
Regression   M&M §2.3 and  §10

Uses
              MALES                       FEMALES• Curve fitting
Age. Tot.    %-ile; weight,g     Tot.    %-ile; weight,g• Summarization  ('model')

• Description
wk    N.    10th   50th   90th   No.    10th    50th   90th• Prediction

• Explanation
25    100    651    810    950      73    604    750    924• Adjustment for 'confounding' variables

30    257  1 156  1 530  2 214     216  1 040  1 485  2 001Technical Meaning
31

• [originally] simply a line of 'best fit' to data points 32
33

• [nowadays] Regression line is the LINE that connects the CENTRES of
the distributions of Y's  at each X value.

34
35  1 840  2 060  2 570  3 140   1 454  1 950  2 460  3 040

36

• not necessarily a straight line;  could be curved, as with growth charts
37
38

• not necessarily  µY|X 's used as CENTRES ; could use medians etc.
39
40 68 102  3 020  3 570  4 160  67 149  2 900  3 430  4 000

• strictly speaking, haven't completed description unless we characterize
the variation around the centres of the Y distributions at each X

41
42 10 309  3 200  3 770  4 390   9 636  3 060  3 610  4 190

• inference not restricted to the distributions of Y's for which we make
some observations; it applies to distributions of Y's at all unobserved X
values in between.
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BIRTH WEIGHT (DISTRIBUTION) MALES
BIRTH WEIGHT (MEDIAN) FEMALES

Median (50th %ile) for MALES 
Median (50th %ile) for FEMALES 

Live singleton births, Canada 1986
Source: Arbuckle & Sherman CMAJ 140 157-161, 1989

Examples (with appropriate caveats)
• Birth weight (Y) in relation to gestational age (X)
• Blood pressure (Y) in relation to age (X)
• Cardiovascular mortality (Y) in relation to water hardness (X) ?
• Cancer incidence (Y) in relation to some exposure (X) ?
• Scholastic performance (Y) vis a vis amount of TV watched (X)

Caveat:  No guarantee that simple straight line relationship will be adequate.
Also, in some instances the relationship might change with the type of X
and Y variables used to measure the two phenomena being studied;  also the
relationship may be more artifact than real - see later for inference.)
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Regression   M&M §2.3 and  §10

S i m p l e  L i n e a r †  R e g r e s s i o n Fitting a straight line to data - Least Squares Method
   (one X)    (straight line)

The most common method is that of Least Squares.  Note that least
squares can be thought of as just a curve fitting method and doesn't have
to be thought of in a statistical (or random variation or sampling
variation) context.  Other more statistically-oriented methods include
the method of minimum Chi-Square (matching observed and expected
counts according to measure of discrepancy) and the Method of
Maximum likelihood (finding the parameters that made the data most
likely).  Each has a different criterion of "best-fit".

Equation

•  µY|X = α + β X or  
∆ µY|X 

∆ X  = β  =  "rise"
"run"

In Practice:
one rarely sees an exact straight line relationship in health science
applications;

Least Squares Approach:1 - While physicists are often able to examine the relationship between Y
and X in a laboratory with all other things being equal (ie controlled or
held constant) medical investigators largely are not.  The universe of
(X,Y) pairs is very large and any 'true' relationship is disturbed by
countless uncontrollable (and sometimes un-measurable factors.  In any
particular sample of (X,Y) pairs these distortions will surely be
operating.

• Consider a candidate slope (b) and intercept (a) and predict that the

Y value accompanying any X=x is ŷ = a + b•x.  The observed y

value will deviate from this "predicted" or "fitted" value by an

amount d = y -  ŷ

We wish to keep this deviation as  small as possible, but we must

try to strike a balance over all the data points.  Again just like

when  calculating variances, it is easier to work with squared

deviations1 :

d2 = (y -  ŷ ) 2

We weight all deviations equally (whether they be the ones in the

middle or the extremes of the x range) using  ∑ d2 = ∑ (y -  ŷ ) 2

to measure the overall (or average) discrepancy of the points from

the line.

