
Survival Analysis,
Overview

Survival analysis is the study of the distribution of
life times, that is, the times from an initiating event
(birth, start of treatment, employment in a given job)
to some terminal event (death, relapse, disability pen-
sion). A distinguishing feature of survival data is the
inevitable presence of incomplete observations, par-
ticularly when the terminal event for some individuals
is not observed; instead, it is only known that this
event is at least later than a given point in time: right
censoring (see Censored Data).

The aims of this entry are to provide a brief
historical sketch of the long development of survival
analysis and to survey what we have found to be
central issues in the current methodology of survival
analysis. Necessarily, this entry is rich in cross-
references to other entries that treat specific subjects
in more detail. However, we have not attempted to
include cross-references to all specific entries within
survival analysis.

History

The Prehistory of Survival Analysis in
Demography and Actuarial Science

Survival analysis is one of the oldest statistical dis-
ciplines with roots in demography and actuarial
science in the seventeenth century; see [49, Chap-
ter 2]; [51] for general accounts of the history of vital
statistics and [22] for specific accounts of the work
before 1750.

The basic life-table methodology in modern ter-
minology amounts to the estimation of a survival
function (one minus distribution function) from life
times with delayed entry (or left truncation; see
below) and right censoring. This was known before
1700, and explicit parametric models at least since
the linear approximation of de Moivre [39] (see e.g.
[22, p. 517]), later examples being due to Lambert
[33, p. 483]:
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and the influential nineteenth-century proposals by
Gompertz [19] and Makeham [37], who modeled the
hazard function as bcx and a + bcx , respectively.

Motivated by the controversy over smallpox inoc-
ulation, D. Bernoulli [5] laid the foundation of the
theory of competing risks; see [44] for a histori-
cal account. The calculation of expected number of
deaths (how many deaths would there have been in
a study population if a given standard set of death
rates applied) also dates back to the eighteenth cen-
tury; see [29] and the article on Historical Controls
in Survival Analysis.

Among the important methodological advances in
the nineteenth century was, in addition to the para-
metric survival analysis models mentioned above, the
graphical simultaneous handling of calendar time and
age in the Lexis Diagram [35, cf. 30].

Two very important themes of modern survival
analysis may be traced to early twentieth century
actuarial mathematics:

Multistate modeling in the particular case of dis-
ability insurance [41] and nonparametric estimation
in continuous time of the survival function in the
competing risk problem under delayed entry and right
censoring [13].

At this time, survival analysis was not an inte-
grated component of theoretical statistics. A charac-
teristic scepticism about “the value of life-tables in
statistical research” was voiced by Greenwood [20]
in the Journal of the Royal Statistical Society, and
Westergaard’s [50] guest appearance in Biometrika
on “Modern problems in vital statistics” had no
reference to sampling variability. This despite the
fact that these two authors were actually statistical
pioneers in survival analysis: Westergaard [48] by
deriving what we would call the standard error of
the standardized mortality ratio (rederived by Yule
[52]; see [29]) (see Standardization Methods); and
Greenwood [21] with his famous expression for “the
‘errors of sampling’ of the survivorship tables”, (see
below).

The “Actuarial” life table and the Kaplan–Meier
Estimator

In the mid-twentieth century, these well-established
demographic and actuarial techniques were presented
to the medical–statistical community in influential
surveys such as those by Berkson and Gage [4]
and Cutler and Ederer [13]. In this approach, time
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is grouped into discrete units (e.g. one-year inter-
vals), and the chain of survival frequencies from
one interval to the next are multiplied together to
form an estimate of the survival probability across
several time periods. The difficulty is in the devel-
opment of the necessary approximations due to the
discrete grouping of the intrinsically continuous time
and the possibly somewhat oblique observation fields
in cohort studies and more complicated demographic
situations. The penetrating study by Kaplan and
Meier [28] (see Kaplan–Meier Estimator), the fas-
cinating genesis of which was chronicled by Bres-
low [8], in principle, eliminated the need for these
approximations in the common situation in medical
statistics where all survival and censoring times are
known precisely. Kaplan and Meier’s tool (which
they traced back to Böhmer [7]) was to shrink the
observation intervals to include at most one observa-
tion per interval. Though overlooked by many later
authors, Kaplan and Meier also formalized the age-
old handling of delayed entry (actually also covered
by Böhmer) through the necessary adjustment for
the risk set, the set of individuals alive and under
observation at a particular value of the relevant time
variable.

