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Introduction6.1

A Brief History6.1.1

The case-control study examines the association between disease and potential
risk factors by taking separate samples of diseased cases and of controls at risk of
developing disease. Information may be collected for both cases and controls on
genetic, social, behavioral, environmental or other determinants of disease risk.
The basic study design has a long history, extending back at least to Guy’s 1843
comparison of the occupations of men with pulmonary consumption to the occu-
pations of men having other diseases (Lilienfeld and Lilienfeld 1979). Beginning in
the 1920’s, it was used to link cancer to environmental and hormonal exposures.
Broders (1920) discovered an association between pipe smoking and lip cancer;
Lane-Claypon (1926), who selected matched hospital controls, investigated the
relationship between reproductive experience and female breast cancer; and Lom-
bard and Doering (1928) related pipe smoking to oral cancer. The publication
in 1950 of three reports on the association between cigarette smoking and lung
cancer generated enormous interest in case-control methodology as well as bitter
criticism (Levin et al. 1950; Wynder and Graham 1950; Doll and Hill 1950). The
landmark study of Doll and Hill (1950, 1952), in particular, inspired future gener-
ations of epidemiologists to use this methodology. It remains to this day a model
for the design and conduct of case-control studies, with excellent suggestions on
how to reduce or eliminate selection, interview and recall bias.

From the mid-1950’s to the mid-1970’s the number of case-control studies pub-
lished in selected medical journals increased four- to sevenfold (Cole 1979). Aird
et al. (1953) discovered the association between gastric cancer and the ABO blood
groups. The impact of hormonal factors on cancers of female organs was brought
to light, starting with confirmation of the association between late first pregnancy
and breast cancer (MacMahon et al. 1970). Herbst et al. (1971) investigated an
unusual outbreak of vaginal adenocarcinoma in young women, finding that moth-
ers of seven of eight cases had exposed their daughters in utero to the fertility
drug diethylstilbestrol (DES). None of 32 control mothers had a history of es-
trogen use during pregnancy. Treatment of menopausal women with exogenous
estrogens similarly increased the risk of endometrial cancer (Ziel and Finkle 1975;
Smith et al. 1975). Powerful joint effects of alcohol and tobacco consumption on
esophageal cancer were demonstrated (Tuyns et al. 1977), as was the strong as-
sociation between liver cancer and hepatitis B carrier status (Prince et al. 1975).
These successes encouraged more investigators to adopt the case-control study
as the method of choice for the study of rare chronic diseases, particularly can-
cer. A survey by Correa et al. (1994) identified 223 population-based case-control
studies published in the world literature in 1992. Recent discoveries obtained
using case-control methodology have included the role of salted fish in the etiol-
ogy of nasopharyngeal carcinoma in Chinese populations (Armstrong et al. 1983;
Yu et al. 1986), the hazards of prone sleeping position for sudden infant death syn-
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drome (SIDS) (Fleming et al. 1990) and the relationship between use of intrauterine
devices (IUDs) and tubal infertility (Daling et al. 1985).

This plethora of case-control studies, stimulated by their relatively low cost
and short duration, also had its drawbacks. Not all investigators were as careful
as Doll and Hill in following a protocol for selection of cases and controls, in
conducting the study to mitigate against bias and in thoughtfully analysing the
collected data. Nor did they have the good fortune to study associations as strong
as that between lung cancer and cigarette smoking. The increasing availability
of high speed computers made it possible to collect more and more data, and to
look for all manner of associations with putative risk factors. Investigators eager
for research funding were sometimes too quick to publish their findings and draw
mediaattention to them.The inevitable resultwas an increasinglynegative reaction
on the part of the public, and from segments of the scientific community, to the false
alarms and contradictory results (Taubes 1995). One goal of this chapter, and of
others in this handbook, is to describe basic scientific principles whose application
should help to improve public confidence in published findings of epidemiologic
studies.

Early Methodologic Developments 6.1.2

The sophisticated use and understanding of case-control studies is the most
outstanding methodologic development of modern epidemiology.
(Rothman 1986, p. 62)

The initial interpretation of the case-control study was the comparison of expo-
sure histories for a group of diseased cases with those for non-diseased controls.
Typical analyses involved two group comparisons of exposure distributions using
chi-squared and t-tests. The critics argued that such comparisons provided no
information about the quantities of true epidemiologic interest, namely the dis-
ease rates. Cornfield (1951) corrected this misconception by demonstrating that
the exposure odds ratio for cases vs. controls was equal to the disease odds ratio
for exposed vs. non-exposed. With D = 1 indicating disease, D = 0 disease-free
and X = 1|0 likewise denoting exposed or non-exposed, he showed using Bayes
theorem that

Pr(D = 1|X = 1)Pr(D = 0|X = 0)

Pr(D = 0|X = 1)Pr(D = 1|X = 0)
=

Pr(X = 1|D = 1)Pr(X = 0|D = 0)

Pr(X = 0|D = 1)Pr(X = 1|D = 0)
(6.1)

and noted that the disease odds ratio approximated the relative risk Pr(D = 1|
X = 1)|Pr(D = 1|X = 0) provided the disease was rare. He also pointed out
that, if the overall disease risk was known from other data sources, this could be
combined with the relative risk to estimate absolute disease risks for exposed and
non-exposed, respectively.

Disease risk as considered by Cornfield (1951) was prevalence, the probability
that a member of the population was ill at a given point in time. For studies
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of disease etiology, however, it is preferable to work with disease incidence, the
probability of developing disease during the study period among subjects who
are free of disease initially. Otherwise, one confuses the effect of exposure on
causation of disease with its effect on the case fatality rate (Neyman 1955). Controls
for a study of the cumulative risk of developing disease during a given period
would be persons who were free of disease during the entire period. Although it
laid the foundation forwhatwas to follow, this conceptualizationof the case-control
study in terms of cumulative disease risk was awkward, for two reasons. First, as
the study interval lengthened the risk of disease increased for both exposed and
non-exposed. The relative risk for a common disease could approach one. Even
if it did not, it was undesirable to have the basic effect measure so dependent
on study duration, which varies between studies. Second, for a study of long
duration, ensuring that the controls were disease-free throughout the study period
could be problematic in practice. The modern conception of a case-control study
involves sampling of controls who are disease-free at random times during the
study period (Sect. 6.2.1). Exposure odds ratios are used to estimate ratios of
incidence rates rather than ratios of risks. No rare disease assumption is needed
in this case.

Mantel and Haenszel (1959) clarified the status of the case-control (or retrospec-
tive) study in comparison with the cohort (forward or prospective) study in one of
the most highly cited papers in the scientific literature (Breslow 1996). They stated
emphatically:

A primary goal is to reach the same conclusions in a retrospective study as
would have been obtained from a forward study, if one had been done.
(Mantel and Haenszel 1959, p. 722)

This insight underlies the modern conception of the case-control study as in-
volving sampling, on the basis of outcome, from an ongoing real or imagined
cohort study that has been designed to provide the best possible answer to
the basic question. Mantel and Haenszel introduced a new test and a simple,
highly efficient estimator for the relative risk after stratification on control fac-
tors. Their methods required the epidemiologist to carefully examine the tab-
ular data, and thus to identify strata where there was a lack of information
or where there were discrepancies between summary and stratum specific rel-
ative risks. They remain valuable today as an adjunct to more elaborate model
fitting.