2 - The true relationship (even if we could measure it exactly) may not be a
simple straight line.

3 - The measuring instruments may be faulty or inexact (using
'instruments' in the broadest sense).

One always tries to have the investigation sufficiently controlled that the
'real' relationship won't be 'swamped' by factors 1 and 3 and that the
background "noise" will be small enough so that alternative models (eg
curvilinear relationships) can be distinguished from one another.
------------------------------------------------------------------------------------------------------

----------------------------------------------

† Linear here means linear in the parameters. The equation
y = BxC  can be made linear in the parameters by taking logs
i.e. log[y] = log[B] + x log[C]; y = a+b•x+c•x2 is already linear
in the parameters a b and c. The following model cannot be made
linear in the parameters α β γ:

proportion dying = α +  
1-α

1+exp{β–γ log[dose]}

1 there are also several theoretical advantages to least squares estimates
over others based for example on least absolute deviations: - they are
the most precise of all the possible estimates one could get by taking
linear combinations of y's.
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Regression   M&M §2.3 and  §10

• From all the possible candidates for  slope (b) and intercept (a) , we

choose the particular values a and b which make this sum of squares

(sum of squared deviations of 'fitted' from 'observed' Y's) a minimum.

ie we search for the a and b that give us the least squares fit.

but there are no cars weighing 0 lbs. It would be better to write the

equation in relation to some 'central' value for weight e.g. 3500

lbs; then the same equation can be cast as

µY|weight – 25 =  0.01•(weight – 3500)

• Fortunately, we don't have to use trial and error to arrive at the 'best' a

and b .  Instead, it can be shown by calculus or algebraically that the a

and b which minimize  ∑ d2 are:

b =  β^  =  
 ∑{x i –  x

–
 }{y i –  y

–
 }

 ∑{x i –  x
–
 }2    

   =  
rxy  •  sy

sx

a =  α^  =  y– – b  x
–

It is helpful for testing whether there is evidence of a non-zero slope to

think of the simplest of all regression models, namely that which is a

horizontal straight line

µY|X = α + 0 • X =  the constant α .

This is a re-statement of the fact that the sum of squared deviances

around a constant horizontal line at height 'a' is smallest when 'α ' =

the mean .

[Note that a least-squares fit of the regression line of X on Y would
give a different set of values for the slope and intercept:  the slope

of the line of x on y is   
rxy  • sx

sy
] . one needs to be careful when

using a calculator or computer program to specify which is the
explanatory variable (X) and which is the predicted variable (Y)].

[We don't always use the mean as the best 'centre' of a set of numbers.

Imagine waiting for one of several elevators with doors in a row along

one wall; you do not know which one will arrive next,  and so want to

stand in the 'best' place  no matter which one comes next. Where to

stand depends on the criterion being optimized: if you want to minimize

the maximum distance,  stand in the middle between the one on the

extreme left and the extreme right; if you wish to minimize the average

distance , where do you stand?, If, for some reason, you want to

minimize the average squared  distance, where to stand? If the elevator

doors are not equally spaced from each other, what then?]

Meaning of intercept parameter (a):

Unlike the slope parameter (which represents the increase/decrease

in µY|X for every unit increase in x), the intercept does not always

have a 'natural' interpretation.  It  depends on where the x-values lie

in relation to x=0, and may represent part of what is really the

mean Y. For example, the regression line for fuel economy of cars

(Y) in relation to their weight (x) might be

µY|weight = 60 mpg – 0.01•weight in lbs   [0.01 mpg/lb]
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Regression   M&M §2.3 and  §10

The anatomy of a slope: some re-expressions i.e.   a weighted average of the slope from datapoints 1 and 4
and that from datapoints 2 and 3, with weights proportional to the
squares of their distances on x axis {x4  –  x1}2 and {x3  –  x2}2

Consider the formula: slope = b = 
∑{x – xbar}{y – ybar}

∑{x – xbar} 2

Without loss of generality & for simplicity,  assume ybar=0.

