit
18 months population - ensity
in 103 Stud Connecticut Sm. o+t Sm.— Sm.+ Sir ratio
y region (8) ' ) ) Etiologic Preventive Sm. + Sm. -
50-54 35 77.4 30 (29) 24 1 22 4 4.36 .74 34 8
55-59 52 68.4 51 (48) 35 2 35 4 2.00 47 54 27
60-64 52 61.5 56 (65) 31 5 38 3 .49 .48 52 110
65-69 86 47.4 120 (130) 46 7 42 15 2.35 .50 140 60
70-74 105 38.0 180 (170) 60 13 51 28 2.53 .50 230 90
75-79 76 23.2 220 (200) 39 14 32 20 1.74 .31 260 150

30-year risk at age 50 years given survival from other illness:
Smokers: muo. s = [(34 + 54 + 52 + 140 4 230 + 260)/10° years] (5 years) = 0.0385 = 3.9 per cent.
Nonsmokers: wz, so = [(8 + 27 + 110 + 60 + 90 + 150)/10° years] (5 years) = 0.0223 = 2.2 per cent.
Risk ratio estimate: mwmo_ eo = 3.85/2.23 = 1.7
Risk difference estimate: M/bg. so = (3.85 — 2.23) per cent = 1.6 per cent.

* Two-digit accuracy.
+Sm+ and Sm—: smoker and nonsmoker, respectively.
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sider the 30-year risk of bladder cancer for
a b0-year-old man, assuming that without
bladder cancer he would survive that pe-
riod. If theA man is a smoker, then the
estimateis Ryg40 = 1 — exp { — [(34 + 54 +
52 + 140 + 230 + 260)/10° years |5 vears} =
1 - exp(-0.0385) = 1 — antil, (—0.0385) =
3.8 per cent (formulas 16 and 13). Almost
the same result can be obtained more
simply from the approximate expression in
formula 15. For a nonsmoker the corre-
sponding estimate is 2.2 per cent. The
estimate of the 30-year risk ratio at age 50
vears is, then, 3.8/2.2 - 1.7, and the
corresponding risk difference estimate is
(3.8 — 2.2) per cent = 1.6 per cent.

7. Statistical aspects

7.1. Point estimation. As was illustrated
in the above example, the various paramet-
ric relationships that were set forth provide
for straight-forward point estimation of the
various parameters of most direct interest.
In the expressions for those parameters, the
component parameters were simply re-
placed by their “‘sample values.” This is
essentially tantamount to maximum-
likelihood estimation, with all its desirable
properties, in large samples in particular.

7.2. Interval estimation. For incidence
density ratio at any given age, large-sam-
ple 100(1-a) per cent two-sided confi-
dence limits (IDR and IDR) may be set
simply as

IDR]IDR - (IDR)*=e«2/X (22

where gq,, is the 100(1 — a/2) percentile of
the standard Gaussian distribution, and
where x is the positive square root of the 1
d.f. chi square statistic for significance
testing of the association (9). The chi may
derive from the ordinary test for a single
two-by-two table or from the Mantel-
Haenszel procedure (10). Correspondingly,
the point estimate (fDT?) is either the
“cross-product ratio” from a single two-by-
two table (1) or an appropriate estimate
based on multiple tables (11). The limits
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for the incidence density ratio are also the
limits for the instantaneous risk ratio.

For the risk ratio from age a' to age a'
the limits may be set in an analogous
manner:

RR, o KRRy o = (RRg.q )82 /X (23)

The chi still derives from the overall signif-
icance test. For example, if limits were to
be set for the risk ratio for which the point
estimate was derived in table 1 and section
6, the chi value would be computed in
terms of the Mantel-Haenszel test statistic
(10) for the totality of age-specific two-by-
two tables for which the data are given in
table 1.

For the corresponding risk difference
(RD) the limits may be taken as

ﬂDaﬂa”vFIja’.a” = (é\D)(l + ga/z/X)- (24)

For the etiologic and preventive fractions
the upper confidence bound cannot exceed
unity, while the lower bound must be zero
when g, = x (and also when g, > x).
Those constraints suggest the use of the
limits

EF,EF =1 — (1 — EF)=ta/2/x

(with EF > 0)  (25)
and
PF, PF = 1 — (1 - PF)‘=ear2l

(with PF >0). (26)

As to the incidence density among the
exposed (formulas 6 and 9) or the non-ex-
posed (formulas 7 and 10) the limits may
be set as

ID, 1D, = (ID) exp (+£4,.V}*), (27)
i = 1, 0, where \2- is the varig\nce estimate
of the natural logarithm of ID;. This vari-
ance estimate may be taken as

V.- V+ InD) - In(D)1?/x?% (28)

where V is the variance estimate for the
natural logarithm of the estimated overall
incidence density (ID), computable as

V- 1 +b, (29)

l.e., as the inverse of the total number of
cases involved in the estimate.
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Finally consider confidence limits for
the exposure-specific risks, such as the
ones examined in table 1 and section 6. In
the usual situation, in which the risks are
quite low, the limits may be taken as

R, R, = R exp (22,1,  (30)
where ¥, is an estimate of the variance of
the natural logarithm of the point estimate.
For the overall risk (formulas 13 and 15)
one may use

V= 3,[dD)a", + b)) Yw)/R2 (31)

where a'’;, + b"’; is the number of cases on
which ID, is based. For the exposed and
the non-exposed, the corresponding vari-
ances may be taken as

7 -V+nR -InRYx:, (32
[ = 1, 0. Here the x? is still the 1 d.f. chi
square statistic (10) for testing the hypoth-
esis of no association.