By the end of the 1950s, the case-control study was firmly established as the
method of choice for the chronic disease epidemiologist, certainly when the bud-
get was limited. The role of statisticians in bringing the study design to this place
of scientific respectability was widely acknowledged (Cole 1979; Armenian and
Lilienfeld 1994). Further methodological advances were made during the next two
decades, particularly in statistical modeling of case-control data. The develop-
ment of the proportional hazards regression model for life table data (Sheehe 1962;
Cox 1972) provided a sound mathematical basis for methods long used by epi-
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demiologists, and led to refinements and extensions of those methods (Breslow
et al. 1983). The nested case-control study, originally conceived as a method to
reduce the computational burden of fitting Cox’s model to data from large co-
horts (Liddell et al. 1977), was recognized as an efficient epidemiologic design
for the collection of expensive explanatory data (Langholz and Goldstein 1996).
It now serves as a paradigm for all case-control studies. Many of the method-
ological developments were described in texts by Breslow and Day (1980) and
Schlesselman (1982) that led to further appreciation and use of the case-control
study.

Chapter Outline 6.1.3

The remainder of this chapter discusses the modern conceptualization of the case-
control study, largely from a statistical perspective. Matching of controls to cases
at the design stage is viewed as a technique to be used in carefully limited contexts
to increase the statistical efficiency of a highly stratified analysis. The implications
of these theoretical developments for the practical selection of cases and controls
are explored. Major pitfalls include the unique susceptibility of the case-control
study to selection bias and, especially when exposures are assessed by interview, to
measurement error. The design of any particular study usually involves tradeoffs
between potential biases arising from these sources. Following established princi-
ples of sound statistical science, including the use of an appropriate protocol for
subject selection and exposure assessment, can help reduce the variability in study
results that has contributed to the low esteem accorded risk factor epidemiology
in some scientific circles (Breslow 2003).

Conceptual Foundations 6.2

Sampling from a Real or Fictitious Cohort 6.2.1

The Mantel and Haenszel (1959) goal, of reaching the same conclusions from
a case-control study as from a cohort study if one had been done, provides the
key to understanding of case-control methodology. Rather than start the planning
process by thinking about how to conduct a case-control study, it often is helpful
to first plan the ideal cohort study that would be conducted to investigate the
same hypothesis if unlimited resources were available. Planning would include
cohort identification, definition of the times of entry into and exit from the cohort,
ascertainment of the disease endpoint, measurement of the exposure histories,
consideration of potential confounders and methods of statistical analysis. The
corresponding case-control study would then be viewed as the random sampling
of subjects from this idealized cohort to achieve, so far as possible, the stated
goal.
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Cohort Definition. In concept the underlying cohort for a case-control study
consists of all subjects who, had they experienced the disease endpoint at a specific
time, would have been ascertained as a case at that time. When case-control sam-
pling is carried out in the context of an actual cohort study, to select individuals
for genotyping or other expensive measurements, for example, the cohort is com-
pletely enumerated by and known to the investigator. More typically, however, the
underlying cohort is not fully identified and is effectively defined by the method of
case ascertainment. When cases are ascertained from a particular hospital, for ex-
ample, one considers the cohort to consist of all subjects who, had they developed
the disease in question, would have been diagnosed in that hospital.

= control

= event (case)

Figure 6.1. Schematic of a (nested) case-control study

Figure 6.1 illustrates the basic idea of case-control sampling. Each of the 11
horizontal lines represents time on study for a member of the cohort. Subjects enter
follow-up at the left hand endpoint and exit at the right. They are considered to be
at risk of becoming a case throughout this period. It is even possible, though not
shown here, that a subject could enter the cohort, leave for awhile and then return.
Four of the 11 subjects are cases. Their follow-up ends at diagnosis since they are
no longer at risk of becoming an incident case thereafter. The vertical dotted lines,
plotted at each of the times that a case occurs, intersect the trajectories of those
who are at risk at that time, i.e., the trajectories of subjects in the corresponding
risk set.

Nested Case-Control Sampling. When the cohort study is a real one, so that times
of entry and exit are known for all members, the investigator may completely
enumerate each risk set. A nested case-control study is then possible in which
controls are selected by finite population random sampling, without replacement,
fromnon-cases in the risk set. Theusual assumption is that the samplingof controls
from each risk set is completely independent of sampling from all other risk sets.
Two consequences are that a subject sampled as a control at one point in time
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may later become a case, and that the same subject may be sampled more than
once as a control. Figure 6.1, which depicts the situation where exactly one control
is sampled from each risk set, illustrates each of these possibilities. Robins et al.
(1986) describe other sampling schemes, and corresponding methods of analysis,
for nested case-control studies.

Density Sampling. These ideas also may be applied, at least in principle, to
the more typical situation in which the cohort is not completely enumerated. An
essential assumption, which in fact well approximates the design of many studies, is
that the cohort is sampled throughout the study period. More specifically, controls
are selected at any given time at a rate proportional to the disease incidence rate at
that time (Sheehe 1962). Miettinen (1976) termed this incidence density sampling.
A second assumption is that each subject at risk at a given time has the same
probability of being sampled as a control. This implies that, from the standpoint of
an individual, the likelihood of being included in the study as a control increases
with increasing time on study. If the disease incidence rate is constant, someone
who is a member of the cohort for twice as long as someone else has twice the
chance of being selected as a control. In the statistical literature this is known
as length biased sampling. One important consequence, under the assumption of
constant disease incidence, is that the number of controls sampled is proportional
to the total time at risk.

Incidence Rate Ratios are Estimable from Odds Ratios 6.2.2

We consider here the simplest situation in which the disease incidence rate is
constant and there are two groups of subjects, exposed and non-exposed, that
are homogeneous apart from exposure. Confounding is therefore not an issue.
Denote by A the total number of incident cases ascertained from the cohort during
the study period (t0, t1) and suppose that A0 are determined to be non-exposed
whereas A1 = A − A0 are exposed. Similarly denote by T = T0 + T1 the total
person-time on study, decomposed into its non-exposed (T0) and exposed (T1)
components. While the numbers of cases A0 and A1 are known to the investigator,
T0 and T1 may not be unless the underlying cohort is a real one. Instead, the
case-control study provides information on how many of the total M = M0 + M1

of controls are non-exposed (M0) and how many are exposed (M1). Denoting
by M1|M0 the observed odds of exposure for controls and likewise by A1|A0 the
observed odds of exposure for cases, the corresponding exposure odds ratio is
(A1M0)|(A0M1).

Let πτ denote the probability that a subject who contributes τ person-years of
followup is sampled as a control. With T =

∑N
i=1 τi denoting the sum of the times-

on-study for N cohort members, i.e., the total time at risk, the expected number
of controls is E(M) = πT. In practice π is often selected by the investigator
to yield a fixed number of controls, at least as a target value. Its actual value
remains unknown unless information is available about T. Nonetheless, provided
π is constant for all subjects, both exposed and non-exposed, E(M0) = πT0 and
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E(M1) = πT1. Hence the control ratio M0|M1 estimates the corresponding ratio
T0|T1 of person-time. Since the exposure specific incidence rates are estimated by
λ̂0 = A0|T0 and λ̂1 = A1|T1, it follows (see Rothman and Greenland 1998, Chap. 10)
that the rate ratio may be estimated by the exposure odds ratio:

λ̂1

λ̂0
=

A1T0

A0T1
≈ A1M0

A0M1
. (6.2)

See Sect. 6.3.1 for a numerical example.