If we have 3 x's,  1 unit apart  (e.g. x1=1;  x2 =2;  x3 =3),
Another way to think of the slope:

Rewrite  b = 
∑{x – xbar}{y – ybar}

∑{x – xbar} 2    as   then...      x1 – xbar = –1;   x2 – xbar = 0;   x3 – xbar = +1

   so slope = b = 
{ – 1}y1  +  {0}y2  +   {  +  1}y 3

{ – 1}2 +  {  0  }2 + {  + 1}2

b  =  
∑{x – xbar} 2   {y – ybar}

{x – xbar}

∑{x – xbar} 2        =    
∑ weight   {y – ybar}

{x – xbar}
∑weight

weight  {x – xbar}2 for estimate  
{y – ybar}
{x – xbar}  of slope

   i.e.  slope =  
y3  –   y 1

x3  –   x 1

Note that   y2  contributes to ybar and thus to an estimate
of the average y (i.e. level) but not to the slope.

Yet another way to think of the slope:If 4 x's 1 unit apart  (e.g. x1=1;  x2 =2;  x3 =3;  x4 =4), then,...

x1 – xbar = –1.5 x2 – xbar =  – 0.5
x3 – xbar = +0.5 x4 – xbar =  + 1.5

   and so

   slope = b = 
{ – 1.5}y1  +   {  –  0 .5}y2  +   {  +  0 .5}y3+  { + 1.5}y4

{ – 1.5}2 + { – 0.5}2  + { 0.5 }2 + { + 1.5}2

   i.e.  slope =  
1.5{ y4  –  y 1}

5
 +  

0.5{ y3  –  y 2}
5

   i.e.  slope =  

3
2
 {y4  –  y 1}

5
3
 {x4  –   x 1}

 +  

1
2
 {  y3  –  y 2}

5
1
 {x3  –   x 2}

   i.e.  slope = 
 9
10

  
{y4  –  y 1}
{x4  –   x 1}

 +  
 1
10

  
{ y3  –  y 2}
{x3  –   x 2}

b is a weighted average of all the pairwise slopes   
yi – yj
xi – xj

with weights proportional to  {xi  –  xj }2 .

e.g.  If 4 x's 1 unit apart

denote by b1&2 the slope obtained from {x2,y2} & {x1,y1}, etc...

b  =  
1.b1&2  +  4.b1&3   +  9.b1&4  +  1.b1&3  +  4.b2&4  + 1.b3&4

1+ 4  +  9  +  1  +  4  +  1  =  20

jh 6/94
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Regression   M&M §2.3 and  §10

Inferences regarding Simple  Linear  Regression 50 than to take X =38, 39, 49, 41, 42.  Any individual fluctuations
will 'throw off' the slope much less if the X's are far apart.

How reliable are

30 40 5030 40 50

BP BP

AGE AGE

(b)(a)(i) the (estimated) slope
(ii) the (estimated) intercept
(ii) the predicted mean Y at a given X
(iv) the predicted y for a (future) individual with a given X

when they are based on data from a sample?  i.e. how much would these
estimated quantities change if they were based on a different random
sample [with the same x values]?

We can use the concept of sampling variation to (i) describe the
'uncertainty' in our estimates via CONFIDENCE INTERVALS or (ii)
carry out TESTS of significance on the parameters (slope, intercept,
predicted mean).

thick l ine :   real (true) relation between average BP at age X and X : thin
lines:   possible apparent relationships because of individual variation when
we study 1 individual at each of two ages (a) spaced closer together (b)
spaced further apart.

We can describe the degree of reliability of (or, conversely, the degree of
uncertainty in) an estimated quantity by the standard deviation of the
possible estimates produced by different random samples of the same
size from the same x's.  We call this (obviously conceptual) S.D. the
standard error of the estimated quantity (just like the standard error of the
mean when estimating µ). helpful to think of slope as an average
difference in means for 2 groups that are 1 x-unit apart.

