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Introduction
The most commonly used methods for inference about the means of quan-
titative response variables assume that the variables in question have nor-
mal distributions in the population or populations from which we draw our
data. In practice, of course, no distribution is exactly normal. Fortunately,
our usual methods for inference about population means (the one-sample
and two-sample procedures and analysis of variance) are quite That
is, the results of inference are not very sensitive to moderate lack of normality,
especially when the samples are reasonably large. Some practical guidelines
for taking advantage of the robustness of these methods appear in Chapter 7.

What can we do if plots suggest that the data are clearly not normal, es-
pecially when we have only a few observations? This is not a simple question.
Here are the basic options:

If there are extreme in a small data set, any inference method
may be suspect. An outlier is an observation that may not come from
the same population as the others. To decide what to do, you must
find the cause of the outlier. Equipment failure that produced a bad
measurement, for example, entitles you to remove the outlier and
analyze the remaining data. If the outlier appears to be “real data,” it
is risky to draw any conclusion from just a few observations. This is
the advice we gave to the child development researcher in Example 2.19
(page 163).

Sometimes we can our data so that their distribution is
more nearly normal. Transformations such as the logarithm that pull
in the long tail of right-skewed distributions are particularly helpful. We
discussed transformations in detail in Section 2.6.

In some settings, replace the normal
distributions as models for the overall pattern in the population. We
mentioned in Section 5.2 (page 400) that the Weibull distributions are
common models for the lifetimes in service of equipment in statistical
studies of reliability. There are inference procedures for the parameters
of these distributions that replace the procedures when we use specific
nonnormal models.

Finally, there are inference procedures that do not require any
specific form for the distribution of the population. These are called

The (page 509) is an example of a
nonparametric test.

This chapter concerns one type of nonparametric procedure, tests that
can replace the tests and one-way analysis of variance when the normality
conditions for those tests are not met. The most useful nonparametric tests
are based on the rank (place in order) of each observation in the
set of all the data.

Figure 14.1 presents an outline of the standard tests (based on normal
distributions) and the rank tests that compete with them. All of these tests
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Setting Normal test Rank test

One sample One-sample t test Wilcoxon signed rank test
Section 7.1 Section 14.2

Matched pairs Apply one-sample test to differences within pairs
Two independent samples Two-sample t test Wilcoxon rank sum test

Section 7.2 Section 14.1
Several independent samples One-way ANOVA F test Kruskal-Wallis test

Chapter 12 Section 14.3

Comparison of tests based on normal distributions with
nonparametric tests for similar settings.

continuous distributions.

center

14.1 The Wilcoxon Rank Sum Test

require that the population or populations have
That is, each distribution must be described by a density curve that allows ob-
servations to take any value in some interval of outcomes. The normal curves
are one shape of density curve. Rank tests allow curves of any shape.

The rank tests we will study concern the of a population or pop-
ulations. When a population has at least roughly a normal distribution, we
describe its center by the mean. The “normal tests” in Figure 14.1 all test hy-
potheses about population means. When distributions are strongly skewed,
we often prefer the median to the mean as a measure of center. In simplest
form, the hypotheses for rank tests just replace mean by median.

We devote a section of this chapter to each of the rank procedures.
Section 14.1, which discusses the most common of these tests, also contains
general information about rank tests. The kind of assumptions required, the
nature of the hypotheses tested, the big idea of using ranks, and the contrast
between exact distributions for use with small samples and approximations
for use with larger samples are common to all rank tests. Sections 14.2 and
14.3 more briefly describe other rank tests.

Two-sample problems (see Section 7.2) are among the most common in statis-
tics. The most useful nonparametric significance test compares two distribu-
tions. Here is an example of this setting.

1
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Does the presence of small numbers of weeds reduce the yield of corn? Lamb’s-
quarter is a common weed in corn fields. A researcher planted corn at the same rate
in 8 small plots of ground, then weeded the corn rows by hand to allow no weeds in
4 randomly selected plots and exactly 3 lamb’s-quarter plants per meter of row in the
other 4 plots. Here are the yields of corn (bushels per acre) in each of the plots.

Weeds per meter Yield (bu/acre)

0 166.7 172.2 165.0 176.9
3 158.6 176.4 153.1 156.0

continuous
distribution

FIGURE 14.1

EXAMPLE 14.1
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Normal quantile plots of corn yields from plots with no weeds
(left) and with 3 weeds per meter of row (right).

165.0 166.7 172.2 176.9

165.0 166.7 172.2 176.9
4 5 6 8

rank

ranks

t

We first rank all 8 observations together. To do this, arrange them in order
from smallest to largest:

153.1 156.0 158.6 176.4

The boldface entries in the list are the yields with no weeds present. We see
that four of the five highest yields come from that group, suggesting that yields
are higher with no weeds. The idea of rank tests is to look just at position in
this ordered list. To do this, replace each observation by its order, from 1
(smallest) to 8 (largest). These numbers are the :

Yield 153.1 156.0 158.6 176.4
Rank 1 2 3 7

To rank observations, first arrange them in order from smallest to largest.
The of each observation is its position in this ordered list, starting
with rank 1 for the smallest observation.

Chapter 14: Nonparametric Tests4

Normal quantile plots (Figure 14.2) suggest that the data may be right-skewed. The
samples are too small to assess normality adequately or to rely on the robustness of
the two-sample test. We may prefer to use a test that does not require normality.

FIGURE 14.2

The rank transformation

Ranks



Wilcoxon rank sum statistic.

Wilcoxon rank sum test
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Moving from the original observations to their ranks is a transformation
of the data, like moving from the observations to their logarithms. The rank
transformation retains only the ordering of the observations and makes no
other use of their numerical values. Working with ranks allows us to dis-
pense with specific assumptions about the shape of the distribution, such as
normality.

If the presence of weeds reduces corn yields, we expect the ranks of the yields
from plots with weeds to be smaller as a group than the ranks from plots with-
out weeds. We might compare the of the ranks from the two treatments:

Treatment Sum of ranks

No weeds 23
Weeds 13

These sums measure how much the ranks of the weed-free plots as a group
exceed those of the weedy plots. In fact, the sum of the ranks from 1 to 8 is
always equal to 36, so it is enough to report the sum for one of the two groups.
If the sum of the ranks for the weed-free group is 23, the ranks for the other
group must add to 13 because 23 + 13 = 36. If the weeds have no effect, we
would expect the sum of the ranks in either group to be 18 (half of 36). Here
are the facts we need in a more general form that takes account of the fact
that our two samples need not be the same size.

Draw an SRS of size from one population and draw an independent SRS
of size from a second population. There are observations in all, where

. Rank all observations. The sum of the ranks for the first
sample is the If the two populations have
the same continuous distribution, then has mean

( 1)
2

and standard deviation

( 1)
12

The rejects the hypothesis that the two popu-
lations have identical distributions when the rank sum is far from its
mean.*

W

W

14.1 The Wilcoxon Rank Sum Test
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This test was invented by Frank Wilcoxon (1892–1965) in 1945. Wilcoxon was a chemist
who met statistical problems in his work at the research laboratories of American Cyanimid
Company.
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The Wilcoxon rank sum test

The Wilcoxon Rank Sum Test
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In the corn yield study of Example 14.1, we want to test

: no difference in distribution of yields

against the one-sided alternative

: yields are systematically higher in weed-free plots

Our test statistic is the rank sum 23 for the weed-free plots.

To calculate the -value ( 23), we need to know the sampling distri-
bution of the rank sum when the null hypothesis is true. This distribution
depends on the two sample sizes and . Tables are therefore a bit unwieldy,
though you can find them in handbooks of statistical tables. Most statistical
software will give you -values, as well as carry out the ranking and calculate

. However, some software gives only approximate -values. You must learn
what your software offers.