Time-dependent Rates and Exposures6.2.3

Section 6.2.2 assumes that the parameter of interest is the ratio of instantaneous
incidence rates, each assumed constant in time, for exposed and non-exposed
subjects. A more general conceptualization takes the interest parameter to be the
ratio ψ ≡ λ1(t)|λ0(t) of instantaneous rates where the ratio, but not necessarily
the underlying rates, is assumed constant in t. Let N(t) denote the total number
of subjects at risk at time t in the underlying cohort, of which a proportion p1(t)
are exposed and p0(t) are non-exposed. These proportions could vary with time
either because the exposure status for individual subjects changes, or because the
exposure composition of the cohort changes through entries and exits. Note that
the expected number of exposed cases is given by

∫
N(t)p1(t)λ1(t)dt and similarly

for thenon-exposedcases.The expectednumberof controls sampled in the interval
(t, t + dt) is therefore M(t)dt where M(t) = N(t)[p0(t)λ0(t) + p1(t)λ1(t)]. It follows
that the unadjusted exposure odds ratio under density sampling estimates

ψ∗ =
∫

N(t)p1(t)λ1(t)dt
∫

M(t)p0(t)dt∫
N(t)p0(t)λ0(t)dt

∫
M(t)p1(t)dt

= ψ
∫

N(t)p1(t)λ0(t)dt
∫

M(t)p0(t)dt∫
N(t)p0(t)λ0(t)dt

∫
M(t)p1(t)dt

(6.3)

(Greenland and Thomas 1982). Thus the exposure odds ratio estimates the inci-
dence rate ratio, i.e., ψ∗ = ψ, provided either that the exposure proportions are
constant in t or else that ψ = 1. Otherwise, time t acts as a confounder of the
exposure–disease association. In this case, a time-matched analysis using stan-
dard methods for matched case-control studies (Breslow and Day 1980, Chap. 7)
is needed to estimate ψ unbiasedly. The marginal (unmatched) odds ratio usually
provides a slightly conservative estimate of this parameter.

Cumulative Risk Ratios and Case-Cohort Sampling6.2.4

While it is generally agreed that case-control studies of chronic disease are best
designed using density sampling to estimate the incidence rate ratio, alternative
sampling designs may be superior for other purposes. Vaccine efficacy is usu-
ally defined as the proportional reduction, over the study period, in the num-
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ber of cases among subjects who are vaccinated compared to those who are
not. Equivalently, it is 1 minus the ratio of cumulative disease risks for vacci-
nated vs. non-vaccinated. Suppose the effect of vaccination is to render com-
pletely immune a proportion PI of subjects, while the remainder of those vac-
cinated have the same disease incidence rates λ0(t) as do non-vaccinated per-
sons (Smith et al. 1984). For simplicity assume that all subjects, both vacci-
nated and non-vaccinated, are followed from a common starting time t0 and
that there is no loss to follow-up. The cumulative risk of disease by time t1 for
those not vaccinated is P(t0, t1) = 1 − exp[−

∫ t1
t0

λ0(t)dt] and the vaccine efficacy is
thus

1 −
risk for vaccinated

risk for non-vaccinated
= 1 −

PI × 0 + (1 − PI) × P(t0, t1)

P(t0, t1)
= PI . (6.4)

Here the cumulative risk ratio, not the incidence rate ratio, is independent of
study duration t1 − t0 (Rodrigues and Kirkwood 1990). Suppose now a subcohort
of M subjects is drawn at random from the combined cohort of vaccinated and
non-vaccinated subjects such that each individual has the same probability π of
inclusion in it, regardless of duration of follow-up. If M0 and M1 denote the num-
bers of non-vaccinated and vaccinated in the subcohort, while A0 and A1 denote
the numbers of disease cases diagnosed by time t1, then vaccine efficacy is simply
estimated as

P̂I = 1 −
A1|M1

A0|M0
. (6.5)

More generally, the case-cohort design (Kupper et al. 1975; Miettinen 1982; Pren-
tice 1986) involves random sampling of a subcohort at study entry, without re-

*  = subcohort member

*

*

*

*
= control

= event (case)

Figure 6.2. Schematic of a case-cohort study
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gard to time on study. Figure 6.2 contrasts this design with nested case-control
sampling (Fig. 6.1). Incidence rate ratios may be estimated for dynamic (open)
cohorts, with staggered entry and loss to follow-up as pictured, just as they
are with nested case-control sampling (Prentice 1986; Lin and Ying 1993; Bar-
low 1994). Subcohort members under observation at the time of disease occur-
rence serve as the controls for each case in a time-matched analysis. Since the
subcohort is a simple random sample from the full cohort, it is suitable for es-
timation of population genotype or exposure frequencies, whereas the controls
from a nested study are not. Furthermore, the same subcohort may be used to
provide controls for two or more different types of disease cases. Because of this
flexibility, the case-cohort design is increasingly used for sampling from defined
cohorts.

Estimation of Absolute Risks6.2.5

The key feature of case-control sampling in the context of an actual cohort study,
where the underlying cohort is completely enumerated and entry and exit times
are known for all cohort members, is that the sampling probabilities for cases
and controls are known or can be estimated from the available data. The case-
control study provides supplementary information on explanatory variables for
a randomly selected group of cohort members. Analysis of the combined cohort
and case-control data may be approached using standard methods for incomplete
data (Little and Rubin 2002). The Horvitz and Thompson (1952) survey sampling
approach is often easiest to implement. Here the contribution to estimators or esti-
mating equations from each subject with complete data, i.e., each subject included
in the case-control sample, is weighted by (an estimate of) the inverse probabil-
ity of having been included. Any analysis that could have been carried out were
explanatory data available for the entire cohort can also be carried out using the
combined data from the cohort and the case-control sample. This principle applies
to estimation of absolute as well as relative risks.

Table 6.1. Numbers of lung cancer cases and controls in Greater London among males aged

45–64 years, by average amount smoked in preceding 10 years, with estimated death rates of lung

cancer per 1000 persons per year†

Ave. daily number of cigarettes
0 1–4 5–14 15–24 25–49 50+ Total

Controls (n0j) 38 87 397 279 119 12 n0+ = 932
Cases (n1j) 2 19 197 171 129 21 n1+ = 539
Rates (λ̂j) 0.14 0.59 1.35 1.67 2.95 4.76∗ 1.57

† Reconstructed from data of Doll and Hill (1952), p. 1278
∗ Doll and Hill give 4.74 for this entry

A demonstration that absolute risks can be estimated from case-control data
that are supplemented with information regarding the underlying population was
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provided by Doll and Hill (1952). They restricted the analysis to cases and con-
trols drawn from the Greater London area, for which the numbers of persons
and the numbers of deaths due to lung cancer were known from government
records for each category of age and sex. Table 6.1 shows numbers of male cases
n1j and controls n0j aged 45–64 years at the jth of 6 levels of average cigarette
consumption during the preceding 10 years (j = 1, … , 6). Assuming that the
smoking habits of the controls were representative of the habits of the general
population in each age-sex category, and likewise that the habits of the cases
were reasonably similar to those of persons who died of lung cancer, they were
able to estimate the numbers of persons Nj and of deaths Dj at each of the 6
smoking levels. Specifically, knowing that the total male population of Greater
London aged 45–64 was N+ = 937,000, they estimated the sub-population (in
thousands) at the jth smoking level as N̂j = (n0j|932) × 937. Similarly, knowing
that D+ = 1474 deaths from lung cancer occurred annually in this population,
they estimated the numbers of deaths at that level by D̂j = (n1j|539) × 1474. Thus
the absolute rates per 1000 persons per year at smoking level j were estimated
as

λ̂j =
D̂j

N̂j
=

n1j · n0+ · D+

n0j · n1+ · N+
.