Notes

Regression line refers to the relationship between the average Y at a
given X to the X , and not to individual Y's vs X.  Obviously of course if
the individual Y's are close to the average Y, so much the better!

The size of the standard error will depend on

1. how 'spread apart' the x's are
The above argument would suggest studying individuals at the
extremes of the X values of interest.  We do this if we are sure that the
relationship is a linear one. If we are not sure, it is wiser -- if we have
a choice in the matter -- to take a 3-point distribution.

There is a common misapprehension that a Gaussian distribution of X
values is desirable for estimating a regression slope of Y on X. In fact,
the 'inverted U' shape of the Gaussian is the least desirable!

2. How good a fit the regression line really is (i.e. how small is
the unexplained variation about the line)

3. How large the sample size, n, is.

Factors affecting reliability (in more detail)

1. The spread of the X's:  The best way to get a reliable estimate of
the slope is to take Y readings at X's that are quite a distance from
each other.  E.g. in estimating the "per year increase in BP over the
30-50 yr. age range", it would be better to take X=30,35, 40, 45,
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Regression   M&M §2.3 and  §10

Factors affecting reliability (continued) variation when we study 1 individual at each of two ages when the
within-age distributions have (a) a narrow spread (b) a wider spread

2. The (vertical) variation about the regression line:  Again, consider
BP and age, and suppose that indeed the average BP of all persons
aged X + 1 is β units higher than the average BP of all persons

aged X, and that this linear relationship

  average BP of persons aged x  =      α    +   β    •  X
 (average of Y's at  a  given    x  = intercept + slope •  X)

NOTE:  For unweighted regression, should have roughly same spread
of Y's at each X.

Factors affecting reliability (continued)

3. Sample Size (n)  Larger n will make it more difficult for the types of
extremes and misleading estimates caused by 1) poor X spread and 2)
large variation in Y about µ Y|X , to occur.  Clearly, it may be possible

to spread the x's out so as to maximize their variance (and thus reduce
the n required) but it may not be possible to change the magnitude of
the variation about µ Y|X  (unless there are other known factors

influencing BP).  Thus the need for reasonably stable estimated ŷ
[i.e.estimate of  µY|X ]

holds over the age span 30-50.

Obviously, everybody aged x=32 won't have the exact same BP,
some will be above the average of 32 yr olds, some below.
Likewise for the different ages x=30,...50. In other words, at any x
there will be a distribution of y's about the average for age X.
Obviously, how wide this distribution is about α + β•X will have
an effect on what slopes one could find in different samples
(measure vertical spread around the line by σ)

30 40 5030 40 50

BP BP

AGE AGE

(a) (b)

thick l ine :   real (true) relation between average BP at age X and X :
thin lines:  possible apparent relationships because of individual
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Regression   M&M §2.3 and  §10

Standard Errors The structure of SE(a) : In addition to the factors mentioned above, all
of which come in again in the expected way, there is the additional

factor of  x
–2; since this is in the denominator, it increases the SE . This

is natural in that if the data, and thus  x
–
, are far from  x=0, then any

imprecision in the estimate of the slope will project backwards to a
large imprecision in the estimated intercept. Also, if one uses 'centered'

x's, so that   x
–
 = 0, the formula for the SE reduces to

SE(a) =  σ  
1
n
   =   σ

n

and we recognize this as SE(y
–
) -- not surprisingly, since y

–
 is the

'intercept' for centered data.

SE(b) = SE( β̂) =  
 σ

 ∑{xi – x–  }2   
  ;

SE(a) = SE( α̂) = σ  
1
n + 

 x–2

∑{xi –  x–  }2  

(Note:  there is a negative correlation between a and b).