It is worth noting that the two-sample test gives essentially the same
result as the Wilcoxon test in Example 14.3 ( 1 554, 0 0937). It is in
fact somewhat unusual to find a strong disagreement between the conclusions
reached by these two tests.
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In Example 14.1, 4, 4, and there are 8 observations in all. The sum
of ranks for the weed-free plots has mean

( 1)
2

(4)(9)
18

2

and standard deviation

( 1)
12

(4)(4)(9)
12 3 464

12

Although the observed rank sum 23 is higher than the mean, it is only about 1.4
standard deviations higher. We now suspect that the data do not give strong evidence
that yields are higher in the population of weed-free corn.

The -value for our one-sided alternative is ( 23), the probability that
is at least as large as the value for our data when is true.

Figure 14.3 shows the output from software that calculates the exact sampling dis-
tribution of . We see that the sum of the ranks in the weed-free group is 23,
with -value 0 10 against the one-sided alternative that weed-free plots have
higher yields. There is some evidence that weeds reduce yield, considering that we
have data from only four plots for each treatment. The evidence does not, however,
reach the levels usually considered convincing.
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EXAMPLE 14.2

EXAMPLE 14.3



Exact Wilcoxon rank-sum test

data: 0weeds and 3weeds

rank-sum statistic W = 23, n = 4, m = 4, p-value = 0.100

alternative hypothesis: true mu is greater than 0

Output from the S-Plus statistical software for the data in
Example 14.1. This program uses the exact distribution for when the
samples are small and there are no tied observations.
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The rank sum statistic becomes approximately normal as the two sample
sizes increase. We can then form yet another statistic by standardizing :

( 1) 2

( 1) 12

Use standard normal probability calculations to find -values for this statis-
tic. Because takes only whole-number values, the
improves the accuracy of the approximation.

We recommend always using either the exact distribution (from software
or tables) or the continuity correction for the rank sum statistic . The exact
distribution is safer for small samples. As Example 14.4 illustrates, however,
the normal approximation with the continuity correction is often adequate.
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The standardized rank sum statistic in our corn yield example is

23 18
1 44

3 464

We expect to be larger when the alternative hypothesis is true, so the approximate
-value is

( 1 44) 0 0749

The continuity correction (page 379) acts as if the whole number 23 occupies the
entire interval from 22.5 to 23.5. We calculate the -value ( 23) as (
22 5) because the value 23 is included in the range whose probability we want. Here
is the calculation:

22 5 18
( 22 5)

3 464

( 1 30)

0 0968

The continuity correction gives a result closer to the exact value 0 10.

� �

continuity
correction

FIGURE 14.3
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The normal approximation
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Wilcoxon Scores (Rank Sums) for Variable YIELD
Classified by Variable WEEDS

(a)

(b)

Sum of Expected Std Dev Mean
WEEDS N Scores Under H0 Under H0 Score

0 4 23.0 18.0 3.46410162 5.75000000
3 4 13.0 18.0 3.46410162 3.25000000

Wilcoxon 2-Sample Test S = 23.0000

Exact P-Values
(One-sided) Prob > = S    = 0.1000
(Two-sided) Prob > = |S – Mean| = 0.2000

Normal Approximation (with Continuity Correction of .5)
Z = 1.29904 Prob > |Z| = 0.1939

Output from the Minitab and SAS statistical software for the
data in Example 14.1. (a) Minitab uses the normal approximation for the
distribution of . (b) SAS gives both the exact and approximate values.

S W
z

P

Mann-Whitney
test.

Chapter 14: Nonparametric Tests8

Figure 14.4 shows the output for our data from two more statistical programs.
Minitab offers only the normal approximation, and it refers to the

This is an alternative form of the Wilcoxon rank sum test. SAS carries out both
the exact and approximate tests. SAS calls the rank sum rather than and gives
the mean 18 and standard deviation 3.464 as well as the statistic 1.299 (using the
continuity correction). SAS gives the approximate two-sided -value as 0.1939, so

Mann-Whitney test

FIGURE 14.4
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Our null hypothesis is that weeds do not affect yield. Our alternative hypothe-
sis is that yields are lower when weeds are present. If we are willing to assume
that yields are normally distributed, or if we have reasonably large samples,
we use the two-sample test for means. Our hypotheses then become

:
:

When the distributions may not be normal, we might restate the hypothe-
ses in terms of population medians rather than means:

: median median
: median median

The Wilcoxon rank sum test provides a significance test for these hypothe-
ses, but only if an additional assumption is met: both populations must have
distributions of . That is, the density curve for corn yields
with 3 weeds per meter looks exactly like that for no weeds except that it
may slide to a different location on the scale of yields. The Minitab output in
Figure 14.4(a) states the hypotheses in terms of population medians (which
it calls “ETA”) and also gives a confidence interval for the difference between
the two population medians.

The same-shape assumption is too strict to be reasonable in practice. Re-
call that our preferred version of the two-sample test does not require that
the two populations have the same standard deviation—that is, it does not
make a same-shape assumption. Fortunately, the Wilcoxon test also applies
in a much more general and more useful setting. It tests hypotheses that we
can state in words as

: two distributions are the same
: one has values that are systematically larger

Here is a more exact statement of the “systematically larger” alternative
hypothesis. Take to be corn yield with no weeds and to be corn yield
with 3 weeds per meter. These yields are random variables. That is, every
time we plant a plot with no weeds, the yield is a value of the variable . The
probability that the yield is more than 160 bushels per acre when no weeds
are present is ( 160). If weed-free yields are “systematically larger” than
those with weeds, yields higher than 160 should be more likely with no weeds.
That is, we should have

( 160) ( 160)

�

�

a

a

a
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the one-sided result is half this, 0 0970. This agrees with Minitab and (up to a
small roundoff error) with our result in Example 14.4. This approximate -value is
close to the exact result 0 1000, given by SAS and in Figure 14.3.
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What hypotheses does Wilcoxon test?
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any

assign all tied values the
of the ranks they occupy

W

The alternative hypothesis says that this inequality holds not just for 160 but
for yield we care to specify. No weeds always puts more probability “to
the right” of whatever yield we are interested in.

This exact statement of the hypotheses we are testing is a bit awkward.
The hypotheses really are “nonparametric” because they do not involve any
specific parameter such as the mean or median. If the two distributions do
have the same shape, the general hypotheses reduce to comparing medians.
Many texts and computer outputs state the hypotheses in terms of medians,
sometimes ignoring the same-shape requirement. We recommend that you
express the hypotheses in words rather than symbols. “Yields are systemati-
cally higher in weed-free plots” is easy to understand and is a good statement
of the effect that the Wilcoxon test looks for.

The exact distribution for the Wilcoxon rank sum is obtained assuming that
all observations in both samples take different values. This allows us to rank
them all. In practice, however, we often find observations tied at the same
value. What shall we do? The usual practice is to

. Here is an example with 6 observations:

Observation 153 155 158 158 161 164
Rank 1 2 3.5 3.5 5 6

The tied observations occupy the third and fourth places in the ordered list,
so they share rank 3.5.

The exact distribution for the Wilcoxon rank sum applies only to
data without ties. Moreover, the standard deviation must be adjusted
if ties are present. The normal approximation can be used after the stan-
dard deviation is adjusted. Statistical software will detect ties, make the
necessary adjustment, and switch to the normal approximation. In practice,
software is required if you want to use rank tests when the data contain tied
values.

It is sometimes useful to use rank tests on data that have very many
ties because the scale of measurement has only a few values. Here is an
example.

W

Chapter 14: Nonparametric Tests
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Food sold at outdoor fairs and festivals may be less safe than food sold in restaurants
because it is prepared in temporary locations and often by volunteer help. What do
people who attend fairs think about the safety of the food served? One study asked
this question of people at a number of fairs in the Midwest:

How often do you think people become sick because of food they consume pre-
pared at outdoor fairs and festivals?

average ranks

�

Ties

EXAMPLE 14.6
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We should first ask if the subjects in Example 14.6 are a random sample
of people who attend fairs, at least in the Midwest. The researcher visited 11
different fairs. She stood near the entrance and stopped every 25th adult who
passed. Because no personal choice was involved in choosing the subjects,
we can reasonably treat the data as coming from a random sample. (As usual,
there was some nonresponse, which could create bias.)