See Table 6.1 and Doll and Hill (1952), Table XII. Neutra and Drolette (1978) for-
mally justified this commonly used procedure while Greenland (1987) provided an
extension for matched case-control studies.

Langholz and Borgan (1997) developed more specialized methodology for es-
timation of absolute risks from nested case-control studies under the Cox (1972)
model. The absolute risk of disease over the time period (t0, t1) for a subject with
explanatory variables x who is disease-free at its start is

P(t0, t1; x) =
t1∫

t0

S(t0, t; x)λ(t; x)dt , (6.6)

where S(t0, t; x) denotes the probability that the subject remains on study and
free of disease from t0 to t and λ(t; x) is the disease incidence rate. Increments in
the baseline cumulative incidence rate function at each time of disease diagnosis,
needed to estimate both S and λ, are obtained from the usual formula for the cohort
study applied to reduced risk sets consisting of the case and sampled control(s).
The denominator term, representing the sum of relative risks for all subjects in
the risk set, is weighted by n|m where n denotes the size of the risk set and m
the number of subjects, including the case, sampled from it. Benichou and Gail
(1995) studied similar methodology for unmatched case-control sampling from
an actual cohort when all explanatory variables are discrete. Econometricians also
have developed methods for incorporation of external information on background
rates into the analyses of data collected in “choice-based” sampling designs, the
social science analog of case-control studies (Hsieh et al. 1985).
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Matching and Stratification6.3

While the logical absurdity of attempting to measure an effect for a factor
controlled by matching must be obvious, it is surprising how often investigators
must be restrained from attempting this. (Mantel and Haenszel 1959, p. 729)

Investigatorsplanningcase-control studiesused to considermatchingof individual
controls to cases as a means of making the two groups as comparable as possible,
thereby increasing the perceived validity of study results. It is now recognized that
such matching, or stratified sampling of controls to make them more like the cases
– known as frequency matching, has a much more limited and specific role. This
is to improve the efficiency of rate ratio estimators (exposure odds ratios) that are
statistically adjusted to account for possible confounding effects. Inappropriate
matching may have the unintended effect of compromising design efficiency or
even of rendering the results completely uninterpretable. Furthermore, since the
sampling design must always be considered, matching usually complicates the
statistical analysis.

Consequences of Matching6.3.1

The goal of matching in case-control studies is to balance the numbers of cases
and controls within strata that will be used for statistical adjustment purposes.
If the factor(s) used for stratification are associated with exposure, the matched
control sample will generally have an exposure distribution more like that of the
cases than would an unmatched control sample.

Some interesting and important consequences of matching are illustrated by
the fictitious data shown in Table 6.2, which is adapted from Table 10-5 of Rothman
and Greenland (1998). In the underlying cohort the disease rates for exposed and
non-exposed are identical for males and females. Consequently, there is no effect
modification nor confounding by sex and the crude (marginal) rate ratio equals the
sex-specific ratios. The frequency matching of controls to cases by sex, however,
has induced apparent confounding in the case-control data. The sex specific rate
ratios are correctly estimated by the sex-specific odds ratios, in accordance with
Equation (6.2), but they are substantially under-estimated by the crude exposure
odds ratio. An analysis that accounts for the matching is essential to correctly
estimate the interest parameter.

Efficiency of Matching6.3.2

Theadvantagesof a frequencymatchedsamplebecomeevidentwhenoneconsiders
extreme situations. In the study of esophageal cancer of Tuyns et al. (1977), for
example, 775 controls were sampled at random from electoral rolls for comparison
with the 200 cases. Not surprisingly, the lowest age stratum contained only a single
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Table 6.2. Distribution of cases and person-years of observation in a fictitious cohort study, and

expected distribution of cases and frequency matched controls†

A. Results for underlying cohort study
Males Females

Exposed Non-exposed Exposed Non-exposed

Diseased 450 10 50 90
Person-years 90,000 10,000 10,000 90,000
Rate (×103) 5.0 1.0 5.0 1.0
Rate ratio ψE = 5 ψE = 5

Crude rate ratio = (450+50)|100,000
(10+90)|100,000 = 5

B. Expected results for the case-control study
Males Females

Exposed Non-exposed Exposed Non-exposed

Cases 450 10 50 90
Controls 414 46 14 126
Odds ratio ψ̂E = 5.0 ψ̂E = 5.0

Expected crude odds ratio ≈ ψ̂E = (450+50)×(46+126)
(10+90)×(414+14) = 2

† Adapted from Table 10-5 of Rothman and Greenland (1998)

case and 115 controls. Since they contributed very little to the age-stratified odds
ratio, the time spent interviewing the 115 youngest controls was largely wasted.
When the potential for imbalance is less extreme, however, the advantages of
matching are not so clear. Some insight is provided by considering the ratio
of asymptotic variances of crude and adjusted (stratified) odds ratio estimators
for frequency matched and random samples in the simplest of situations, that
involving a binary exposure factor, a binary confounding factor and a rare disease.
Assuming equal numbers of cases and controls, and that the exposure rate ratio ψE
is the same at both levels of the confounder, the variances are determined by five
quantities: ψE; pE, the population proportion exposed; pC, the proportion positive
for the confounder; ψC, the rate ratio for the confounder; and ψCE, the odds
ratio associating confounder and exposure in the population. Table 6.3, adapted
from Breslow (1982), shows ratios of variances and biases for different odds ratio
estimators when pC = 0.5 and pE = 0.3. Similar results were given by Thomas and
Greenland (1983) and by Smith and Day (1984).

A stratified analysis is not needed to control confounding when ψCE = 1 or
ψC = 1. For as shown in rows 1–5, 9 and 13 of Table 6.3, the bias BR of the pooled
estimator using a randomly selected control sample is then zero. Columns labeled
VM|V∗

R show the increase in variance, i.e., the loss in efficiency, if a matched
control sample and stratified analysis were used instead. There is no efficiency loss
through matching when ψCE = 1 but increasing loss for estimation of large rate
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ratios when the correlation between confounder and exposure is high. Since the
“confounder” is not a risk factor for disease (ψC = 1), it need not be controlled in
the analysis. By needlessly matching on it, the exposure distributions for cases and
controls have been made more alike, thus reducing the efficiency of estimation of
the exposure effect. The negative biases associated with the crude analysis of the
matched data reflect the same phenomenon as the example in Table 6.2. This is
a case of overmatching.

Stratification is needed to control confounding when both ψCE > 1 and ψC > 1.
Then, as shown in rows 6–8, 10–12 and 14–16 of the table, the bias BR using the
unadjusted design and analysis is non-zero and becomes increasingly serious
as the effect of the confounder and its correlation with the exposure increase.
The efficiency of the matched design to the standard design, using in both cases
the correct (stratified) analysis, may be read from columns labeled VM|VR. Values
under 100%indicategreater efficiency,meaninga smaller variance, for thematched
design. When the potential confounder increases disease risk but exposure does
not, matching is always more efficient and its efficiency increases with the degree
of confounding. Even in the most extreme situation (ψCE = ψC = 10), however,
no more than 26% of efficiency is lost by failure to match. A conclusion is that
confounder and disease must be strongly associated for matching to produce major
gains. Matching may actually lose efficiency when ψCE and ψE are both large.