Among the variations on the actuarial model, we
will mention two.

Harris et al. [23] anticipated much recent work in,
for example, AIDS survival studies in their general-
ization of the usual life-table estimator to the situation
in which the death and censoring times are known
only in large, irregular intervals (see Grouped Sur-
vival Times).

Ederer et al. [(14)] developed a “relative survival
rate. . . as the ratio of the observed survival rate in a
group of patients to the survival rate expected in a
group similar to the patients . . .” thereby connecting
to the long tradition of comparing observed with
expected; see, for example, [29] and the article on
Historical Controls in Survival Analysis.

Parametric Survival Models

Parametric survival models were well-established in
actuarial science and demography, but have never
dominated medical uses of survival analysis. How-
ever, in the 1950s and 1960s important contributions
to the statistical theory of survival analysis were
based on simple parametric models. One example is
the maximum likelihood approach by Boag [6] to

a cure model assuming eternal life with probability
c and lognormally distributed survival times other-
wise. The exponential distribution was assumed by
Littell [36], when he compared the “actuarial” and
the maximum likelihood approach to the “T -year sur-
vival rate”, by Armitage [3] in his comparative study
of two-sample tests for clinical trials with staggered
entry, and by Feigl and Zelen [16] in their model
for (uncensored) lifetimes whose expectations were
allowed to depend linearly on covariates, generalized
to censored data by Zippin and Armitage [53].

Cox [11] revolutionized survival analysis by his
semiparametric regression model for the hazard,
depending arbitrarily (“nonparametrically”) on time
and parametrically on covariates (see Cox Regres-
sion Model). For details on the genesis of Cox’s
paper, see [42, 43].

Multistate Models

Traditional actuarial and demographical ways of
modeling several life events simultaneously may be
formalized within the probabilistic area of finite-state
Markov processes in continuous time. An impor-
tant and influential documentation of this was by
Fix and Neyman [18], who studied recovery, relapse,
and death (and censoring) in what is now commonly
termed an illness–death model allowing for compet-
ing risks (see Fix–Neyman Process). Chiang [9], for
example, in his 1968 monograph, extensively docu-
mented the relevant stochastic models (see Stochastic
Processes), and Sverdrup [46], in an important paper,
gave a systematic statistical study. These models have
constant transition intensities, although subdivision
of time into intervals allows grouped-time method-
ology of the actuarial life-table type, as carefully
documented by Hoem [24].

Survival Analysis Concepts

The ideal basic independent nonnegative random
variables Xi, i = 1, . . . , n are not always observed
directly. For some individuals i, the available piece
of information is a right-censoring time Ui , that
is, a period elapsed in which the event of interest
has not occurred (e.g. a patient has survived until
Ui). Thus, a generic survival data sample includes
((X̃i , Di), i = 1, . . . , n) where X̃i is the smaller of
Xi and Ui and Di is the indicator, I (Xi ≤ Ui), of
not being censored.
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Mathematically, the distribution of Xi may be
described by the survival function

Si(t) = Pr(Xi > t). (2)

If the hazard function

αi(t) = lim
∆t→0

Pr(Xi ≤ t + ∆t | Xi > t)

∆t
(3)

exists, then

Si(t) = exp(−Ai(t)), (4)

where

Ai(t) =
∫ t

0
αi(u) du (5)

is the integrated hazard over [0, t). If, more generally,
the distribution of the Xi has discrete components,
then Si(t) is given by the product-integral of the
cumulative hazard measure. Owing to the dynamical
nature of survival data, a characterization of the dis-
tribution via the hazard function is often convenient.
(Note that αi(t)∆t when ∆t > 0 is small is approx-
imately the conditional probability of i “dying” just
after time t given “survival” till time t .) Also, αi(t) is
the basic quantity in the counting process approach
to survival analysis (see e.g. [2], and the article on
Survival Distributions and Their Characteristics).