Example. As an illustration of interval
estimation of risk, consider again the data
in table 1 and section 6, specifically the
30-year risk at age 50 years. The point es-
timate of the overall\risk according to for-
mula 13 (and 16) is R = 1 — exp {— [(30 +
51 + 56 + 120 + 180 + 220)/10° years]
5 years} = 1 — exp (-0.0329) = 3.2 per
cent. For the variance of its logarithm the
estimate (formula 31) is V = {{(30%)/35+
.. +(220)2/76]/(10° years)?} (5 years)?/
(0.0323)2 = 0.0030. The corresponding 95
per cent confidence limits (formula 30) are,
then, R, R = (0.032) exp [+1.96(0.0030)*] =
2.9 per cent, 3.6 per cent. For the Mantel-
Haenszel chi square, consider the exposed
cases; the observed number is 244 ...
139 — 235, while the expectation (10) and
variance (10) are 220.4 and 22.12, respec-
tively, giving x? = (235 - 220.4)%/22.1 =
9.6. Thus, with risk estimates R, = 3.8
per cent and R, = 2.2 per cent (section 6),
the variance estimate for the logarithm of
the risk for smokers (formula 32) is \71 =
0.0030 + (In 0.038 - In 0.032)2/9.6 =
0061, so that V# = 0.078. With this, th
95 per cent confidence limits (formula 30)

OLLI MIETTINEN

are (3.8 per cent) exp [+1.96(0.078)] = 3.3
per cent, 4.4 per cent.
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APPENDIX 1
Test-based confidence limits

Ordinarily, large-sample confidence lim-
its for a parameter (w) are set as

x, 7 = ff(R) £ a2 (SE; ) 1. (A1)

The transformation function (f) is chosen
with the aim of attaining a Gaussian and
stable-variance sampling distribution for
the metameter (f(%)) of the point estimate
(%); and the standard error, SE, is usually
computed as a first-order Taylor series
approximation, i.e., as (SE»f' (7).

In the context of the estimates dealt with
in the above, the formulation of the stan-
dard error according to the ordinary princi-
ples would tend to involve substantial
complexity. At the same time, point esti-
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mation and significance-testing are quite
simple.

This suggests the computation of the
standard error from the point estimate and
the test statistic. The rationale of this ap-
proach may not be completely transparent
in the results offered, and some explana-
tory remarks may therefore be in order.

Consider first a parameter (w) with an
expressly known null value (7 ;) correspond-
ing to the absence of any association be-
tween the exposure and the illness, i.e., a
parameter such as rate ratio (r, = 1), rate
difference (w, = 0) or etiologic fraction
(r, = 0). Given that the metameter is suc-
cessfully chosen (vide supra),

[f(#) — f(x) ]*/[SEc(#)]* = x* (A.2)
if # = m,, the chi square having one degree
of freedom. Solving this for the standard
error and substituting the result to formula
A.1 yields
T, ® = () = gunl[A(#)

— flz ) 1/x}, (A.3)

where x is a square root (positive or neg-
ative) of x?2. Finally, the chi value in this
formulation may in fact be obtained from
the Mantel-Haenszel statistic (10}, which
bears on the same null hypothesis. This
principle underlies formulas 22-26, with no
transformation in formula 24, and with the
transformation f(-) = In[1 — (.)] in formu-
las 25 and 26, the inverse function being
=1 () =1 —exp ().

When the null value is not firmly known, ¢
as when dealing with absolute exposure-
specific rates or risks (formulas 27 and 30),
formula A.1 is still used. Here the compu-
tation of the standard error is somewhat
more complicated. We have, analogously
with formula A.2,

[f(r‘r.) - f(?r(,)]z/ [SEfu‘q)-f(frow]z = XZ, (A.4)

with the subscripts referring to the ex-
posed and non-exposed respectively, as
before. But equivalently,

A=) - =)}/
[SEf(?r,>—f<,¢)]2 = X2, (A.5)

{ = 1, 0, where 7 is the overall estimate for
the exposed (i=1) and non-exposed (i=0)
combined. As a further modification,

(f#) — (B PHISE, 40]°

~— [SE; )18 = x% (A6
since [SE, #),]* = [SE; 4+ — )t ot
[SE;; ,]% This implies that

SE, i, = {[SE;+)])* + [f(#)
~ (&) P/x A (A7)

as in formulas 28 and 32.

As to the choice of the metameter, the
square root transformation might be pre-
ferred to the logarithmic one in formulas

27 and 30. This would imply
o, T = (8% £ 8u2 [(SE;)?/47
+ (& - VX (A8)
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FIGURE 1. Static population (e.g. a particular age-



FIGURE 1. Static population (e.g. a particular age-
group) over the time-span of a case-referent study
based on incident cases. The sizes of the different
component populations remain static, but there is
turnover of membership in each compartment. The
arrows indicate occurrences of new cases, 1.e., transi-
tions from the candidate pools to the prevalence
pools. Note that the incidence-densities are zero in
each of the prevalence pools, and that the incident
cases are referred to the follow-up experiences in the
candidate pools only. Also note that the incidence-
density ratio is (a''/b"")/(C/D), with a''/b"" and C/D
estimable from the (incident) cases and referents,
respectively, regardless of the levels of incidence or

prevalence.