Overmatching 6.3.3

Overmatching refers to matching on a factor that is not a confounder of the disease-
exposure association. There are three possibilities.

FactorRelatedOnly toExposure. This is the situation just considered in Tables 6.2
and 6.3 (rows 5, 9, 13). Matching is not needed to control confounding and leads to
a loss of efficiency.

Factor Related Only to Disease. This has been called “the case of futility” because
the matching is effectively at random with respect to exposure (Miettinen 1970).
Frequency matching has no effect on efficiency, as the variance ratios VM|VR∗ =
100 when ψCE = 1 suggest. Were one to “incorrectly” fail to account for the
matching in the analysis, however, there would be efficiency loss relative to the
frequency matched analysis; note the percentages below 100 in the column labeled
VM|VR. Individual pair matching in such circumstances could cause a loss of
efficiency because of the need to account for this in the analysis and the consequent
reduction in degrees of freedom for estimation of the main effect. With binary
exposure measurements, for example, only the discordant case-control pairs would
contribute to estimation of the exposure odds ratio, and these would become fewer
and fewer as the association between the matching factor and disease increased.

“Confounder” an Intermediate in the Causal Pathway. The most serious type
of overmatching occurs when one matches on a factor that is both affected by
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exposure and a cause of disease. If the effect of anti-hypertensive medication on
the risk of myocardial infarction was being investigated, for example, yet cases
and controls were matched on blood pressure measurements taken after treatment
commenced, the data would be completely useless for estimation of treatment
effect. Ignoring the matching in the analysis would only compound the error by
driving the odds ratio even closer towards unity.

When to Match6.3.4

In view of the drawbacks of overmatching, and the often modest efficiency gains
even when statistical adjustment is indicated, one may well ask whether matching
is ever justified. The administrative costs of locating matched controls, and the loss
of cases from analysis if none can be found, further argue for careful consideration
of matched designs. Individual case-control matching is most appealing when
needed to control the effects of a confounder that is not easily measured. The
paradigm is use of an identical co-twin to control for genotype (Jablon et al. 1967).
Otherwise, stratification of the control sample on gender and broad categories
of age to achieve rough comparability with the case distribution, provided that
this can be accomplished without great cost, is likely all that is advisable. Greater
attention to stratification of the control sample may be needed when the primary
goal is to evaluate statistical interaction, or effect modification, between exposure
and a covariate (Smith and Day 1984).

Selection of Subjects6.4

The two preceding sections outline the basic ideas of sampling of subjects for
a case-control study from a theoretical statistical perspective. While the theory is
an important guide to practice, implementation is usually imperfect and requires
some compromise to minimize the various types of bias to which case-control
studies are particularly susceptible (Sect. 6.5). In this section we consider some of
the choices available to the investigator for putting the theory into action.

Selection of Cases6.4.1

Disease Definition
Careful definition of the disease endpoint to conform to the goals of the study
is critical to success. Specific cancers are reasonably well defined by primary
site and histologic type. Studies of diabetes, rheumatoid arthritis or psychiatric
conditions should follow standard criteria for diagnosis established by professional
societies. In the typical study of disease etiology, the investigator may choose to
enhance efficiency by including only those cases of disease most likely a priori to
have been caused by the particular exposure. Thus, instead of “uterine cancer”,
studies of hormonal risk factors would best be restricted to adenocarcinoma of
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the endometrium whereas those investigating sexual practices or viral etiology
would focus on squamous cell cancer of the cervix. Of course, in the early stages of
an investigation, demonstration that the exposure effect is specific to a particular
disease subtype can be an important part of the evidence that the association is
causal (Hill 1965; Weiss 2002). For case-control studies of the public health impact
of exposure, furthermore, a broader definition of disease may be desirable.

As mentioned in Sect. 6.1.2, studies of disease etiology are best restricted to
incident cases. This may not always be possible, however. Congenital anomalies
are generally ascertained as those that are prevalent at birth, and consideration of
possible exposure effects on fetal loss formsan important part of the interpretation.
Cohort studies may be preferable for estimating the true effects of exposure on
reproductive outcomes (Weinberg and Wilcox 1998).

Sources of Cases

Population Registries. Population based disease registries, particularly of cancer
and birth defects, are often considered the ideal source of cases. This is because
the population at risk, whose identification is needed for control selection, is well
defined by geographic or administrative boundaries. Practical limitations on their
use include the speed with which cases can be identified and interviewed, to avoid
selection bias from exclusion of those who may have died, and the feasibility of
random sampling of controls.

Health Maintenance Organizations. Large health maintenance organizations
(HMOs) are advantageous as a source of cases, for several reasons. The source
population is enumerated and demographic data, as well as some exposure and
covariate data, may already be available for everyone. This permits judicious se-
lection of cases and controls using nested case-control, case-cohort or stratified
two-phase sampling designs (Sect. 6.6). Relatively objective and inexpensive ex-
posure assessments may be possible using routine medical or pharmacy records,
some of which may already exist in electronic form. Similarly, cases are usually
easily ascertained from reports of diagnoses within the organization. Of course,
some assurance is needed that members of the HMO are unlikely to go elsewhere
for diagnosis and treatment.

Hospitals and Clinics. Historically, many case-control studies have been con-
ducted using either a single or a small group of hospitals or clinics. This facilitates
timely access to cases and increases the likelihood of their cooperation, thus lim-
iting selection bias. On the other hand, definition of the source population from
which the cases arose may be problematic, not to mention the practicality of
obtaining random samples of controls from it.

Exclusion Criteria
In principle, any exclusion criteria may be used for cases so long as they are equally
applied to the controls, and vice-versa, since they serve simply to restrict the source
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population. Thus subjects may be excluded who reside in areas difficult to reach or
who are not native speakers of the language of interview. Practical applications of
this rule can be more subtle, however. Wacholder (1995) argues, for example, that
exclusion of cancer cases who lacked a histologic diagnosis could inadvertently
tend to exclude those from smaller, rural hospitals who were more likely to have
exposures related to agriculture.

Exposure Opportunity. Case-control studies are most informative when there
is a substantial degree of exposure variability, so that the exposure is neither
rare nor ubiquitous (Chase and Klauber 1965). Subjects known a priori to have
no opportunity for exposure could be excluded on grounds of efficiency if the
exposure was rare, since they would contribute little additional information. Thus,
for example, women who were past reproductive age when oral contraceptives
became popular should be excluded from a study of OC use and breast cancer
(Wacholder et al. 1992a). On the other hand, since they provide valid information
on the non-exposed, there is no logical basis for insisting that subjects without
the opportunity for exposure should be routinely excluded from cohort and case-
control studies (Schlesselman and Stadel 1987; Poole 1987).

Selection of Controls6.4.2

Principles of Control Selection
Wacholder et al. (1992a) described three basic principles of control selection.
The first two correspond roughly to considerations already developed regarding
conceptual foundations and the use of matching. The third stems from the desire
to minimize the effects of measurement error to which case-control studies are
particularly susceptible.