Nonparametric Estimation and Testing

The simplest situation encountered in survival anal-
ysis is the nonparametric estimation of a survival
distribution function based on a right-censored sam-

ple of observation times (X̃1, . . . , X̃n), where the true
survival times Xi, i = 1, . . . , n, are assumed to be
independent and identically distributed with common
survival distribution function S(t), whereas as few
assumptions as possible are usually made about the
right-censoring times Ui except for the assumption
of independent censoring (see Censored Data). The
concept of independent censoring has the interpreta-
tion that the fact that an individual, i, is alive and
uncensored at time t , say, should not provide more
information on the survival time for that individual
than Xi > t , that is, the right-censoring mechanism
should not remove individuals from the study who
are at a particularly high or a particularly low risk of

dying. Under these assumptions, S(t) is estimated by
the Kaplan–Meier estimator [28]. This is given by

Ŝ(t) =
∏

X̃i≤t

[
1 − Di

Y (X̃i)

]
, (6)

where Y (t) = ∑
I (X̃i ≥ t) is the number of individ-

uals at risk just before time t . The Kaplan–Meier
estimator is a nonparametric maximum likelihood
estimator and, in large samples, Ŝ(t) is approximately
normally distributed with mean S(t) and a variance
that may be estimated by Greenwood’s formula:

σ̂ 2(t) = [Ŝ(t)]2
∑

X̃i≤t

Di

Y (X̃i)[Y (X̃i) − 1]
. (7)

From this result, pointwise confidence intervals for
S(t) are easily constructed and, since one can also
show weak convergence of the entire Kaplan–Meier
curve {√(n)[Ŝ(t) − S(t)]; 0 ≤ t ≤ τ }, τ ≤ ∞ to a
mean zero Gaussian process (see Brownian Motion
and Diffusion Processes), simultaneous confidence
bands for S(t) on [0, τ ] can also be set up.

As an alternative to estimating the survival distri-
bution function S(t), the cumulative hazard function
A(t) = − log S(t) may be studied. Thus, A(t) may
be estimated by the Nelson–Aalen Estimator

Â(t) =
∑

X̃i≤t

Di

Y (X̃i)
. (8)

The relation between the estimators Ŝ(t) and Â(t)

is given by the product-integral from which it fol-
lows that their large-sample properties are equivalent.
Though the Kaplan–Meier estimator has the advan-
tage that a survival probability is easier to interpret
than a cumulative hazard function, the Nelson–Aalen
estimator is easier to generalize to multistate situ-
ations beyond the survival data context. We shall
return to this below. To give a nonparametric esti-
mate of the hazard function α(t) itself requires some
smoothing techniques to be applied (see Smoothing
Hazard Rates).

Right censoring is not the only kind of data-
incompleteness to be dealt with in survival analysis;
in particular, left truncation (or delayed entry) where
individuals may not all be followed from time 0 but
maybe from a later entry time Vi conditionally on
having survived until Vi , occurs frequently in, for
example, epidemiological applications. Dealing with
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left truncation only requires a redefinition of the risk
set from the set {i: X̃i ≥ t} of individuals still alive
and uncensored at time t to the set {i: Vi < t ≤ X̃i}
of individuals with entry time Vi < t and who are
still alive and uncensored. With Y (t) still denoting
the size of the risk set at time t both (6), (7), and (8)
are applicable though one should be aware of the fact
that estimates of S(t) and A(t) may be ill-determined
for small values of t due to the left truncation (see
Truncated Survival Times).

When the survival time distributions in a number,
k, of homogeneous groups have been estimated
nonparametrically, it is often of interest to test
the hypothesis H0 of identical hazards in all
groups. Thus, on the basis of censored survival
data ((X̃hi , Dhi), i = 1, . . . , nh) for group h, h =
1, . . . , k, the Nelson–Aalen estimates Âh(t) have
been computed, and based on the combined sample
of size n = ∑

h nh with data ((X̃i, Di), i = 1, . . . , n),
an estimate of the common cumulative hazard
function A(t) under H0 may be obtained by a
Nelson–Aalen estimator Â(t). As a general statistic
for testing H0, one may then use a k-vector of sums
of weighted differences between the increments of
Âh(t) and Â(t):

Zh =
n∑

i=1

Kh(X̃i)[∆Âh(X̃i) − ∆Â(X̃i)]. (9)

Here, ∆Âh(t) = 0 if t is not among the observed
survival times in the hth sample and Kh(t) is 0
whenever Yh(t) = 0, in fact all weight functions used
in practice have the form Kh(t) = Yh(t)K(t). With
this structure for the weight function, the covariance
between Zh and Zj given by (9) is estimated by

σhj =
n∑

i=1

K2(X̃i)
Yh(X̃i)

Y (X̃i)

[
δhj − Yj (X̃i)

Y (X̃i)

]
Di,

(10)

and, letting Z be the k-vector (Z1, . . . , Zk)
′ and

Σ the k by k matrix (σhj , h, j = 1, . . . , k) the test
statistic X2 = Z′Σ−Z is asymptotically chi-squared
distributed under H0 with k − 1 degrees of freedom
if all nh tend to infinity at the same rate. Here, Σ− is
a generalized inverse for Σ (see Matrix Algebra).