Here are the data, presented as a two-way table of counts:

Response

1 2 3 4 5 Total

Female 13 108 50 23 2 196
Male 22 57 22 5 1 107

Total 35 165 72 28 3 303

Comparing row percents shows that the women in the sample are more con-
cerned about food safety then the men:

Response

1 2 3 4 5 Total

Female 6.6% 55.1% 25.5% 11.7% 1.0% 100%
Male 20.6% 53.3% 20.6% 4.7% 1.0% 100%

Is the difference between the genders statistically significant?
We might apply the chi-square test (Chapter 9). It is highly significant

( 16 120, df = 4, 0 0029). Although the chi-square test answers our
general question, it ignores the ordering of the responses and so does not
use all of the available information. We would really like to know whether
men or women are more concerned about the safety of the food served. This

�

�

�

�

�

3
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The possible responses were:

1 very rarely
2 once in a while
3 often
4 more often than not
5 always

In all, 303 people answered the question. Of these, 196 were women and 107 were
men. Is there good evidence that men and women differ in their perceptions about
food safety at fairs?



GENDER

Female
Male

N

196
107

Sum of
Scores

31996.5000
14059.5000

Expected
Under H0

29792.0
16264.0

Std Dev
Under H0

661.161398
661.161398

Mean
Score

163.247449
131.397196

Wilcoxon Scores (Rank Sums) for Variable SFAIR
Classified by Variable GENDER

Wilcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)

S = 14059.5    Z = –3.33353    Prob > |Z| = 0.0009

Average Scores Were Used for Ties

Output from SAS for the food safety study of Example 14.6. The
approximate two-sided -value is 0.0009.
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question depends on the ordering of responses from least concerned to most
concerned. We can use the Wilcoxon test for the hypotheses:

: men and women do not differ in their responses
: one of the two genders gives systematically larger responses

than the other

The alternative hypothesis is two-sided. Because the responses can take only
five values, there are very many ties. All 35 people who chose “very rarely” are
tied at 1, and all 165 who chose “once in a while” are tied at 2.

With more than 100 observations in each group and no outliers, we might
use the two-sample even though responses take only five values. In fact,
the results for Example 14.6 are 3 3655 with 0 0009. The -value
for two-sample is the same as that for the Wilcoxon test. There is, how-
ever, another reason to prefer the rank test in this example. The statistic
treats the response values 1 through 5 as meaningful numbers. In partic-
ular, the possible responses are treated as though they are equally spaced.
The difference between “very rarely” and “once in a while” is the same as
the difference between “once in a while” and “often.” This may not make
sense. The rank test, on the other hand, uses only the order of the responses,
not their actual values. The responses are arranged in order from least to
most concerned about safety, so the rank test makes sense. Some statisti-
cians avoid using procedures when there is not a fully meaningful scale of
measurement.

� �

�
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Figure 14.5 gives computer output for the Wilcoxon test. The rank sum for men (us-
ing average ranks for ties) is 14 059 5. The standardized value is 3 33,
with two-sided -value 0 0009. There is very strong evidence of a difference.
Women are more concerned than men about the safety of food served at fairs.

FIGURE 14.5
P

EXAMPLE 14.7
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SUMMARY

The examples we have given illustrate the potential usefulness of nonpara-
metric tests. Nonetheless, rank tests are of secondary importance relative to
inference procedures based on the normal distribution.

Nonparametric inference is largely restricted to simple settings. Normal
inference extends to methods for use with complex experimental
designs and multiple regression, but nonparametric tests do not. We
stress normal inference in part because it leads on to more advanced
statistics.

Normal tests compare means and are accompanied by simple
confidence intervals for means or differences between means. When
we use nonparametric tests to compare medians, we can also give
confidence intervals, though they are awkward to calculate without
software. However, the usefulness of nonparametric tests is clearest in
settings when they do not simply compare medians—see the discussion
of “What hypotheses does Wilcoxon test?” In these settings, there is no
measure of the of the observed effect that is closely related to the
rank test of the of the effect.

The robustness of normal tests for means implies that we rarely
encounter data that require nonparametric procedures to obtain
reasonably accurate -values. The and tests give very similar results
in our examples. Nonetheless, many statisticians would not use a test
in Example 14.6 because the response variable gives only the order of
the responses.

There are more modern and more effective ways to escape the
assumption of normality, such as bootstrap methods (see page 427).

do not require any specific form for the distribution of
the population from which our samples come.

are nonparametric tests based on the of observations, their
positions in the list ordered from smallest (rank 1) to largest. Tied observa-
tions receive the average of their ranks.

The compares two distributions to assess whether
one has systematically larger values than the other. The Wilcoxon test is based
on the which is the sum of the ranks of one
of the samples. The Wilcoxon test can replace the

for the Wilcoxon test are based on the sampling distribution of the
rank sum statistic when the null hypothesis (no difference in distributions)
is true. You can find -values from special tables, software, or a normal ap-
proximation (with continuity correction).

Summary 13

Limitations of nonparametric tests



14.1

(a)

(b)

(c)

14.2

14.3

(a)

Statistical software is very helpful in doing these exercises. If you do not
have access to software, base your work on the normal approximation with
continuity correction.

t
t P

W P
t

SECTION 14.1 EXERCISES

A study of early childhood education asked kindergarten students to retell
two fairy tales that had been read to them earlier in the week. The 10
children in the study included 5 high-progress readers and 5 low-progress
readers. Each child told two stories. Story 1 had been read to them; Story
2 had been read and also illustrated with pictures. An expert listened to a
recording of the children and assigned a score for certain uses of language.
Here are the data:

Child Progress Story 1 score Story 2 score

1 high 0.55 0.80
2 high 0.57 0.82
3 high 0.72 0.54
4 high 0.70 0.79
5 high 0.84 0.89
6 low 0.40 0.77
7 low 0.72 0.49
8 low 0.00 0.66
9 low 0.36 0.28
10 low 0.55 0.38

Is there evidence that the scores of high-progress readers are higher than
those of low-progress readers when they retell a story they have heard
without pictures (Story 1)?

Make normal quantile plots for the 5 responses in each group. Are any
major deviations from normality apparent?

Carry out a two-sample test. State hypotheses and give the two sample
means, the statistic and its -value, and your conclusion.

Carry out the Wilcoxon rank sum test. State hypotheses and give
the rank sum for high-progress readers, its -value, and your
conclusion. Do the and Wilcoxon tests lead you to different
conclusions?

Repeat the analysis of Exercise 14.1 for the scores when children retell a
story they have heard and seen illustrated with pictures (Story 2).

Use the data in Exercise 14.1 for children telling Story 2 to carry out by
hand the steps in the Wilcoxon rank sum test.

Arrange the 10 observations in order and assign ranks. There are no
ties.

Chapter 14: Nonparametric Tests
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(b)

(c)

(d)

14.4

(a)

(b)

(c)

14.5

(a)

(b)

W
W

W z
P

. . . .

t
x s

t

t

Find the rank sum for the five high-progress readers. What are the
mean and standard deviation of under the null hypothesis that low-
progress and high-progress readers do not differ?

Standardize to obtain a statistic. Do a normal probability
calculation with the continuity correction to obtain a one-sided -value.

The data for Story 1 contain tied observations. What ranks would you
assign to the 10 scores for Story 1?

The corn yield study of Example 14.1 also examined yields in four plots
having 9 lamb’s-quarter plants per meter of row. The yields (bushels per
acre) in these plots were

162 8 142 4 162 7 162 4

There is a clear outlier, but rechecking the results found that this is the
correct yield for this plot. The outlier makes us hesitant to use procedures
because and are not resistant.

Is there evidence that 9 weeds per meter reduces corn yields when
compared with weed-free corn? Use the Wilcoxon rank sum test with
the data above and part of the data from Example 14.1 to answer this
question.