The “study-base” Principle. This is the principle that controls be randomly se-
lected from disease-free members of the underlying cohort, also known as the
source population (Kelsey et al. 1996) or study-base (Miettinen 1985), at the times
that cases are being ascertained (Sect. 6.2). When controls are in fact selected later,
it sometimes mandates the random selection of a reference date for each control
so that the distributions of the case diagnosis dates and control reference dates are
comparable. Only exposures occurring prior to the reference|diagnosis date would
be taken into account. This principle also implies that whatever exclusion criteria
have been applied to the cases must also be applied equally to the controls.

The Deconfounding Principle. This principle underlies the stratified sampling
of controls to render possible, or improve the efficiency of, an adjusted analysis
designed to control confounding (Sect. 6.3).

The Comparable Accuracy Principle. This principle, controversial even in the
authors’ view, suggests that controls be selected so that the errors of measurement
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of their exposures and covariates are comparable to the measurement errors of the
cases. The suggestion that dead controls be selected for dead cases, for example, is
sometimes made on the basis of the comparable accuracy principle (Gordis 1982).
Unfortunately, there is no guarantee that adherence to the principle will eliminate
or even reduce bias (Greenland and Robins 1985). Unless the measurement error
can be completely controlled, for example by obtaining error free measurements
for a validation subsample of cases and controls and appropriately incorporating
these data in the analysis, it can seriously compromise study validity even if case
and control data are equally error prone (Sect. 6.5.3).

Sources of Controls
The appropriate source population for sampling of controls is determined by
the study-base principal. When cases arise from an enumerated source popula-
tion such as an HMO, controls may be sampled from this cohort using a nested
case-control or case-cohort design (Figs. 6.1 and 6.2). One principal advantage of
conducting epidemiologic studies in the Nordic countries is their maintenance
of national disease and population registers which may be exploited for case and
control selection, respectively (see Chap. I.4 of this handbook). Standard survey
sampling methods are often used to select controls for “population based” stud-
ies in countries that do not maintain population registers. The most difficult and
controversial problems of control selection arise with hospital based studies.

Survey Sampling. Methods for scientific sampling of populations have been de-
veloped by census bureaus and other government agencies throughout the world.
The particular method most advantageous for any given epidemiologic study
will likely depend on the local administrative infrastructure. Survey sampling of-
ten proceeds in stages, where one first samples a large administrative unit, then
a smaller one and finally arrives at an individual household or subject. Such
multi-stage “cluster” sampling introduces modest correlations in the responses of
individuals sampled from the same primary sampling unit, more marked ones for
individuals sampled from the same lower level cluster. Although often ignored by
epidemiologists, usually at the cost of some underestimation of the variability in
estimated relative risks, these correlations should be accounted for in a rigorous
statistical analysis (Graubard et al. 1989). Fortunately, simple methods to accomo-
date cluster sampling are now routinely incorporated in the standard statistical
packages.

Random Digit Dialing. In view of the high costs of census bureau techniques in
the United States, methods of survey sampling through the telephone exchanges
have been developed (Waksberg 1978; Harlow and Davis 1988). Random digit
dialing (RDD)hasbecome increasinglypopular for control selection inpopulations
that have high rates of telephone access. Some implementations start with the
telephone exchange of each case for sampling of controls that are thereby matched
on somewhat ill-defined neighborhood factors (Robison and Daigle 1984). RDD



306 Norman E. Breslow

methods may be costly for ascertainment of controls from minority populations,
requiring dozens of calls to locate a suitable household (Wacholder et al. 1992b).
They are particularly susceptible to bias because of higher selection probabilities
for households that have more than one phone line or more than one eligible
control and because of high rates of nonresponse (Sect. 6.5.1). The latter problem
is likely to become increasingly serious in view of the persistent use of answering
machines to screen out unwanted calls. The popularity of cell phones, moreover,
eventually may make it infeasible to use RDD to draw a random control sample
from a source population defined by geographic or administrative boundaries.

Neighborhood and Friend Controls. Matched controls may also be selected from
neighbors or friends of each case. For the former method, a census is taken of all
households in the immediate geographic area of the case and these are approached
in a random order until a suitable control is found. Care must be taken to ensure
that the control was resident at the same time the case was diagnosed. Even with
these precautions, neighborhood sampling may yield biased controls for hospital
based studies since it will not be guaranteed that the control would have been
ascertained as a case if ill, thus violating the study-base principle (Wacholder
et al. 1992b). Neighborhood controls are also susceptible to overmatching due
to their similarity to the cases on factors associated with exposure that are not
risk factors for disease (Sect. 6.3.3). These same difficulties confront the use of
friend controls, whereby a random selection is taken from among a census of
friends provided by each case. There may be further selection on factors related to
popularity since the friend selected as control may well not have listed the case as
a friend had the friend become ill (Robins and Pike 1990). The primary advantage
of friend controls would be a low level of nonresponse.

Hospital Based Controls. Many studies that ascertain cases through hospitals
also select controls from these same hospitals, which is of obvious logistical conve-
nience. Such controls are likely to have the same high response levels as the cases.
The fact that they may be interviewed in a hospital setting, as the cases are, is
an advantage from the perspective of the comparable accuracy principle (Mantel
and Haenszel 1959). The major difficulties stem from the fact that the hypothetical
study-base, the catchment of persons who would report to the particular hospital
if they developed the disease under study, may be different from the catchment
population for other diseases. Furthermore, many of the disease categories from
which controls could be selected may themselves be associated with the exposure.
A large part of the planning of hospital based case-control studies is devoted to
the choice of disease categories thought to be independent of exposure and to have
a similar catchment. The hope is that controls with such diseases will effectively
constitute a random sample, vis-à-vis exposure, from the study-base. Since the in-
dependence of exposure and disease diagnosis is rarely known with great certainty,
a standard recommendation is to select controls having a variety of diagnoses so
that the failure of any one of them to meet the criterion does not compromise the
study (Wacholder et al. 1992b; Rothman and Greenland 1998, p. 101). If it is found



Case-Control Studies 307

later that a certain diagnosis is associated with exposure, those controls can be
excluded.

How Many Controls per Case?
How Many Control Groups? 6.4.3

Case-Control Ratios. For a fixed number of study subjects, statistical power for
testing the null hypothesis is optimized by having equal numbers of cases and
controls. When the disease is extremely rare or acquisition of cases particularly
expensive, however, it may be important and cost-effective to increase the numbers
of controls. In order to have the same statistical power (to reject the null hypothesis
of no exposure effect against local alternatives) as a design with equal numbers of
cases and controls, a design with M controls per case would need only (M + 1)|2M
as many cases. When M = 2, for example, this would imply the use of 3|4 as many
cases, but twice as many controls, to achieve the same power as a design with
equal numbers. For a fixed number of cases, the relative efficiency of a design with
M controls per case relative to one that uses an unlimited number of controls is
therefore only M|(M + 1). Since 80% of maximum efficiency can thus be obtained
with M = 4, it is often inadvisable to seek a higher ratio. Exceptions occur when
sampling and data collection for controls is substantially cheaper than for cases or
if accurate estimation of large rate ratios, rather than a test of the null hypothesis,
is the primary statistical objective (Breslow 1982; Breslow et al. 1983).