Special choices for K(t) correspond to test statis-
tics with different properties for particular alternatives

to H0 (see Linear Rank Tests in Survival Analy-
sis). An important such test statistic is the logrank
test obtained for K(t) = I (Y (t) > 0). For this test,
which has particularly good power for proportional
hazards alternatives, Zh given by (9) reduces to
Zh = Oh − Eh with Oh the total number of observed
failures in group h and Eh = ∑

DiYh(X̃i)/Y (X̃i) an
“expected” number of failures in group h. For the
two-sample case (k = 2), one may of course use the
square root of X2 as an asymptotically normal test
statistic for the null hypothesis. For the case where
the k groups are ordered, and where a score xh (with
x1 ≤ . . . ≤ xk) is attached to group h, a test for trend
is given by T 2 = (x′Z)2/x′Σx with x = (x1, . . . , xk)

′
and it is asymptotically chi-squared with 1 df.

The above linear rank tests have low power
against certain important classes of alternatives such
as “crossing hazards”. Just as for uncensored data,
this has motivated the development of test statis-
tics of the Kolmogorov–Smirnov and Cramèr–von
Mises types, based on maximal deviation or inte-
grated squared deviation between estimated hazards,
cumulative hazards or survival functions.

Parametric Inference

The nonparametric methods outlined in the previ-
ous section have become the standard approach to
the analysis of simple homogeneous survival data
without covariate information. However, parametric
survival time distributions are sometimes used for
inference, and we shall here give a brief review.
Assume again that the true survival times X1, . . . , Xn

are independent and identically distributed with sur-
vival distribution function S(t ; θ) and hazard func-
tion α(t ; θ) but that only a right-censored sample
(X̃i, Di), i = 1, . . . , n, is observed. Under indepen-
dent censoring, the likelihood function for the param-
eter θ is

L(θ) =
n∏

i=1

(α(X̃i ; θ))Di S(X̃i ; θ). (11)

The function (11) may be analyzed using standard
large-sample theory. Thus, standard tests, that
is, Wald-, score-, and likelihood ratio tests are
used as inferential tools (see Chi-square Tests).
Two frequently used parametric survival models
are the Weibull distribution with hazard function
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αρ(αt)ρ−1, and the piecewise exponential distribution
with α(t, θ) = αj for t ∈ Ij with Ij = [tj−1, tj ), 0 =
t0 < tj < · · · < tm = ∞. Both of these distributions
contain the very simplest model, the exponential
distribution with a constant hazard function as
null cases (see Parametric Models in Survival
Analysis).

Comparison with Expected Survival

As a special case of the nonparametric tests discussed
above, a one-sample situation may be studied. This
may be relevant if one wants to compare the observed
survival in the sample with the expected survival
based on a standard life table. Thus, assume that a
hazard function α∗(t) is given and that the hypothesis
H0 : α = α∗ is to be tested. One test statistic for H0 is
the one-sample logrank test (O − E∗)/(E∗)1/2 where
E∗, the “expected” number of deaths is given by
E∗ = ∑

[A∗(X̃i) − A∗(Vi)] (with A∗ the cumulative
hazard corresponding to α∗). In this case, θ̂ = O/E∗,
the standardized mortality ratio, is the maximum like-
lihood estimate for the parameter θ in the model
α(t) = θα∗(t). Thus, the standardized mortality ratio
arises from a multiplicative model involving the
known population hazard α∗(t). Another classical
tool for comparing with expected survival, the so-
called expected survival function, arises from an addi-
tive or excess hazard model (see Excess Mortality;
Expected Number of Deaths; Historical Controls
in Survival Analysis).