Compare the results from (a) with those from the two-sample test for
these data.

Now remove the low outlier 142.4 from the data for 9 weeds per meter.
Repeat both the Wilcoxon and analyses. By how much did the outlier
reduce the mean yield in its group? By how much did it increase the
standard deviation? Did it have a practically important impact on your
conclusions?

How quickly do synthetic fabrics such as polyester decay in landfills? A
researcher buried polyester strips in the soil for different lengths of time,
then dug up the strips and measured the force required to break them.
Breaking strength is easy to measure and is a good indicator of decay.
Lower strength means the fabric has decayed. Part of the study involved
burying 10 polyester strips in well-drained soil in the summer. Five of the
strips, chosen at random, were dug up after 2 weeks; the other 5 were dug
up after 16 weeks. Here are the breaking strengths in pounds:

2 weeks 118 126 126 120 129

16 weeks 124 98 110 140 110

Make a back-to-back stemplot. Does it appear reasonable to assume
that the two distributions have the same shape?

Is there evidence that breaking strengths are lower for strips buried
longer?

Section 14.1 Exercises
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14.6

(a)

(b)

(c)

14.7

A “subliminal” message is below our threshold of awareness but may
nonetheless influence us. Can subliminal messages help students learn
math? A group of students who had failed the mathematics part of the
City University of New York Skills Assessment Test agreed to participate
in a study to find out. All received a daily subliminal message, flashed on
a screen too rapidly to be consciously read. The treatment group of 10
students was exposed to “Each day I am getting better in math.” The control
group of 8 students was exposed to a neutral message, “People are walking
on the street.” All students participated in a summer program designed to
raise their math skills, and all took the assessment test again at the end
of the program. Here are data on the subjects’ scores before and after the
program.

Treatment group Control group

Pretest Posttest Pretest Posttest

18 24 18 29
18 25 24 29
21 33 20 24
18 29 18 26
18 33 24 38
20 36 22 27
23 34 15 22
23 36 19 31
21 34
17 27

The study design was a randomized comparative experiment. Outline
this design.

Compare the gain in scores in the two groups, using a graph and
numerical descriptions. Does it appear that the treatment group’s
scores rose more than the scores for the control group?

Apply the Wilcoxon rank sum test to the posttest versus pretest
differences. Note that there are some ties. What do you conclude?

“Conservationists have despaired over destruction of tropical rainforest by
logging, clearing, and burning.” These words begin a report on a statistical
study of the effects of logging in Borneo. Here are data on the number of
tree species in 12 unlogged forest plots and 9 similar plots logged 8 years
earlier:

Unlogged 22 18 22 20 15 21 13 13 19 13 19 15

Logged 17 4 18 14 18 15 15 10 12

Chapter 14: Nonparametric Tests
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(a)

(b)

14.8

14.9

14.10

14.11

(a)

eg14-006.dat

cannot

Make a back-to-back stemplot of the data. Does there appear to be a
difference in species counts for logged and unlogged plots?

Does logging significantly reduce the number of species in a plot after
8 years? State hypotheses, do a Wilcoxon test, and state your conclusion.

Exercise 7.65 (page 546) studies the effect of piano lessons on the spatial-
temporal reasoning of preschool children. The data there concern 34
children who took piano lessons and a control group of 44 children. The
data take only small whole-number values. Use the Wilcoxon rank sum
test (there are many ties) to decide whether piano lessons improve spatial-
temporal reasoning.

Example 14.6 describes a study of the attitudes of people attending outdoor
fairs about the safety of the food served at such locations. You can find the
full data set online or on the CD as the file . It contains the
responses of 303 people to several questions. The variables in this data set
are (in order)

subject hfair sfair sfast srest gender

The variable “sfair” contains the responses described in the example
concerning safety of food served at outdoor fairs and festivals. The variable
“srest” contains responses to the same question asked about food served in
restaurants. The variable “gender” contains 1 if the respondent is a woman,
2 if he is a man. We saw that women are more concerned than men about
the safety of food served at fairs. Is this also true for restaurants?

The data file used in Example 14.6 and Exercise 14.9 contains 303 rows,
one for each of the 303 respondents. Each row contains the responses of
one person to several questions. We wonder if people are more concerned
about the safety of food served at fairs than they are about the safety of food
served at restaurants. Explain carefully why we answer this question
by applying the Wilcoxon rank sum test to the variables “sfair” and “srest.”

To study customers’ attitudes toward secondhand stores, researchers
interviewed samples of shoppers at two secondhand stores of the same
chain in two cities. Here are data on the incomes of shoppers at the two
stores, presented as a two-way table of counts:

Income code Income City 1 City 2

1 Under $10,000 70 62
2 $10,000 to $19,999 52 63
3 $20,000 to $24,999 69 50
4 $25,000 to $34,999 22 19
5 $35,000 or more 28 24

Is there a relationship between city and income? Use the chi-square test
to answer this question.

Section 14.1 Exercises
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absolute values

0.37 0.66

ex14-11.dat
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14.2 The Wilcoxon Signed Rank Test
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The chi-square test ignores the ordering of the income categories.
The data file contains data on the 459 shoppers in this
study. The first variable is the city (City1 or City2) and the second is
the income code as it appears in the table here (1 to 5). Is there good
evidence that shoppers in one city have systematically higher incomes
than in the other?

We use the one-sample procedures for inference about the mean of one pop-
ulation or for inference about the mean difference in a matched pairs setting.
The matched pairs setting is more important because good studies are gener-
ally comparative. We will now meet a rank test for this setting.

Positive differences in Example 14.8 indicate that the child performed
better telling Story 2. If scores are generally higher with illustrations, the pos-
itive differences should be farther from zero in the positive direction than the
negative differences are in the negative direction. We therefore compare the

of the differences, that is, their magnitudes without a sign.
Here they are, with boldface indicating the positive values:

0 23 0 08 0 17

Arrange these in increasing order and assign ranks, keeping track of which
values were originally positive. Tied values receive the average of their ranks.
If there are zero differences, discard them before ranking.

� �
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A study of early childhood education asked kindergarten students to retell two fairy
tales that had been read to them earlier in the week. Each child told two stories. The
first had been read to them, and the second had been read but also illustrated with
pictures. An expert listened to a recording of the children and assigned a score for
certain uses of language. Here are the data for five “low-progress” readers in a pilot
study:

Child 1 2 3 4 5

Story 2 0.77 0.49 0.66 0.28 0.38
Story 1 0.40 0.72 0.00 0.36 0.55
Difference 0.37 0.23 0.66 0.08 0.17

We wonder if illustrations improve how the children retell a story. We would like to
test the hypotheses

: scores have the same distribution for both stories
: scores are systematically higher for Story 2

Because this is a matched pairs design, we base our inference on the differences. The
matched pairs test gives 0 635 with one-sided -value 0 280. Displays of
the data (Figure 14.6) suggest some lack of normality. We would therefore like to use
a rank test.

absolute value

a

EXAMPLE 14.8
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Normal quantile plot and histogram for the five differences in
Example 14.8.
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Wilcoxon signed rank statistic.

Wilcoxon signed rank test

Wilcoxon signed rank statistic W

n

W

W

n n

n n n

W

�

�
�

� �
�

Absolute value 0.08 0.17 0.23
Rank 1 2 3

The test statistic is the sum of the ranks of the positive differences. (We could
equally well use the sum of the ranks of the negative differences.) This is the

. Its value here is 9.