Multiple Control Groups. Early case-control investigations, including the classic
study of Doll and Hill (1952), often utilized two or more control groups. Indeed,
multiple control groups were recommended by Dorn (1959) to improve the case-
control study so that it would “provide a more valid basis for generalization”. As
explained by Hill (1971, pp 47–48) “If a whole series of control groups, e.g., of
patients with different diseases, gives much the same answer and only the one
affected group differs, the evidence is clearly much stronger than if the affected
group differs from merely one other group.” Similar informal arguments have
been put forward in favor of multiple control groups as a means of addressing the
possible biases that may be associated with the use of any one of them (Ibrahim
and Spitzer 1979). Working from a more formal perspective, Rosenbaum (1987)
concluded that a second or third control group was useful only if supplemen-
tal information was available on whether such use addressed a specific bias. If
controls sampled from separate sources have different exposure histories, even
after statistical adjustment for potential confounders, this indeed suggests that
similar adjustment of the case-control comparison may be inadequate to control
confounding. However, failure to detect a difference among control groups may
give a false sense of security unless they were deliberately selected to differ with
respect to unmeasured potential confounders. Implementation of this last crite-
rion would clearly require some guess as to what those unmeasured confounders
might be.
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Recent reviews of case-control methods have tended to shy away from the use
of multiple control groups (Rothman and Greenland 1998, p. 106; Wacholder
et al. 1992b). They argue that there is usually a single “best” control group, and that
since the discovery of an adjusted exposure difference with other control groups
will force these to be discarded, the effort involved will have been wasted. However,
there may not be a “best” control group, or its identification may be controversial.
Discovery of a difference between control groups should generally encourage the
investigator to seriously suspect that confounding may have compromised study
results.

Pitfalls6.5

Case-control studies are susceptible to the same biases and problems of interpreta-
tion that afflict all observational epidemiological studies. These include confound-
ing, selection or sampling bias, measurement error and missing data. Selection
bias can be considered an extreme version of bias due to missing data where the
entire observational record is missing for subjects who are in the source population
but fail to be included in the study. Each of these topics is considered in detail in
other chapters of this handbook. Many methods described there for dealing with
such issues apply to case-control studies as well as to cohort studies. Attention is
confined here to a few of the potential problems to which case-control studies are
particularly susceptible.

Selection Bias6.5.1

As elaborated at length in Sect. 6.2.1, the cases and controls in a case-control study
arebest viewedas resulting fromoutcomedependent sampling fromanunderlying,
often idealized cohort study. The goal is to estimate the degreee of association of
disease risk with exposure that would have been found had complete records
been available for the entire cohort. The sampling of controls and sometimes
even of cases may be stratified, for example by sex and broad categories of age,
but otherwise is supposed to be random within the subpopulations of diseased
and non-diseased subjects. Selection bias arises when the sampling is in fact not
random. It poses a major threat to the validity of case-control studies.

The effect of sampling bias is easy to demonstrate quantitatively for an exposure
variable with two levels. For simplicity, we consider the effect on the odds ratio
associating exposure with the cumulative risk of disease during a defined study
period. The first 2 × 2 subtable displayed in Table 6.4 contains the population
frequencies of subjects who are exposed and become diseased during the study
period (P11), who are not exposed and become diseased (P01) and likewise the
frequences of being exposed or non-exposed and remaining disease-free (P10 and
P00, respectively). The target parameter of interest is the odds ratio ψ based on
these population frequencies. As shown in the next two subtables, the odds ratio ψ∗
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Table 6.4. Effect of selection bias on odds ratio measures of association

Population Sampling Expected
frequencies fractions sample frequencies

Case Cont Case Cont Case Control

Exposed P11 P10 f11 f10 f11 × P11 f10 × P10

Non-exposed P01 P00 f01 f00 f01 × P01 f00 × P00

Odds ratios ψ = P11×P00
P10×P01

ψf = f11×f00
f10×f01

ψ∗ = ψf × ψ

expected from the case-control sample equals the product of the true odds ratio, ψ,
times the cross products ratio of the sampling frequencies, denoted ψf. Hence
ψ = ψ∗, i.e., there is no bias, provided that ψf = 1. This will occur when the
sampling fractions for cases and controls are all the same, depend only on the
disease outcome, i.e., f10 = f00 and f11 = f01, or depend only on exposure, i.e.,
f01 = f00 and f11 = f10. Often the sampling fractions for cases are both near 1
whereas those for the controls are much smaller. The fact that this does not matter,
provided that the sampling fractions for exposed cases and non-exposed cases are
the same and similarly for controls, is another way of understanding why case-
control studies provide estimates of the relative risk (disease odds ratio). Bias does
occur when the sampling fractions depend jointly on exposure and disease, usually
because exposed controls are more or less likely to be sampled than non-exposed
controls. In a study that ascertained all the cases, but sampled exposed persons as
controls with twice the frequency as non-exposed persons, the estimated relative
risk (odds ratio) would be twice the correct value. This is known as Berkson bias
(Berkson 1946).

Some of the factors that contribute to selection bias are as follows.

Patient Dies Before Interview. When cases are ascertained through a population
based disease registry, a significant interval of time may elapse between initial diag-
nosis and notification to the registry. Some patients whose disease course is rapidly
fatal may therefore not be interviewed in person, but are either excluded from the
study or represented by a proxy interview subject to increased measurement error.
This selection factor may affect both cases and controls in hospital based studies.
It constitutes a major problem in reproductive epidemiology (see Chap. III.5 of
this handbook).

Physician Refuses Consent. Committees charged with protection of human re-
search subjects may require that permission for participation be given by the
patient’s physician. This could affect control participation in hospital based stud-
ies or case participation in general.

Subject Refuses Participation. The most common reason for selection bias in
case-control studies is refusal of the subject to participate, either actively by refus-
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ing to sign a consent form or passively by failure to return a questionnaire or turn
up at the appointed hour for a laboratory examination. Cases with disease are often
highly motivated to participate, whereas controls selected from the population are
not. Unfortunately, control participation rates often depend on some correlate of
exposure. Refusal rates for telephone surveys, for example, are higher for people
who are older, have fewer social relationships, are less well educated and have lower
income (O’Neil 1979).

Subjects Ascertained Through Their Household. Selection bias can occur when
controls are ascertained by first contacting households to determine whether a con-
trol lives there who is suitable for matching to the case, and only a single control
is selected from each household. In studies of childhood disease, where controls
are matched on age within two years of the case, a child with a sibling in the
same age range is less likely to be selected than one who has no such siblings
(Greenberg 1990).

Random Digit Dialing. Some other problems of selection bias are associated with
the use of RDD for control ascertainment besides the fact that this method iden-
tifies households rather than individuals. Households without telephones stand
no chance of selection, for example, whereas those with multiple telephones will
be over-represented. The absence of a telephone may particularly affect minority
populations.

Adjustments for Selection Bias
in Study Design and Analysis6.5.2

The most important consideration regarding selection bias is to avoid it so far as
possible. At the design phase of the study, the exclusion criteria for both cases and
controls may be chosen to maximize the probability of their ascertainment and
participation. If RDD is used for control selection, this means taking the obvious
step of excluding cases from households that lack telephones. Demographic, ge-
ographic and linguistic factors may enter into the exclusion criteria for the same
reason.

If selection bias cannot be avoided, as much data as possible should be gathered
on potential case and control subjects to allow prediction of which of them go on
to participate and which refuse. When sampling from the general population, it
may be possible to use a recent survey of the same population for this purpose,
provided of course that the survey itself had nearly complete response. If cases and
controls are drawn from an enumerated population such as an HMO, data may
already exist in medical or other records that can be used for this purpose.