The Cox Regression Model

In many applications of survival analysis, the interest
focuses on how covariates may affect the outcome;
in clinical trials, adjustment of treatment effects for
effects of other explanatory variables may be crucial
if the randomized groups are unbalanced with respect
to important prognostic factors, and in epidemiolog-
ical cohort studies, reliable effects of exposure may
be obtained only if some adjustment is made for con-
founding variables. In these situations, a regression
model is useful and the most important model for
survival data is the Cox [11] proportional hazards
regression model. In its simplest form, it states the
hazard function for an individual, i, with covariates
Zi = (Zi1, . . . , Zip)′ to be

αi(t ; Zi ) = α0(t) exp(β ′Zi ), (12)

where β = (β1, . . . , βp)′ is a vector of unknown
regression coefficients and α0(t), the baseline hazard,
is the hazard function for individuals with all covari-
ates equal to 0. Thus, the baseline hazard describes
the common shape of the survival time distributions
for all individuals while the relative risk function
exp(β ′Zi ) gives the level of each individual’s haz-
ard. The interpretation of the parameter, βj for a
dichotomous Zij ∈ {0, 1} is that exp(βj ) is the rel-
ative risk for individuals with Zij = 1 compared
to those with Zij = 0 all other covariates being the
same for the two individuals. Similar interpretations
hold for parameters corresponding to covariates tak-
ing more than two values.

The model is semiparametric in the sense that the
relative risk part is modeled parametrically while the
baseline hazard is left unspecified. This semiparamet-
ric nature of the model led to a number of inference
problems, which was discussed in the literature in
the years following the publication of Cox’s article
in 1972. However, these problems were all resolved
and estimation proceeds as follows. The regression
coefficients β are estimated by maximizing the Cox
partial likelihood

L(β) =
n∏

i=1

[
exp(β ′Zi )∑

j∈Ri
exp(β ′Zj )

]Di

, (13)

where Ri = {j : X̃j ≥ X̃i}, the risk set at time X̃i ,
is the set of individuals still alive and uncensored
at that time. Furthermore, the cumulative baseline
hazard A0(t) is estimated by the Breslow estima-
tor

Â0(t) =
∑

X̃i≤t

Di∑

j∈Ri

exp(β̂
′
Zj )

, (14)

which is the Nelson–Aalen estimator one would
use if β were known and equal to the maximum
partial likelihood estimate β̂. The estimators based
on (13) and (14) also have a nonparametric maxi-
mum likelihood interpretation. In large samples, β̂ is
approximately normally distributed with the proper
mean and with a covariance, which is estimated by
the information matrix based on (13). This means
that approximate confidence intervals for the relative
risk parameters of interest can be calculated and that
the usual large-sample test statistics based on (13)
are available. Also, the asymptotic distribution of the
Breslow estimator is normal; however, this estimate
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is most often used as a tool for estimating survival
probabilities for individuals with given covariates,
Z0. Such an estimate may be obtained by the prod-
uct integral ̂S(t ; Z0) of exp(β̂

′
Z0)Â0(t). The joint

asymptotic distribution of β̂ and the Breslow esti-
mator then yields an approximate normal distribution
for ̂S(t ; Z0) in large samples.

A number of useful extensions of this simple Cox
model are available. Thus, in some cases, the covari-
ates are time-dependent, for example, a covariate
might indicate whether or not a given event had
occurred by time t , or a time-dependent covariate
might consist of repeated recordings of some mea-
surement likely to affect the prognosis. In such cases,
the regression coefficients β are estimated replacing
exp(β ′Zj ) in (13) by exp[β ′Zj (X̃i)].

Also, a simple extension of the Breslow estima-
tor (14) applies in this case. However, the survival
function can, in general, no longer be estimated in
a simple way because of the extra randomness aris-
ing from the covariates, which is not modeled in the
Cox model. This has the consequence that the esti-
mates are more difficult to interpret when the model
contains time-dependent covariates. To estimate the
survival function in such cases, a joint model for the
hazard and the time-dependent covariate is needed
(see Joint Modeling of Longitudinal and Event
Time Data).

Another extension of (12) is the stratified Cox
model where individuals are grouped into a num-
ber, k of strata each of which has a separate baseline
hazard (see Stratification). This model has impor-
tant applications for checking the assumptions of
(12). The model assumption of proportional haz-
ards may also be tested in a number of ways,
the simplest possibility being to add interaction
terms of the form Zijf (t) between Zij and time
where f (t) is some specified function. Also, vari-
ous forms of residuals as for normal linear models
may be used for model checking in (12) (see Good-
ness of Fit in Survival Analysis; Residuals for
Survival Analysis). In (12), it is finally assumed
that a quantitative covariate affects the hazard log-
linearly. This assumption may also be checked in
several ways and alternative models with other rel-
ative risk functions r(β ′Zi ) may be used. Special
care is needed when covariates are measured with
error (see Measurement Error in Survival Analy-
sis).