Draw an SRS of size from a population for a matched pairs study and
take the differences in responses within pairs. Rank the absolute values of
these differences. The sum of the ranks for the positive differences is
the If the distribution of the responses is
not affected by the different treatments within pairs, then has mean

( 1)
4

and standard deviation

( 1)(2 1)
24

The rejects the hypothesis that there are no
systematic differences within pairs when the rank sum is far from its
mean.
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Wilcoxon Signed Ranks Test

Exact Wilcoxon signed-rank test

data: Story2-Story1

signed-rank statistic V = 9, n = 5, p-value = 0.4062

alternative hypothesis: true mu is greater than 0

STORY2-
STORY1

Negative Ranks
Positive Ranks
Ties
Total

N
3
2
0
5

Z
Asymp. Sig.(2-tailed)

STORY2-
STORY1
 –.405
 .686

Mean
Rank
2.00
4.50

Sum of
Ranks
6.00
9.00

Ranks

Test Statistics

(a)

(b)

Output from (a) S-Plus and (b) SPSS for the storytelling study
of Example 14.8. S-Plus reports the exact -value 0 4062. SPSS uses the
normal approximation without the continuity correction and so gives a less
accurate -value, 0 343 (one-sided).

P W
n

n

n n
.

W
P P W

P n
W P . t

P .

�

The distribution of the signed rank statistic when the null hypothesis (no dif-
ference) is true becomes approximately normal as the sample size becomes
large. We can then use normal probability calculations (with the continuity
correction) to obtain approximate -values for . Let’s see how this works
in the storytelling example, even though 5 is certainly not a large sample.

�

�
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In the storytelling study of Example 14.8, 5. If the null hypothesis (no systematic
effect of illustrations) is true, the mean of the signed rank statistic is

( 1) (5)(6)
7 5

4 4

Our observed value 9 is only slightly larger than this mean. The one-sided
-value is ( 9).

Figure 14.7 displays the output of two statistical programs. We see from Fig-
ure 14.7(a) that the one-sided -value for the Wilcoxon signed rank test with 5
observations and 9 is 0 4062. This result differs from the test result

0 280, but both tell us that this very small sample gives no evidence that seeing
illustrations improves the storytelling of low-progress readers.

FIGURE 14.7
P P .

P P .

W

The normal approximation
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Ties among the absolute differences are handled by assigning average ranks.
A tie a pair creates a difference of zero. Because these are neither
positive nor negative, we drop such pairs from our sample. As in the case of
the Wilcoxon rank sum, ties complicate finding a -value. There is no longer
a usable exact distribution for the signed rank statistic , and the standard
deviation must be adjusted for the ties before we can use the normal
approximation. Software will do this. Here is an example.
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For 5 observations, we saw in Example 14.9 that 7 5. The standard de-
viation of under the null hypothesis is

( 1)(2 1)
24

(5)(6)(11)
24

13 75 3 708

The continuity correction calculates the -value ( 9) as ( 8 5),
treating the value 9 as occupying the interval from 8.5 to 9.5. We find the nor-
mal approximation for the -value by standardizing and using the standard normal
table:

7 5 8 5 7 5
( 8 5)

3 708 3 708

( 0 27)

0 394

Despite the small sample size, the normal approximation gives a result quite close
to the exact value 0 4062. Figure 14.7(b) shows that the approximation is much
less accurate without the continuity correction. This output reminds us not to trust
software unless we know exactly what it does.

Here are the golf scores of 12 members of a college women’s golf team in two rounds
of tournament play. (A golf score is the number of strokes required to complete the
course, so that low scores are better.)

Player 1 2 3 4 5 6 7 8 9 10 11 12

Round 2 94 85 89 89 81 76 107 89 87 91 88 80
Round 1 89 90 87 95 86 81 102 105 83 88 91 79
Difference 5 5 2 6 5 5 5 16 4 3 3 1

Negative differences indicate better (lower) scores on the second round. We see that
6 of the 12 golfers improved their scores. We would like to test the hypotheses that
in a large population of collegiate woman golfers

: scores have the same distribution in rounds 1 and 2
: scores are systematically lower or higher in round 2

A normal quantile plot of the differences (Figure 14.8) shows some irregularity and
a low outlier. We will use the Wilcoxon signed rank test.
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Normal quantile plot of the differences in scores for two rounds
of a golf tournament, from Example 14.11.

5 6 5 5 16 3

3 5 5 5 6 16
3.5 8 8 8 11 12

W .

P

P

P .
P .
P .
P .

�

The absolute values of the differences, with boldface indicating those that
were negative, are

5 2 5 4 3 1

Arrange these in increasing order and assign ranks, keeping track of which
values were originally negative. Tied values receive the average of their ranks.

Absolute value 1 2 3 4 5 5
Rank 1 2 3.5 5 8 8

The Wilcoxon signed rank statistic is the sum of the ranks of the negative
differences. (We could equally well use the sum of the ranks of the positive
differences.) Its value is 50 5.
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Here are the two-sided -values for the Wilcoxon signed rank test for the golf score
data from several statistical programs:

Program -value

Minitab 0 388
SAS 0 388
S-PLUS 0 384
SPSS 0 363

FIGURE 14.8

EXAMPLE 14.12



Wilcoxon signed rank test

Wilcoxon signed rank statistic

matched pairs test sign test

-values

14.12

+++W ,

t

P W
P

Statistical software is very helpful in doing these exercises. If you do not
have access to software, base your work on the normal approximation with
continuity correction.

SUMMARY

SECTION 14.2 EXERCISES

P

t t . P .
t W

The applies to matched pairs studies. It tests
the null hypothesis that there is no systematic difference within pairs against
alternatives that assert a systematic difference (either one-sided or two-
sided).

The test is based on the which is the
sum of the ranks of the positive (or negative) differences when we rank the
absolute values of the differences. The and the
are alternative tests in this setting.

for the signed rank test are based on the sampling distribution of
when the null hypothesis is true. You can find -values from special tables,
software, or a normal approximation (with continuity correction).

The concentration of carbon dioxide (CO ) in the atmosphere is increasing
rapidly due to our use of fossil fuels. Because plants use CO to fuel
photosynthesis, more CO may cause trees and other plants to grow faster.
An elaborate apparatus allows researchers to pipe extra CO to a 30-meter
circle of forest. They set up three pairs of circles in different parts of a
forest in North Carolina. One of each pair received extra CO for an entire
growing season, and the other received ambient air. The response variable
is the average growth in base area for trees in a circle, as a fraction of the
starting area. Here are the data for one growing season:

Pair Control Treatment

1 0.06528 0.08150
2 0.05232 0.06334
3 0.04329 0.05936

� �
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All lead to the same practical conclusion: these data give no evidence for a systematic
change in scores between rounds. However, the -values reported differ a bit from
program to program. The reason for the variations is that the programs use slightly
different versions of the approximate calculations needed when ties are present.
The exact result depends on which of these variations the programmer chooses
to use.

For these data, the matched pairs test gives 0 9314 with 0 3716. Once
again, and lead to the same conclusion.



(a)

(b)

(c)

(d)

14.13

14.14

(a)

(b)

14.15

t

Summarize the data. Does it appear that growth was faster in the
treated plots?

The researchers used a paired-sample test to see if the data give good
evidence of faster growth in the treated plots. State hypotheses, carry
out the test, and state your conclusion.

The sample is so small that we cannot assess normality. To be safe, we
might use the Wilcoxon signed rank test. Carry out this test and report
your result.

The tests lead to very different conclusions. The primary reason is the
lack of power of rank tests for very small samples. Explain to someone
who knows no statistics what this means.

A student project asked subjects to step up and down for three minutes
and measured their heart rates before and after the exercise. Here are data
for five subjects and two treatments: stepping at a low rate (14 steps per
minute) and at a medium rate (21 steps per minute). For each subject, we
give the resting heart rate (beats per minutes) and the heart rate at the end
of the exercise.

Low rate Medium rate

Subject Resting Final Resting Final

1 60 75 63 84
2 90 99 69 93
3 87 93 81 96
4 78 87 75 90
5 84 84 90 108

Does exercise at the low rate raise heart rate significantly? State hypotheses
in terms of the median increase in heart rate and apply the Wilcoxon signed
rank test. What do you conclude?

Do the data from the previous exercise give good reason to think that
stepping at the medium rate increases heart rates more than stepping at the
low rate?

State hypotheses in terms of comparing the median increases for the
two treatments. What is the proper rank test for these hypotheses?

Carry out your test and state a conclusion.