We don't usually know  σ so we estimate it from the data, using scatter of
the y's from the fitted line i.e. SD of the residuals)

CI's & Tests of Significance for ^  and ^  are based on
t–distribution (or Gaussian Z's  if n large)

If examine the structure of SE(b), see that it reflects the 3 factors discussed
above: (i) a large spread of the x's makes contribution of each observation to

∑{xi –  x
–
 }2 large, and since this is in the denominator, it reduces the SE

(ii) a small vertical scatter is reflected in a small σ and since this is in the
numerator, it also reduces the SE of the estimated slope (iii) a large sample

size means that  ∑{xi –  x
–
 }2 is larger, and like (i) this reduces the SE.

The formula, as written, tends to hide this last factor; note that

∑{xi –  x
–
 }2 is what we use to compute the spread of a set of x's -- we

simply divide it by n–1 to get a variance and then take the square root to get
the sd. To make the point here, simplify n-1 to n and write

∑{xi –  x
–
 }2  ≈  n•var(x),  so that ∑{xi –   x

–
 }2   ≈ n • sd(x)

and the equation for the SE simplifies to

SE(b)  =  
 σ

  n • sd(x)   
  = 

 SDy|x /  SDx 

  n 

with  n  in its familiar place in the denominator of the SE (even in more

complex SE's,  this is where n  is usually found !)

 ^  ± tn–2 • SE(  ^ )

    H0:  tn–2 = 
^ – 

SE(^)

 ^  ± tn–2 • SE(  ^ )

    H0:  tn–2 = 
^ – 

SE(^)

page  7



Regression   M&M §2.3 and  §10

Standard Error for Estimated µY|X or 'average Y at X' variation, which is as follows:

α^+ β^ •X  ±   t•σ 1  +   
1
n
 +  

{X  –   x
–
}2

∑{xi –   x
–
 }2  

  .

Both the CI for the estimated mean and the CI for individuals (ie the
estimated percentiles of the distribution) are bow-shaped when drawn as

a function of X . They are narrowest at X =   x
–
, and fan out from there.

One needs to be careful not to confuse the much narrower CI for the
mean with the much wider CI for individuals. If one can see the raw
data, it is usually obvious which is which -- the CI for individuals is
almost as wide as the raw data themselves.

We estimate 'average Y at X' or  µY|X   by   α^  +   β^ •X  .  Since the

estimate is based on two estimated quantities, each of which is subject to
sampling variation, it contains the uncertainty of both:

SE(estimated average Y at X) = σ  
1
n
 +  

{X  –   x
–
}2

∑{xi –   x
–
 }2  

Again, we must use an estimate  σ^ of  σ .

First-time users of this formula suspect that it has a missing ∑ or an x
instead of an xbar or something. There is no typographical error, and indeed
if one examines it closely, it makes sense.  X  refers to the x-value at which
one is estimating the mean -- it has nothing to do with the actual x's in the
study which generated the estimated coefficients, except that the closer X  is

to the center of the data, the smaller the quantity  {X  –  x
–
} and thus the

quantity  {X  –  x
–
}2, and thus the SE, will be. Indeed, if we estimate the

average Y right at  X  =    x
–
, the estimate is simply  y

–
  (since the fitted

line goes through [ x
–
, y

–
] ) and its SE will be

  σ  
1
n
 +  

{ x
–
 –   x

–
}2

∑{xi –   x
–
 }2  

    or    σ  
1
n
   =   σ

n
  = SE( y

–
 ).

cf. data on sleeping through the night; alcohol levels and eye speed.

Confidence Interval for individual Y at X

A certain percentage P% of individuals are within tP • σ  of the mean
µY|X =   α + β • X , where tP is a multiple, depending on  P, from the t

or, if n is large, the Z table. However, we are not quite certain where
exactly the mean  α  +   β • X  is -- the best we can do is estimate,

with a certain P% confidence, that  it is within tP• SE( α^  +   β^ •X  ) of

the point estimate  α^+ β^ •X.  The uncertainty concerning the mean and
the natural variation of individuals around the mean -- wherever it is --
combine in the expression for the estimated P% range of individual
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