At the time of analysis, one may attempt to adjust for selection bias in the
same way that one adjusts for missing data. This is to use sampling weights for
each participating subject, i.e., those with “complete data”, equal to the inverse
predicted probability that the subject would have been selected given the data
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collected for this purpose at the design stage. This is only useful, of course, if there is
substantial variability in the predicted probabilities. Alternatively, or additionally,
one may statistically adjust the analysis for factors that are thought to be associated
with selection but for which data are only available for participating subjects.
Such adjustment would consist of stratification of the analysis on factor levels, or
inclusion of the factor in a regression model for disease given exposure, just as
one adjusts for confounders (Breslow and Day 1980, Sect. 3.8). However, if there is
a substantial degree of nonresponse, it is quite unlikely that any adjustment will
mitigate the serious biases that can result. There is simply no way to deal with
it if selection fractions within factor levels used for adjustment purposes depend
jointly on disease and exposure.

Measurement Error 6.5.3

A second major limitation of case-control studies is their susceptibility to mea-
surement error. Cases and controls are often ascertained long after the relevant
exposures have occurred. In spite of Dorn’s (1959) admonition to use objective
measures of exposure, most case-control studies of environmental risk factors
continue today to measure exposure by interview or questionnaire. The potential
for misclassification of exposure levels in such research is enormous. First, sub-
jects may have only a vague memory of past exposures. Second, those who are
diseased at the time of interview may recall these past events in a different way
than those who are healthy controls. This may be in part because the early stages
of their disease led to changes in behavior that made recollection of past practices
more difficult. Interviewers may solicit and record answers differently if they have
knowledge of the diagnosis or of the patient’s status as case or control.

Austin et al. (1994) reviewed published reports of nine case-control studies of
diet and cancer in which an attempt had been made to assess the accuracy of recall
of dietary histories separately for cases and controls. According to their authors,
three studies provided “weak” and four “moderate” evidence for recall bias. How-
ever, these results themselves were likely subject to measurement error and may
have been understated in consequence.

Measurement error, whether or not it is differential between cases and con-
trols, can compromise conclusions by seriously biasing the relative risk estimates
from case-control studies that use dietary self reports or similarly error-prone
measurements. Prentice (1996) developed a mathematical model for measurement
error that allowed for correlation of the error with the true exposure level and
for systematic underreporting of exposure for persons with high exposure lev-
els. He fitted the model to replicate measures of dietary fat intake, some taken
using a four day food record and others using a food-frequency questionnaire,
for control subjects enrolled in the Women’s Health Trial (Henderson et al. 1990).
Employing results from international geographic correlation studies to gener-
ate the “true model”, in which subjects at the 90th percentile of the distribu-
tion of dietary fat intake had 3 or 4 times the risk of disease as those at the
10th percentile, he showed that measurement error could plausibly reduce the
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relative risks to 1.1. The obvious conclusion from these calculations was that
“dietary self-report instruments may be inadequate for analytic epidemiologic
studies of dietary fat and disease risk because of measurement error biases” (Pren-
tice 1996).

A substantial and concerted effort has been made by statisticians to develop
methods of data analysis that correct for the bias in relative risk estimates caused
by measurement error (see Chap. II.5 of this handbook and the text by Carroll
et al. 1995). Some require the availability of “gold standard”, i.e., error-free, mea-
surements on a fairly large number of subjects in the validation subsample. Others
assume that statistically independent true replicate measurements are available.
Unfortunately, data collected in case-control studies rarely meet these stringent re-
quirements, at least not in their entirety. It therefore behooves us to recall Bradford
Hill’s (1953, p. 995) sage advice:

One must go and seek more facts, paying less attention to techniques of handling
the data and far more to the development and perfection of the methods of
obtaining them.

Conclusions6.6

The case-control study played a major, successful role during the second half of the
twentieth century in identifying risk factors for chronic disease. It has also proven
helpful for evaluation of the efficacy of vaccination (Comstock 1994) and screening
(Weiss 1994) programs. The twenty-first century will witness its continued use
as a cost-effective study design, with increasing application in genetic epidemiol-
ogy (Khoury and Beaty 1994) and particularly in the study of gene-environment
interactions (Andrieu and Goldstein 1998). Statisticians and epidemiologists will
continue to develop more efficient study designs and methods of data analysis that
take full advantage of all available data. When a case-control study is conducted in
an HMO, for example, some data will likely be available on either the exposure or
the control variables for all subjects in the underlying cohort. Two-phase sampling
designs, whereby biased samples of cases and controls are selected using the data
available for all subjects, then offer the potential for much greater efficiency than
the standard case-control design (White 1982; Breslow and Cain 1988; Langholz and
Borgan 1995; Breslow and Chatterjee 1999). Chapter I.7 of this handbook discusses
these and other evolving study designs and analyses.

The advantages of case-control methodology in terms of speed and cost may
have also contributed, ironically, to a diminished stature for epidemiology and
biostatistics in the eyes both of the scientific community and of the general public
(Breslow 2003). Part of the problem is an inherent aversion to the “black box”
approach of risk factor epidemiology that associates cause and effect without the
need for any understanding of pathogenetic mechanisms. Epidemiologic findings
are most convincing when supported by relevant laboratory research. Another part
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of the problem is the saturation of the news media with conflicting reports based
on case-control and other studies that are too small, poorly designed, improperly
analyzed or overly interpreted. Taubes (1995) began his controversial and influ-
ential article on the limitations of epidemiology with the observation: “The news
about health risks comes thick and fast these days, and it seems almost constitu-
tionally contradictory.” The epidemiologists he interviewed for this article cited
the ability of confounding, selection bias and measurement error to overwhelm
smaller exposure effects. One even suggested that no single study, no matter how
well conducted, should be viewed as “persuasive” unless the lower limit of the
95% confidence interval for the rate ratio exceeded 3 or 4. Very few published
studies, even when reported by the press as “suggestive” of an association, meet
this stringent criterion.

Medical science and public health would be well served by fewer, larger case-
control studies designed to test specific hypotheses that are carefully articulated
in advance. Studies that can barely “detect” a relative risk of 2 may not provide
convincing evidence of a dose-response gradient and are unlikely to enable one
to determine whether an elevated relative risk in a particular disease subgroup,
even one specified in advance, is evidence for the specificity of association that
can be useful in causal interpretation (Weiss 2002). (There are of course excep-
tions, as when a unique exposure contributes to an outbreak of an extremely rare
disease. Recall the DES-adenocarcinoma of the vagina story mentioned in the
Introduction.) Investigators are also well advised to develop a strict protocol for
selection of cases and controls and for collection and analysis of the data. Doll
and Hill (1952) utilized such a protocol. They also had the advantage of working
during the punch card era that discouraged “data dredging” and the inclusion of
all but the most important variables in the analysis. A reasonable strategy might
be to perform a maximum of three carefully planned analyses of the association
between the primary exposure and disease: one without adjustment; one adjusted
for a short list of confounders known a priori to be associated with disease; and
the third adjusted for a specified list of known and suspected confounders. In
case of conflict, the major interpretation would be based on the second analysis
though the results of all three would be reported. Flexibility would be needed in
application, of course, especially to accommodate changes in the study protocol
after the study had commenced. Finally, investigators would be well advised to
exercise greater caution in advertising their findings to the press before confirma-
tion was forthcoming from other sources. By following basic principles of good
statistical and scientific practice, the case-control study can gain credibility within
the research community and enhance its standing as a basis for public health
action.
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