Table 7.1 (page 498) presents the scores on a test of understanding of
spoken French for a group of high school French teachers before and after a
summer language institute. The improvements in scores between the pretest
and the posttest for the 20 teachers were

2 0 6 6 3 3 2 3 6 6 6 6 3 0 1 1 0 2 3 3

A normal quantile plot (Figure 7.7, page 503) shows granularity and a low
outlier. We might wish to avoid the assumption of normality by using a rank

Chapter 14: Nonparametric Tests
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test. Use the Wilcoxon signed rank procedure to reach a conclusion about
the effect of the language institute. State hypotheses in words and report
the statistic , its -value, and your conclusion. (Note that there are many
ties in the data.)

Show the assignment of ranks and the calculation of the signed rank
statistic for the data in Exercise 14.15. Remember that zeros are
dropped from the data before ranking, so that is the number of nonzero
differences within pairs.

Example 14.6 describes a study of the attitudes of people attending outdoor
fairs about the safety of the food served at such locations. The full data
set is available online or on the CD as the file It contains the
responses of 303 people to several questions. The variables in this data set
are (in order)

subject hfair sfair sfast srest gender

The variable “sfair” contains responses to the safety question described in
Example 14.6. The variable “srest” contains responses to the same question
asked about food served in restaurants. We suspect that restaurant food
will appear safer than food served outdoors at a fair. Do the data give good
evidence for this suspicion? (Give descriptive measures, a test statistic and
its -value, and your conclusion.)

The food safety survey data described in Example 14.6 and Exercise 14.17
also contain the responses of the 303 subjects to the same question asked
about food served at fast-food restaurants. These responses are the values
of the variable “sfast.” Is there a systematic difference between the level of
concern about food safety at outdoor fairs and at fast-food restaurants?

Exercise 7.37 (page 520) reports readings from 12 home radon detectors
exposed to 105 picocuries per liter of radon:

91 9 97 8 111 4 122 3 105 4 95 0
103 8 99 6 96 6 119 3 104 8 101 7

We wonder if the median reading differs significantly from the true
value 105.

Graph the data, and comment on skewness and outliers. A rank test is
appropriate.

We would like to test hypotheses about the median reading from home
radon detectors:

: median 105
: median 105

To do this, apply the Wilcoxon signed rank statistic to the differences
between the observations and 105. (This is the one-sample version of
the test.) What do you conclude?
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14.20

14.21

t

14.3 The Kruskal-Wallis Test

n

Exercise 7.39 (page 520) gives data on the vitamin C content of 27 bags of
wheat soy blend at the factory and five months later in Haiti. We want to
know if vitamin C has been lost during transportation and storage. Describe
what the data show about this question. Then use a rank test to see whether
there has been a significant loss.

Exercise 7.40 (page 521) contains data from a student project that
investigated whether right-handed people can turn a knob faster clockwise
than they can counterclockwise. Describe what the data show, then state
hypotheses and do a test that does not require normality. Report your
conclusions carefully.

We have now considered alternatives to the paired-sample and two-sample
tests for comparing the magnitude of responses to two treatments. To com-

pare more than two treatments, we use one-way analysis of variance (ANOVA)
if the distributions of the responses to each treatment are at least roughly
normal and have similar spreads. What can we do when these distribution
requirements are violated?

12
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Lamb’s-quarter is a common weed that interferes with the growth of corn. A re-
searcher planted corn at the same rate in 16 small plots of ground, then randomly
assigned the plots to four groups. He weeded the plots by hand to allow a fixed num-
ber of lamb’s-quarter plants to grow in each meter of corn row. These numbers were
0, 1, 3, and 9 in the four groups of plots. No other weeds were allowed to grow, and
all plots received identical treatment except for the weeds. Here are the yields of corn
(bushels per acre) in each of the plots:

Weeds Corn Weeds Corn Weeds Corn Weeds Corn
per meter yield per meter yield per meter yield per meter yield

0 166.7 1 166.2 3 158.6 9 162.8
0 172.2 1 157.3 3 176.4 9 142.4
0 165.0 1 166.7 3 153.1 9 162.7
0 176.9 1 161.1 3 156.0 9 162.4

The summary statistics are

Weeds Mean Std. dev.

0 4 170.200 5.422
1 4 162.825 4.469
3 4 161.025 10.493
9 4 157.575 10.118

The sample standard deviations do not satisfy our rule of thumb that for safe use
of ANOVA the largest should not exceed twice the smallest. Normal quantile plots
(Figure 14.9) show that outliers are present in the yields for 3 and 9 weeds per meter.
These are the correct yields for their plots, so we have no justification for removing
them. We may want to use a nonparametric test.

EXAMPLE 14.13
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Normal quantile plots for the corn yields in the four treatment
groups in Example 14.13.
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The ANOVA test concerns the means of the several populations represented
by our samples. For Example 14.13, the ANOVA hypotheses are

:
: not all four means are equal

For example, is the mean yield in the population of all corn planted un-
der the conditions of the experiment with no weeds present. The data should
consist of four independent random samples from the four populations, all
normally distributed with the same standard deviation.

a
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The is a rank test that can replace the ANOVA test.
The assumption about data production (independent random samples from
each population) remains important, but we can relax the normality assump-
tion. We assume only that the response has a continuous distribution in each
population. The hypotheses tested in our example are

: yields have the same distribution in all groups
: yields are systematically higher in some groups than in others

If all of the population distributions have the same shape (normal or not),
these hypotheses take a simpler form. The null hypothesis is that all four pop-
ulations have the same yield. The alternative hypothesis is that not
all four median yields are equal.

Recall the analysis of variance idea: we write the total observed variation
in the responses as the sum of two parts, one measuring variation among
the groups (sum of squares for groups, SSG) and one measuring variation
among individual observations within the same group (sum of squares for
error, SSE). The ANOVA test rejects the null hypothesis that the mean re-
sponses are equal in all groups if SSG is large relative to SSE.

The idea of the Kruskal-Wallis rank test is to rank all the responses from
all groups together and then apply one-way ANOVA to the ranks rather than
to the original observations. If there are observations in all, the ranks are
always the whole numbers from 1 to . The total sum of squares for the
ranks is therefore a fixed number no matter what the data are. So we do
not need to look at both SSG and SSE. Although it isn’t obvious without
some unpleasant algebra, the Kruskal-Wallis test statistic is essentially just
SSG for the ranks. We give the formula, but you should rely on software
to do the arithmetic. When SSG is large, that is evidence that the groups
differ.

Draw independent SRSs of sizes , , , from populations. There
are observations in all. Rank all observations and let be the sum of
the ranks for the th sample. The is

12
3( 1)

( 1)

When the sample sizes are large and all populations have the same
continuous distribution, has approximately the chi-square distribution
with 1 degrees of freedom.

The rejects the null hypothesis that all populations
have the same distribution when is large.
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We now see that, like the Wilcoxon rank sum statistic, the Kruskal-Wallis
statistic is based on the sums of the ranks for the groups we are comparing.
The more different these sums are, the stronger is the evidence that responses
are systematically larger in some groups than in others.

The exact distribution of the Kruskal-Wallis statistic under the null hy-
pothesis depends on all the sample sizes to , so tables are awkward.
The calculation of the exact distribution is so time-consuming for all but the
smallest problems that even most statistical software uses the chi-square ap-
proximation to obtain -values. As usual, there is no usable exact distribution
when there are ties among the responses. We again assign average ranks to
tied observations.