Other Regression Models for Survival
Data

Though the semiparametric Cox model is the regres-
sion model for survival data that is applied most
frequently, other regression models, for example,
parametric regression models also play important
roles in practice. Examples include models with a
multiplicative structure, that is, models like (12) but
with a parametric specification, α0(t) = α0(t ; θ), of
the baseline hazard, and accelerated failure-time
models.

A multiplicative model with important epidemio-
logical applications is the Poisson regression model
with a piecewise constant baseline hazard. In large
data sets with categorical covariates, this model has
the advantage that a sufficiency reduction to the num-
ber of failures and the amount of person-time at risk
in each cell defined by the covariates and the division
of time into intervals is possible. This is in contrast to
the Cox regression model (12) where each individual
data record is needed to compute (13). The substantial
computing time required to maximize (13) in large
samples has also led to modifications of this estima-
tion procedure. Thus, in nested case–control studies
the risk set Ri in the Cox partial likelihood is replaced
by a random sample R̃i of Ri (see Case–Control
Study, Nested).

In the accelerated failure-time model, the focus
is not on the hazard function but on the survival
time itself much like in classical linear models. Thus,
this model is given by log Xi = α + β ′Zi + εi , where
the error terms are assumed to be independent and
identically distributed with expectation 0. Examples
include normally distributed (εi , i = 1, . . . , n), and
error terms with a logistic or an extreme value
distribution, the latter giving rise to a regression
model with Weibull distributed life times.

Finally, we shall mention some nonparametric
hazard models. In Aalen’s additive model, αi(t) =
β0(t) + β(t)′Zi (t) (see Aalen’s Additive Regression
Model), the regression functions β0(t), . . . , βp(t) are
left completely unspecified and estimated nonpara-
metrically much like the Nelson–Aalen estimator
discussed above. This model provides an attractive
alternative to the other regression models discussed
in this section. There also exist more general and
flexible models containing both this model and the
Cox regression model as special cases (see Addi-
tive–Multiplicative Intensity Models).
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Multistate Models

Models for survival data may be considered a special
case of a multistate model, namely, a model with a
transient state alive (0) and an absorbing state dead
(1) and where the hazard rate is the force of transi-
tion from state 0 to state 1. Multistate models may
conveniently be studied in the mathematical frame-
work of counting processes with a notation that actu-
ally simplifies the notation of the previous sections
and, furthermore, unifies the description of survival
data and that of more general models like the com-
peting risks model and the illness–death model to
be discussed below. We first introduce the counting
processes relevant for the study of censored sur-
vival data [1] Define, for i = 1, . . . , n, the stochastic
processes

Ni(t) = I (X̃i ≤ t, Di = 1) (15)

and
Yi(t) = I (X̃i ≥ t). (16)

Then (15) is a counting process counting 1 at time X̃i

if individual i is observed to die; otherwise Ni(t) = 0
throughout. The process (16) indicates whether i is
still at risk just before time t . Models for the survival
data are then introduced via the intensity process,
λi(t) = αi(t)Yi(t) for Ni(t), where αi(t), as before,
denotes the hazard function for the distribution of
Xi . Letting N = N1 + · · · + Nn and Y = Y1 + · · · +
Yn the Nelson–Aalen estimator (8) is given by the
stochastic integral

Â(t) =
∫ t

0

J (u)

Y (u)
dN(u), (17)

where J (t) = I (Y (t) > 0). In this simple multistate
model, the transition probability P00(0, t), that is,
the conditional probability of being in state 0 by
time t given state 0 at time 0 is simply the survival
probability S(t), which, as described above, may be
estimated using the Kaplan–Meier estimator, which
is the product-integral of (17). In fact, all the mod-
els and methods for survival data discussed above,
which are based on the hazard function have imme-
diate generalizations to models based on counting
processes. Thus, both the nonparametric tests and the
Cox regression model may be applied for counting
process (multistate) models (see Counting Process
Methods in Survival Analysis).