Figure 14.10 displays the output from the SAS statistical software, which
gives the results 5 5725 and 0 1344. The software makes a small
adjustment for the presence of ties that accounts for the slightly larger value
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In Example 14.13, there are 4 populations and 16 observations. The sample
sizes are equal, 4. The 16 observations arranged in increasing order, with their
ranks, are

Yield 142.4 153.1 156.0 157.3 158.6 161.1 162.4 162.7
Rank 1 2 3 4 5 6 7 8

Yield 162.8 165.0 166.2 166.7 166.7 172.2 176.4 176.9
Rank 9 10 11 12.5 12.5 14 15 16

There is one pair of tied observations. The ranks for each of the four treatments are

Weeds Ranks Sum of ranks

0 10 12.5 14 16 52.5
1 4 6 11 12.5 33.5
3 2 3 5 15 25.0
9 1 7 8 9 25.0

The Kruskal-Wallis statistic is therefore

12
3( 1)

( 1)

12 52 5 33 5 25 25
(3)(17)

(16)(17) 4 4 4 4

12
(1282 125) 51

272

5 56

Referring to the table of chi-square critical points (Table F) with df = 3, we find
that the -value lies in the interval 0 10 0 15. This small experiment suggests
that more weeds decrease yield but does not provide convincing evidence that weeds
have an effect.

�

� �
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i
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Wilcoxon Scores (Rank Sums) for Variable YIELD
Classified by Variable WEEDS

Average Scores Were Used for Ties

Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 5.5725 DF = 3 Prob > CHISQ = 0.1344

WEEDS

0
1
3
9

N

4
4
4
4

Sum of
Scores

52.5000000
33.5000000
25.0000000
25.0000000

Expected
Under H0

34.0
34.0
34.0
34.0

Std Dev
Under H0

8.24014563
8.24014563
8.24014563
8.24014563

Mean
Score

13.1250000
8.3750000
6.2500000
6.2500000

Output from SAS for the Kruskal-Wallis test applied to the
data in Example 14.13. SAS uses the chi-square approximation to obtain a

-value.

Kruskal-Wallis test
one-way analysis

of variance

Kruskal-Wallis statistic

I

H

H

P
P .

F F . P .

H

I
P

SUMMARY

�

� �

of . The adjustment makes the chi-square approximation more accurate. It
would be important if there were many ties.

As an option, SAS will calculate the exact -value for the Kruskal-Wallis
test. The result for Example 14.14 is 0 1299. This result required more
than an hour of computing time. Fortunately, the chi-square approximation is
quite accurate. The ordinary ANOVA test gives 1 73 with 0 2130.
Although the practical conclusion is the same, ANOVA and Kruskal-Wallis do
not agree closely in this example. The rank test is more reliable for these small
samples with outliers.

The compares several populations on the basis of inde-
pendent random samples from each population. This is the

setting.

The null hypothesis for the Kruskal-Wallis test is that the distribution of the
response variable is the same in all the populations. The alternative hypoth-
esis is that responses are systematically larger in some populations than in
others.

The can be viewed in two ways. It is essentially
the result of applying one-way ANOVA to the ranks of the observations. It is
also a comparison of the sums of the ranks for the several samples.

When the sample sizes are not too small and the null hypothesis is true,
for comparing populations has approximately the chi-square distribution
with 1 degrees of freedom. We use this approximate distribution to obtain

-values.
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14.22

(a)

(b)

14.23

(a)

(b)

Statistical software is needed to do these exercises without unpleasant hand
calculations. If you do not have access to software, find the Kruskal-Wallis
statistic H by hand and use the chi-square table to get approximate P-values.

P
P . P

SECTION 14.3 EXERCISES
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Exercise 12.11 presents the following data from a study of the loss of
vitamin C in bread after baking:

Condition Vitamin C (mg/100 g)

Immediately after baking 47.62 49.79
One day after baking 40.45 43.46
Three days after baking 21.25 22.34
Five days after baking 13.18 11.65
Seven days after baking 8.51 8.13

The loss of vitamin C over time is clear, but with only 2 loaves of bread
for each storage time we wonder if the differences among the groups are
significant.

Use the Kruskal-Wallis test to assess significance, then write a brief
summary of what the data show.

Because there are only 2 observations per group, we suspect that the
common chi-square approximation to the distribution of the Kruskal-
Wallis statistic may not be accurate. The exact -value (from the SAS
software) is 0 0011. Compare this with your -value from (a). Is
the difference large enough to affect your conclusion?

Exercise 12.23 discusses a study of the effect of exercise on bone density
in growing rats. Ten rats were assigned to each of three treatments: a 60-
centimeter “high jump,” a 30-centimeter “low jump,” and a control group
with no jumping. Here are the bone densities (in milligrams per cubic
centimeter) after 8 weeks of 10 jumps per day:

Group Bone density (mg/cm )

Control 611 621 614 593 593 653 600 554 603 569
Low jump 635 605 638 594 599 632 631 588 607 596
High jump 650 622 626 626 631 622 643 674 643 650

The study was a randomized comparative experiment. Outline the
design of this experiment.

Make side-by-side stemplots for the three groups, with the stems lined
up for easy comparison. The distributions are a bit irregular but not
strongly nonnormal. We would usually use analysis of variance to
assess the significance of the difference in group means.

Section 14.3 Exercises
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(c)

(d)

14.24

(a)

(b)

14.25

(a)

(b)

(c)

14.26

I n N

R

H

P

Do the Kruskal-Wallis test. Explain the distinction between the
hypotheses tested by Kruskal-Wallis and ANOVA.

Write a brief statement of your findings. Include a numerical
comparison of the groups as well as your test result.

In Exercise 12.30 you used ANOVA to analyze the results of a study to see
which of four colors best attracts cereal leaf beetles. Here are the data:

Color Insects trapped

Lemon yellow 45 59 48 46 38 47
White 21 12 14 17 13 17
Green 37 32 15 25 39 41
Blue 16 11 20 21 14 7

Because the samples are small, we will apply a nonparametric test.

What hypotheses does ANOVA test? What hypotheses does Kruskal-
Wallis test?

Find the median number of beetles trapped by boards of each color.
Which colors appear more effective? Use the Kruskal-Wallis test to
see if there are significant differences among the colors. What do you
conclude?

Exercise 14.24 gives data on the counts of insects attracted by boards of
four different colors. Carry out the Kruskal-Wallis test by hand, following
these steps.

What are , the , and in this example?

Arrange the counts in order and assign ranks. Be careful about ties.
Find the sum of the ranks for each color.

Calculate the Kruskal-Wallis statistic . How many degrees of
freedom should you use for the chi-square approximation to its null
distribution? Use the chi-square table to give an approximate -value.

Here are the breaking strengths (in pounds) of strips of polyester fabric
buried in the ground for several lengths of time:

Time Breaking strength

2 weeks 118 126 126 120 129
4 weeks 130 120 114 126 128
8 weeks 122 136 128 146 140

16 weeks 124 98 110 140 110

Breaking strength is a good measure of the extent to which the fabric has
decayed.

i

i
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(a)

(b)

(c)

14.27

14.28

(a)

(b)

14.29

eg14-006.dat.

cannot

P

Find the standard deviations of the 4 samples. They do not meet our
rule of thumb for applying ANOVA. In addition, the sample buried for
16 weeks contains an outlier. We will use the Kruskal-Wallis test.

Find the medians of the four samples. What are the hypotheses for the
Kruskal-Wallis test, expressed in terms of medians?

Carry out the test and report your conclusion.

Example 14.6 describes a study of the attitudes of people attending outdoor
fairs about the safety of the food served at such locations. The full data
set is available online or on the CD as the file It contains the
responses of 303 people to several questions. The variables in this data set
are (in order)

subject hfair sfair sfast srest gender

The variable “sfair” contains responses to the safety question described
in Example 14.6. The variables “srest” and “sfast” contain responses to
the same question asked about food served in restaurants and in fast-food
chains. Explain carefully why we use the Kruskal-Wallis test to see if
there are systematic differences in perceptions of food safety in these three
locations.

In Exercise 14.7 you compared the number of tree species in plots of land
in a tropical rainforest that had never been logged with similar plots nearby
that had been logged 8 years earlier. The researchers also counted species
in plots that had been logged just 1 year earlier. Here are the counts of
species:

Plot type Species count

Unlogged 22 18 22 20 15 21 13 13 19 13 19 15
Logged 1 year ago 11 11 14 7 18 15 15 12 13 2 15 8
Logged 8 years ago 17 4 18 14 18 15 15 10 12

Use side-by-side stemplots to compare the distributions of number
of trees per plot for the three groups of plots. Are there features that
might prevent use of ANOVA? Also give the median number of trees per
plot in the three groups.