One important extension of the two-state model
for survival data is the competing risks model with
one transient alive state 0 and a number, k, of absorb-
ing states corresponding to death from cause h, h =
1, . . . , k. In this model, the basic parameters are the
cause-specific hazard functions αh(t), h = 1, . . . , k,
and the observations for individual i will consist
of (X̃i , Dhi), h = 1, . . . , k, where Dhi = 1 if individ-
ual i is observed to die from cause h, and Dhi = 0
otherwise. On the basis of these data, k counting pro-

cesses for each i can be defined by Nhi(t) = I (X̃i ≤
t, Dhi = 1) and letting Nh = Nh1 + · · · + Nhn, the
integrated cause-specific hazard Ah(t) is estimated
by the Nelson–Aalen estimator replacing N by Nh in
(17). A useful synthesis of the cause-specific hazards
is provided by the transition probabilities P0h(0, t) of
being dead from cause h by time t . This is frequently
called the cumulative incidence function for cause h

and is given by

P0h(s, t) =
∫ t

s

S(u)αh(u) du, (18)

and hence it may be estimated by (18) by inserting
the Kaplan–Meier estimate for S(u) and the Nel-
son–Aalen estimate for the integrated cause-specific
hazard. In fact, this Aalen–Johansen estimator of
the matrix of transition probabilities is exactly the
product-integral of the cause-specific hazards.

Another important multistate model is the ill-
ness–death or disability model with two transient
states, say healthy (0) and diseased (1) and one
absorbing state dead (2). If transitions both from 0
to 1 and from 1 to 0 are possible, the disease is
recurrent, otherwise it is chronic. On the basis of
such observed transitions between the three states, it
is possible to define counting processes for individual
i as Nhji(t) = number of observed h → j transitions
in the time interval [0, t] for individual i and, further-
more, we may let Yhi(t) = I (i is in state h at time
t−). With these definitions, we may set up and ana-
lyze models for the transition intensities αhji(t) from
state h to state j including nonparametric compar-
isons and Cox-type regression models. Furthermore,
transition probabilities Phj (s, t) may be estimated by
product-integration of the intensities.

Other Kinds of Incomplete Observation

A salient feature of survival data is right censoring,
which has been referred to throughout in the present
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overview. However, several other kinds of incom-
plete observation are important in survival analysis.

Often, particularly when the time variable of inter-
est is age, individuals enter study after time 0. This
is called delayed entry and may be handled by left
truncation (conditioning) or left filtering (“viewing
the observations through a filter”). There are also
situations when only events (such as AIDS cases)
that occur before a certain time are included (right
truncation) (see Truncated Survival Times). The
phenomenon of left censoring, though theoretically
possible, is more rarely relevant in survival analysis.

When the event times are only known to lie in an
interval, one may use the grouped time approach of
classical life tables (see Grouped Survival Times;
Life Table), or (if the intervals are not synchronous)
techniques for interval censoring may be relevant.

A common framework (coarsening at random)
was recently suggested for several of the above types
of incomplete observation.

Multivariate Survival Analysis

For multivariate survival, the innocently looking
problem of generalizing the Kaplan–Meier estimator
to several dimensions has proved surprisingly intri-
cate. A major challenge (in two dimensions) is how
to efficiently use singly censored observations, where
one component is observed and the other is right
censored.

For regression analysis of multivariate survival
times, two major approaches have been taken. One is
to model the marginal distributions and use estimation
techniques based on generalized estimating equa-
tions leaving the association structure unspecified
(see Marginal Models for Multivariate Survival
Data.) The other is to specify random effects models
for survival data based on conditional independence
(see Frailty.) An interesting combination between
these two methods is provided by copula models
in which the marginal distributions are combined
via a so-called copula function thereby obtaining an
explicit model for the association structure.

For the special case of repeated events, both
the marginal approach and the conditional (frailty)
approach have been used successfully (see Repeated
Events).

Concluding Remarks

Survival analysis is a well-established discipline in
statistical theory as well as in biostatistics. Most
books on biostatistics contain chapters on the topic
and most software packages include procedures for
handling the basic survival techniques (see Survival
Analysis, Software). Several books have appeared,
among them the documentation of the actuarial and
demographical know-how by Elandt–Johnson and
Johnson [15]; the research monograph by Kalbfleisch
and Prentice [27], the first edition of which for a
decade maintained its position as main reference on
the central theory; the comprehensive text by Law-
less [34] covering also parametric models, and the
concise text by Cox and Oakes [12], two central con-
tributors to the recent theory. The counting process
approach is covered by Fleming and Harrington [17]
and by Andersen et al. [2]; see also [25]. Later, books
intended primarily for the biostatistical user have
appeared. These include [10, 31, 32, 38, 40]. Also,
books dealing with special topics, like implementa-
tion in the S-Plus software [47], multivariate survival
data [26], and the linear regression model [45] have
appeared.
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