Use the Kruskal-Wallis test to compare the distributions of tree
counts. State hypotheses, the test statistic and its -value, and your
conclusions.

In a study of heart disease in male federal employees, researchers classified
356 volunteer subjects according to their socioeconomic status (SES) and
their smoking habits. There were three categories of SES: high, middle, and
low. Individuals were asked whether they were current smokers, former

Section 14.3 Exercises
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(a)

(b)

(c)

14.30

(a)

(b)

(c)

14.31

(a)

(b)

(c)

ex14.29.dat

t t

CHAPTER 14 EXERCISES

smokers, or had never smoked. Here are the data, as a two-way table of
counts:

SES Never (1) Former (2) Current (3)

High 68 92 51
Middle 9 21 22
Low 22 28 43

The data for all 356 subjects are stored in the file online and on
the CD. Smoking behavior is stored numerically as 1, 2, or 3 using the codes
given in the column headings above.

Higher SES people in the United States smoke less as a group than
lower SES people. Do these data show a relationship of this kind? Give
percents that back your statements.

Apply the chi-square test to see if there is a significant relationship
between SES and smoking behavior.

The chi-square test ignores the ordering of the responses. Use the
Kruskal-Wallis test (with many ties) to test the hypothesis that some
SES classes smoke systematically more than others.

Table 1.9 (page 59) presents data on the calorie and sodium content of
selected brands of beef, meat, and poultry hot dogs. We will regard these
brands as random samples from all brands available in food stores.

Make stemplots of the calorie contents side by side, using the same
stems for easy comparison. Give the five-number summaries for the
three types of hot dog. What do the data suggest about the calorie
content of different types of hot dog?

Are any of the three distributions clearly not normal? Which ones, and
why?

Carry out a nonparametric test. Report your conclusions carefully.

Exercise 7.131 (page 569) reports data on the selling prices of 9 four-
bedroom houses and 28 three-bedroom houses in West Lafayette, Indiana.
We wonder if there is a difference between the average prices of three- and
four-bedroom houses in this community.

Make a normal quantile plot of the prices of three-bedroom houses.
What kind of deviation from normality do you see?

The tests are quite robust. State the hypotheses for the proper test,
carry out the test, and present your results including appropriate data
summaries.

Carry out a nonparametric test. Once more state the hypotheses tested
and present your results for both the test and the data summaries that
should go with it.

Chapter 14: Nonparametric Tests
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14.32

14.33

(a)

(b)

14.34

14.35

14.36 Optional multiple
comparisons

(a)

Exercise 13.16 (page 822) reports data from a study of iron-deficiency anemia
in Ethiopia. The issue is whether Ethiopian food loses more iron when cooked
in some types of pots. Here are data on iron content (milligrams per 100 grams
of food) for three types of food cooked in each of three types of pots:

Exercises 14.33 to 14.35 use these data.

which

k . k any
k

k
. k

Repeat the analysis of Exercise 14.30 for the sodium content of hot dogs.

Iron content

Type of pot Meat Legumes Vegetables

Aluminum 1.77 2.36 1.96 2.14 2.40 2.17 2.41 2.34 1.03 1.53 1.07 1.30
Clay 2.27 1.28 2.48 2.68 2.41 2.43 2.57 2.48 1.55 0.79 1.68 1.82
Iron 5.27 5.17 4.06 4.22 3.69 3.43 3.84 3.72 2.45 2.99 2.80 2.92

We want to know if the vegetable dish varies in iron content when cooked in
aluminum, clay, and iron pots.

Check the requirements for one-way ANOVA. Which requirements are a
bit dubious in this setting?

Instead of ANOVA, do a nonparametric test. Summarize your
conclusions about the effect of pot material on iron content, including
both descriptive measures and your test result.

There appears to be little difference between the iron content of food
cooked in aluminum pots and food cooked in clay pots. Is there a significant
difference between the iron content of meat cooked in aluminum and clay?
Is the difference between aluminum and clay significant for legumes? Use
nonparametric tests.

The data show that food cooked in iron pots has the highest iron content.
They also suggest that the three types of food differ in iron content. Is there
significant evidence that the three types of food differ in iron content when
all are cooked in iron pots?

( ) As in ANOVA, we often want to carry out a
procedure following a Kruskal-Wallis test to tell us

groups differ significantly. Here is a simple method: If we carry out
tests at fixed significance level 0 05 , the probability of false

rejection among the tests is always no greater than 0.05. That is, to get
overall significance level 0.05 for all of comparisons, do each individual
comparison at the 0 05 level. In Exercise 14.30 you found a significant
difference among the calorie contents of three types of hot dog. Now we will
explore multiple comparisons.

Write down all of the pairwise comparisons we can make, for example,
beef versus meat. There are three possible pairwise comparisons.

Chapter 14 Exercises
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(b)

(c)

14.37 Optional

P

P

Hint:

NOTES

X stochastically larger X

P X a P X a

a a

Science

Journal of Business Research

Science

The Marathon: Physiological,

Carry out three Wilcoxon rank sum tests, one for each of the three pairs
of hot dog types. What are the three two-sided -values?

For purposes of multiple comparisons, any of these three tests is
significant if its -value is no greater than 0.05/3 = 0.0167. Which pairs
differ significantly at the overall 0.05 level?

( ) Exercise 14.36 outlines how to use the Wilcoxon rank sum
test several times for multiple comparisons with overall significance level
0.05 for all comparisons together. In Exercise 14.24 you found that the
numbers of beetles attracted by boards of four colors differ significantly. At
the overall 0.05 level, which pairs of colors differ significantly? ( There
are 6 possible pairwise comparisons among 4 colors.)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

1 2

1 2

2
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Data provided by Sam Phillips, Purdue University.

For purists, here is the precise definition: is than if

( ) ( )

for all , with strict inequality for at least one . The Wilcoxon rank sum test is
effective against this alternative in the sense that the power of the test approaches 1
(that is, the test becomes more certain to reject the null hypothesis) as the number
of observations increases.

Data from Huey Chern Boo, “Consumers’ perceptions and concerns about safety and
healthfulness of food served at fairs and festivals,” M.S. thesis, Purdue University,
1997.

Data provided by Susan Stadler, Purdue University.

From Sapna Aneja, “Biodeterioration of textile fibers in soil,” M.S. thesis, Purdue
University, 1994.

Data provided by Warren Page, New York City Technical College, from a study done
by John Hudesman.

Data provided by Charles Cannon, Duke University. The study report is C. H. Cannon,
D. R. Peart, and M. Leighton, “Tree species diversity in commercially logged
Bornean rainforest,” , 281 (1998), pp. 1366–1367.

From William D. Darley, “Store-choice behavior for pre-owned merchandise,”
, 27 (1993), pp. 17–31.

See Note 4.

Data for 1998 provided by Jason Hamilton, University of Illinois. The study report is
Evan H. DeLucia et al., “Net primary production of a forest ecosystem with
experimental CO enhancement,” , 284 (1999), pp. 1177–1179.

Simplified from the EESEE story “Stepping Up Your Heart Rate,” on the CD.

See Note 1.

See Note 5.

See Note 7.

Ray H. Rosenman et al., “A 4-year prospective study of the relationship of different
habitual vocational physical activity to risk and incidence of ischemic heart disease
in volunteer male federal employees,” in P. Milvey (ed.),



Medical, Epidemiological and Psychological Studies

Nonparametric Statistical Methods
16.

Notes 37

, New York Academy of Sciences,
301 (1977), pp. 627–641.

For more details on multiple comparisons (but not the simple procedure given here)
see M. Hollander and D. A. Wolfe, , Wiley, 1973.
This book is a useful reference on applied aspects of nonparametric inference in
general.




